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ABSTRACT 
A numerical inverse method called FlowPaths is presented to solve for the 

hydraulic conductivity field of an isotropic heterogeneous porous medium 

from a known specific discharge field (and constant-head boundary 

conditions). This method makes possible a new approach to reactive transport 

experiments, aimed at understanding the dynamic spatial and temporal 

evolution of hydraulic conductivity, which simultaneously record the evolving 

reaction and the evolving flow geometry. This inverse method assumes steady, 

two-dimensional flow through a square matrix of grid blocks. A graph-

theoretical approach is used to find a set of flow paths through the porous 

medium using the known components of the specific discharge, where every 

vertex is traversed by at least one path from the upstream high-head boundary 

to the downstream low-head boundary. Darcy’s law is used to create an 

equation for the unknown head drop across each edge. Summation of these 

edge equations along each path through the network generates a set of 

linearly independent head-drop equations that is solved directly for the 

hydraulic conductivity field. FlowPaths is verified by generating 12,740 

hydraulic conductivity fields of varying size and heterogeneity, calculating the 

corresponding specific discharge field for each, and then using that specific 

discharge field to estimate the underlying hydraulic conductivity field. When 

estimates from FlowPaths are compared to the simulated hydraulic 

conductivity fields, the inverse method is demonstrated to be accurate and 

numerically stable. Accordingly, within certain limitations, FlowPaths can be 

used in field or laboratory applications to find hydraulic conductivity from a 

known velocity field. 
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1. INTRODUCTION 
Modeling flow through porous media supports 

numerous applications including seepage 

through dams (e.g., 39), subsurface transport of 

nuclear waste (e.g., 64), and groundwater 

remediation (e.g., 69). According to Darcy’s law, 

specific discharge �⃗� is linearly proportional to the 

hydraulic head gradient ∇ℎ and to the hydraulic 

conductivity 𝐊, a spatially and temporally variable 

tensor field that reflects the physical properties of 

water and the geometric intricacies of the porous 

media. Those geometric intricacies are 

encapsulated by the permeability 𝐤, while the specific discharge �⃗� is the product of the local porosity 𝜀 

and the local pore velocity 𝑣.⃗ Except in idealized cases, such as filter beds packed with monodisperse 

spherical grains, it is difficult-to-impossible to predict hydraulic conductivity a priori (3); this difficulty is 

amplified in the context of groundwater remediation, where a host of mechanisms such as clay 

dispersion, mineral precipitation, biofilm growth, or bubble formation can trigger spatial and temporal 

changes in hydraulic conductivity (40).  

Because it cannot be measured a priori, hydraulic conductivity is determined through inverse modeling 

(e.g., 58): One measures the other terms in a known relationship, such as Darcy’s law, then solves for the 

unknown hydraulic conductivity. Indeed, this paradigm is illustrated in Darcy’s (10) original work, in which 

the discharge through and the head loss across a sand-packed column of known cross-sectional area 

were measured; those measurements allowed Darcy to calculate the hydraulic conductivity, as an inverse 

solution, using the equation that now bears his name (20, p. 15). In traditional groundwater engineering, 

hydraulic conductivity can be determined by pumping tests (60), slug tests (9), or extracting samples for 

laboratory testing (18, pp. 67-93). When more than a point measurement of hydraulic conductivity is 

required, as in most groundwater 

modeling applications, the 

hydraulic conductivity field is 

generally inverted from measured 

heads, which permits identification 

of the hydraulic conductivity field 

(47). Using measured heads, 

inverse models have been 

developed to determine the 

hydraulic conductivity field ( 𝑲 ) 

using stochastic techniques (8, 37, 

38); parametrization (31); or 

Adomian decomposition (49). 

However, to our knowledge no 

inverse model is available to 

determine heterogeneous hyd-

raulic conductivity fields from 

measured velocity fields, which is 

the gap this work seeks to partially 

fill. 

Why determine heterogeneous 𝑲 

from the velocity field? Because it 

makes possible a new approach to 

reactive transport experiments 

aimed at understanding the 

KEY POINTS: 

▪ The two-dimensional groundwater inverse 

problem is solved for the heterogeneous 

hydraulic conductivity given a known field. 

▪ Graph theory is used to find down-gradient 

continuous paths through the porous media. 

▪ The paths are transformed into a system of 

equations, based on Darcy’s law, that is 

solved for the hydraulic conductivity field. 

 

Figure 1: Hypothetical experiment where (a) the specific 
discharge field at time 1 determines (b) the hydraulic conductivity 
field at time 1, and the subsequently measured (c) specific 
discharge field at time 2 determines (d) the hydraulic conductivity 
at time 2. The dynamic evolution of hydraulic conductivity, 
averaged over grid blocks, is shown by light gray shading for 90% 
clogging and by dark gray shading for 99% clogging. 
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dynamic spatial and temporal evolution of hydraulic conductivity. To envision such experiments, consider 

the following motivational example: We assume a quasi-2D flow through heterogeneous porous media 

observed with particle image velocimetry (PIV). Knowing the constant head boundaries and the PIV at 

time 1 (Fig. 1a), we apply FlowPaths to infer the corresponding distribution of hydraulic conductivity 

(Fig. 1b). Then we postulate that some process reduces the hydraulic conductivity in certain cells. That 

process could include any or all of the mechanisms articulated above (40); for concreteness, we assume 

that mineral precipitation reduces the hydraulic conductivity in the five cells highlighted in Figure 1d, 

with light shading for a 10-fold decrease and dark shading for a 100-fold decrease. Thus, reaction has 

altered the hydraulic conductivity, which will in turn alter the flow field. At time 2, we repeat the PIV 

measurement (Fig. 1c) and reapply FlowPaths to find the new distribution of hydraulic conductivity (Fig. 

1d). The motivation for FlowPaths is that it is essential for such an experiment. 

The dependence of hydraulic conductivity on the complex distribution of porosity continues to be an 

area of ongoing research (e.g., 23). Here we pose the next question: How do these complex relationships 

evolve over time? At the heart of these dynamics is a feedback process (56). Reactive processes in 

groundwater remediation depend on fluid flow; those reactive processes often change the hydraulic 

conductivity; the changed hydraulic conductivity changes the fluid flow; and the changed fluid flow alters 

the reactive processes. This feedback process has been recognized for some time but has yet to be 

studied in detail. Thullner et al. (61) studied the feedback between biofilm growth and flow; El Mountassir 

(14) studied reaction-flow feedback with microbially-mediated mineral precipitation; and Yoon et al. (68) 

studied reaction-flow feedback from precipitation of calcium carbonate. Bastidas Olivares et al. (2) 

presented a numerical approach to model reaction-flow feedback for a generalized mineral 

precipitation-dissolution process, and Kelm et al. (33) extended this approach to include two minerals. 

In the specific context of groundwater remediation, awareness of reaction-flow feedback has also been 

reflected in at least one modeling study (36) and at least one field study (16). Similar observations have 

also been reported at commercial groundwater remediation sites (Kent Sorenson, CDM Smith, personal 

communication, 2017). In all these cases, hydraulic conductivity evolves dynamically, and that evolution 

is both the cause and effect—a feedback process—of reactive transport. Understanding this feedback 

process calls for a new approach to reactive transport experiments that simultaneously gather evidence 

for reaction, such as biofilm growth or mineral precipitation, and evidence for the flow geometry, such 

as the velocity field. Such work, building on prior reactive transport experiments as described below, 

would require an inverse method to determine hydraulic conductivity from velocity. 

There are several examples where reaction-flow feedback is relevant. One is clogging near wells during 

aquifer storage and recovery (45). Another example, relevant to groundwater remediation, is clogging in 

permeable reactive barriers (71). A particularly illustrative example of reaction-flow feedback is the model 

reaction where an aqueous plume of calcium chloride is co-injected with an aqueous plume of sodium 

carbonate. Upon mixing, these plumes precipitate calcium carbonate that has been shown to inhibit 

dispersive mixing (59) and to separate plumes across interfaces between porous media (32). These 

experiments demonstrate reaction-flow feedback, albeit with a relatively straightforward evolution from 

a clean-bed system that mixes relatively more to a post-reaction system that mixes relatively less. More 

sophisticated experiments would mimic reactive transport processes characteristic of groundwater 

remediation, where reactions determine and alter flow and transport; these experiments would provide 

both observable reactions and observable velocity fields. In laboratory settings, velocity fields within 

porous media can be measured by particle image velocimetry (PIV), using micromodels (68), thin two-

dimensional flow cells (35), or three-dimensional flow cells filled with refractive index matched porous 

media (1). The goal of the present study is to show how the velocity field provides a rich set of data that 

may be used to calculate the hydraulic conductivity field. 

In order to formulate a well-posed problem that can be solved by direct matrix inversion, we require an 

approach to identify unique flow paths, taking advantage of the vector properties of the velocity field. A 

natural choice is to use graph theory to identify paths by linking the velocity vectors from adjacent grid 

blocks (henceforth cells), starting at one boundary, and ending at the other. Several previous 

investigators have applied graph theory to inverse problems in hydrogeology: Eikemo et al. (13) used 

https://doi.org/10.69631/ipj.v1i3nr30
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graph theory to develop a fast solver for advective transport in fractured media using topological sorting 

of the discrete fluxes; Rizzo and de Barros (52) used graph theory to develop a numerical approach to 

find arrival times of solute plumes via the paths of least resistance through heterogeneous porous media; 

and Godefroy et al. (24) used graph theory to analyze the structural interpretation of faults. 

Complementing these works, there is a body of literature addressing pore-network models in which pore 

spaces, modeled as vertices, are connected by pore throats, modeled as edges (6). A particular focus of 

this literature is percolation theory, which describes the fractal paths providing flow and transport in 

heterogeneous porous media, and which can be used to predict solute transport (28) and hydraulic 

conductivity (29). A similar approach has been developed to model transport in fractured rock using 

discrete fracture networks (67). Distinct from these pore- and fracture-network models, but still within 

the framework of graph theory, are recent works adopting convolutional neural networks (CNNs) to 

predict macroscopic variables, including hydraulic conductivity, from pore-scale measurements of 

geometry using machine learning (15, 22, 54). However, to our knowledge, no previous research has 

used graph theory—or any other method—to uniquely determine the Darcy-scale hydraulic conductivity 

field from a measured field of velocity vectors. 

This paper is structured as follows. In Section 2 we present an inverse model called FlowPaths that uses 

graph theory to generate the system of equations needed to determine the hydraulic conductivity field 

from a known specific discharge field. In Section 3 we present results for one proof-of-concept example 

and summarize results from model verification using 12,740 simulations, and in Section 4 we discuss 

these results in light of the literature while suggesting directions for future research. Conclusions are 

presented in Section 5. 

2. METHODS 
In creating FlowPaths, our intent was to provide a fast solver for the inverse problem that did not rely on 

iterative methods or additional observations, so that it could be adapted to predict the effects of 

transport under unsteady conditions in near-real time. Three concepts guide our approach to identifying 

hydraulic conductivity from specific discharge. First, using Darcy’s law to write the head-drop equations 

on the paths in any tree (the set of paths originating at a single source) from a source to the set of sink 

vertices (henceforth called target vertices) produces a positive matrix of coefficients. Such a matrix must 

lead to the solution vector, 𝐊, being positive, per Farkas’ lemma (44, pp. 81-105), which limits the solution 

to the physically plausible condition where each member, 𝐾i, of the solution vector, 𝐊, is strictly positive. 

Second, expressing the groundwater flow equation in terms of graph theory produces a convex planar 

mesh (65), where every vertex in the flow domain is at least 3-connected, and every line drawn between 

 

Figure 2: The closed-system model domain is composed of known, constant 
head grid-blocks (𝐒 and 𝐓) and a region of unknown head cells 𝛀𝟎 . No flow 
occurs across the perimeter of �̅�  or between the constant-head cells. The 
specific discharge components 𝒒𝑳, 𝒒𝑹, 𝒒𝑩, and 𝒒𝑻 are known for all cell faces, 
while the hydraulic conductivity 𝑲 is unknown for all cells. 
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two vertices must be inside the flow domain. The matrix of head-drop coefficients produces a Hessian 

matrix which is positive-definite, also implying that the coefficient matrix is a convex set. Strictly convex 

functions have a global minimum (53), leading to a unique result. And third, the system is solved using 

a non-iterative method, and its stability is confirmed with a recursive error test. 

In Section 2.1 we present a graph-theoretic model for the inverse solution, develop head-drop equations 

using Darcy’s law, find a spanning set of linearly independent equations, and then solve directly for the 

unknown hydraulic conductivities. We conclude with methods for model verification and error 

estimation. 

2.1. Problem Formulation 
In the finite-difference methods used in groundwater modeling software such as MODFLOW (66), cells 

represent areas where the aquifer properties (i.e., hydraulic conductivity) are constant. As shown in 

Figure 2, the closed system model is divided into the source region, S, the flow domain, Ωo, and the 

target region, T. Together, they form the closure of the model domain, Ω̅ (63). The goal of the analysis 

is to calculate the hydraulic conductivities 𝐊 = 𝐾𝑖,𝑗 for all cells, where 𝑖 is the row and 𝑗 is the column. 

The cells in regions S  and T are known head regions. Ωo  is the region of unknown head, which is 

calculated after determining 𝐊. The specific discharge vectors are known across each cell interface in Ω̅. 

 

Figure 3: Problem formulation with (a) cell-centered specific discharge vectors, (b) orthogonal 
components of specific discharge vectors, (c) face-centered specific discharges, and (d) 
directed graph with edge weights given by the face-centered specific discharges shown in (c). 
The set 𝐒 contains the source vertices {1, 2, 3, 4} and the set 𝐓 contains the target vertices {21, 
22, 23, 24}. Note the vertical scale in (b) and (c) has been chosen to exaggerate the vertical 
component of specific discharge. Results in (d) may not sum to zero at each vertex due to 
rounding. 
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The numerical model is reformulated in the framework of graph theory, which conceptualizes the system 

as a network of nodes and links, where nodes are called vertices, links are called edges, and together 

they constitute a graph with symbol 𝐺. Further definitions may be found in the Supporting Information 

(Section S1, available online). Using block-centered vertices, as shown in Figure 3a, the specific discharge 

vectors are assigned to the geometric center of each cell. These vectors are broken into components, as 

shown in Figure 3b, and then these block-centered components are combined into specific discharges 

passing through the faces of the cells, as shown in Figure 3c. The final step in the reformulation is Figure 

3d, which shows a directed graph, where the same flow goes through the edges between vertices as 

through the faces of the cells. 

FlowPaths has been constructed to meet the criteria of a well-posed inverse problem. In the sense of 

Tikhonov, well-posedness requires that: 1) a solution exists, 2) the solution is unique, and 3) the solution 

is stable (62). Existence is shown by the fact that for every unknown hydraulic conductivity 𝐾(𝑥, 𝑦), there 

exists a data source, 𝑞(𝑥, 𝑦), that occupies a one-to-one relationship. Uniqueness is guaranteed because 

the minimum number of paths needed for a unique solution is equal to the number of linearly 

independent paths as detailed in Section 2.3 below. And finally,  stability is demonstrated through the 

recursive error test showing that the cumulative residuals are bounded as detailed in Section 2.4 below. 

Additional details on the well-posedness of the method are available in the Supporting Information 

(Section S2, available online).  

2.2. Head-Drop Equations 
We conceptualize the flow as a set of paths, each of which generates a first-order polynomial equation 

for hydraulic conductivity using Darcy’s law through the faces of the cells (Fig. 3c). We define the head 

drop between the predecessor and successor vertices (Fig. 3d) 𝑎 and 𝑏 as (Eq. 1): 

Δℎ𝑎,𝑏 = ℎ𝑎 − ℎ𝑏 (1) 

In graph terms, with 𝑎, 𝑏 denoting the edge between vertex 𝑎 and vertex 𝑏, Darcy’s law is then (Eq. 2): 

𝑞𝑎,𝑏 = −𝐾𝑎,𝑏
ℎ𝑏 − ℎ𝑎
𝐿𝑎,𝑏

 
(2) 

where 𝐾𝑎,𝑏 is the effective hydraulic conductivity over 𝑎, 𝑏 and 𝐿𝑎,𝑏 is the length of 𝑎, 𝑏. The single head-

drop equation through one edge is then (Eq. 3): 

Δℎ𝑎,𝑏 =
𝑞𝑎,𝑏
𝐾𝑎,𝑏

𝐿𝑎,𝑏 (3) 

The sum of a series of individual head drops along 𝑛 vertices in a path can be arranged as Equation 4: 

Δℎ𝑡𝑜𝑡𝑎𝑙 = (ℎ1 − ℎ2) + (ℎ2 − ℎ3) + ⋯+ (ℎ𝑛−2 − ℎ𝑛−1) + (ℎ𝑛−1 − ℎ𝑛) = ∑(ℎ𝑖 − ℎ𝑖+1)

𝑛−1

𝑖=1

 
(4) 

In this equation, the total head drop, Δℎ𝑡𝑜𝑡𝑎𝑙 , is equal to the sum of the individual head drops. The 

effective hydraulic conductivity, 𝐾𝑎,𝑏, is then defined for each head drop. Following Harbaugh (27, p. 

135), since the flow is perpendicular to the cell faces, 𝐾𝑎,𝑏  is defined as the harmonic mean of the 

hydraulic conductivity of the adjacent vertices (Eq. 5): 

𝐾𝑎,𝑏 =
2

1
𝐾𝑎
+
1
𝐾𝑏

 
(5) 

which can be derived by analogy to electrical resistors in series. The specific discharge through an edge 

connecting adjacent vertices 𝑎 and 𝑏 can be expressed using Darcy’s law as Equation 6: 

ℎ𝑎 − ℎ𝑏
𝐿𝑎,𝑏

=
𝑞𝑎,𝑏
𝐾𝑎,𝑏

 
(6) 

We assume square cells, so by construction, 𝑙 =  𝐿𝑎,𝑏 for all adjacent vertices 𝑎 and 𝑏. Then we substitute 

the individual head drop expression into the total head drop equation for 𝑛 consecutive vertices along 

https://doi.org/10.69631/ipj.v1i3nr30
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any simple path (i.e., without repeated vertices) between the source head ℎ𝑆 and the target head ℎ𝑇. The 

result is a series head loss equation (Eq. 7): 

ℎ𝑆 − ℎ𝑇
𝑙

=
𝑞1,2
𝐾1,2

+
𝑞2,3
𝐾2,3

+⋯+
𝑞𝑛−2,𝑛−1
𝐾𝑛−2,𝑛−1

+
𝑞𝑛−1,𝑛
𝐾𝑛−1,𝑛

=∑
𝑞𝑖,𝑖+1
𝐾𝑖,𝑖+1

𝑛−1

𝑖=1

 

(7) 

We now express 𝐾𝑎,𝑏 as the hydraulic resistance 𝑅 of the edge, where 𝑅 =  𝐾−1, so that (Eq. 8): 

𝐾𝑎,𝑏 =
2

𝑅𝑎 + 𝑅𝑏
 

(8) 

Now Equation 7 can be expressed in terms of the resistances of each vertex and the specific discharges 

of each edge as Equation 9: 

ℎ𝑆 − ℎ𝑇
1

=
𝑞1,2
2

𝑅1 + 𝑅2

+
𝑞2,3
2

𝑅2 + 𝑅3

+⋯+
𝑞𝑛−2,𝑛−1

2
𝑅𝑛−2 + 𝑅𝑛−1

+
𝑞𝑛−1,𝑛
2

𝑅𝑛−1 + 𝑅𝑛

=∑
𝑞𝑖,𝑖+1
2

𝑅𝑖 + 𝑅𝑖+1

𝑛−1

𝑖=1

 

(9) 

Inverting the denominators, distributing, and gathering like terms yields Equation 10: 

ℎ𝑆 − ℎ𝑇
𝑙

= 𝑅1 (
𝑞1,2
2
) + 𝑅2 (

𝑞1,2 + 𝑞2,3
2

)+𝑅3 (
𝑞2,3 + 𝑞3,4

2
)

+ ⋯+𝑅𝑛−2 (
𝑞𝑛−3,𝑛−2 + 𝑞𝑛−2,𝑛−1

2
)+𝑅𝑛−1 (

𝑞𝑛−2,𝑛−1 + 𝑞𝑛−1,𝑛
2

)+𝑅𝑛 (
𝑞𝑛−1,𝑛
2

) 

(10) 

We assume that the hydraulic conductivity of the boundary cells matches that of their neighboring active 

cells, so their resistances will be equal as well, giving 𝑅1 = 𝑅2  and 𝑅𝑛−1 = 𝑅𝑛. Using only the active matrix 

(i.e., non-boundary grid cells) produces the final head drop equation with combinations of the specific 

discharges on each vertex for any path (Eq. 11): 

ℎ𝑆 − ℎ𝑇
𝑙

= 𝑅2 (
2𝑞1,2 + 𝑞2,3

2
) + 𝑅3 (

𝑞2,3 + 𝑞3,4
2

) + ⋯+ 𝑅𝑛−2 (
𝑞𝑛−3,𝑛−2 + 𝑞𝑛−1,𝑛−1

2
)

+ 𝑅𝑛−1 (
𝑞𝑛−2,𝑛−1 + 2𝑞𝑛−1,𝑛

2
) 

(11) 

To simplify the notation, the parenthetical term following each 𝑅 is re-defined as the variable 𝑞𝑘
∗
 for each 

vertex of every path starting with the second vertex (𝑘 =  2) and ending with the penultimate vertex 

(𝑘 =  𝑛 − 1), using the value of the specific discharges through the edges on the path that are incident 

to the vertex (Eq. 12): 

𝑞𝑘
∗ =

{
 
 

 
 𝑞1,2 +

𝑞2,3
2

𝑘 = 2

𝑞𝑘−1,k
2

+ 𝑞𝑘,𝑘+1 𝑘 = 𝑛 − 1

𝑞𝑘−1,𝑘 + 𝑞𝑘,𝑘+1
2

2 < 𝑘 < 𝑛 − 1

 

(12) 

where 𝑛 is the number of vertices on each path. Replacing each specific discharge coefficient with the 

𝑞𝑘
∗  term produces the first-order polynomial equation used for each path (Eq. 13): 

ℎ𝑆 − ℎ𝑇
𝑙

= 𝑅2(𝑞2
∗) + 𝑅3(𝑞3

∗) + ⋯+ 𝑅𝑛−2(𝑞𝑛−2
∗ ) + 𝑅𝑛−1(𝑞𝑛−1

∗ ) 
(13) 

https://doi.org/10.69631/ipj.v1i3nr30
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The cells corresponding to Equation 13 are shown in Figure 4. Any valid specific discharge field will be 

constrained by continuity, so assuming steady flow, it follows that the net flow into (or out of) any vertex 

𝑣 ≠  𝑠, 𝑡 is zero; by analogy to electrical circuits, continuity ensures that Kirchhoff’s rules are obeyed.  

2.3. FlowPaths Inverse Model 
The essential function of the FlowPaths inverse model is to identify a set of pathways, consistent with 

the known specific discharge field, that will generate the system of equations for the hydraulic 

conductivity as described above. The flowchart in Figure 5 and Figure 6 summarizes the steps needed 

to identify the paths and therefore to create the system of equations for the unknown hydraulic 

conductivity field. The flowchart starts with the full grid-cell domain, Ω̅, the known specific discharge, 𝐪𝑜 , 

and the total head drop 𝛥ℎ𝑡𝑜𝑡𝑎𝑙 . The steps in the flowchart are explained in detail in the Supporting 

Information (Section S3, available online). 

To solve the system of equations for hydraulic conductivity, we require a set of linearly independent (LI) 

paths, similar to basis path sets described by Zhu et al. (70). We define this set as 𝒫LI. The LI paths can 

be identified by finding all possible paths between the vertices in S and T and discarding those that are 

redundant, but such an approach would be computationally expensive (26). Instead, we subdivide the 

model domain into directed subgraphs 𝐻𝑠𝑡  for each (𝑠, 𝑡)  pair and construct the LI paths for each 

directed subgraph by using the method outlined by Zwick (72). The maximum number of LI paths in 

each directed subgraph is related to the cyclomatic number (4, p. 15), as described in the Supporting 

Information (Section S4, available online). Then we combine the LI paths from each directed subgraph 

to create a set of paths  𝒫LI, which has the property that every edge in 𝐻 belongs to some path in P, 

implying that every vertex in 𝐻 also belongs to some path in P (57). 

Having identified the LI paths for each (𝑠, 𝑡) pair, we now combine them into a multi-source multi-sink 

(MSMS) system. The number of paths is also the number of equations to be solved. Gopalan and 

Ramasubramanian (25) show that the maximum number of independent paths, or maximum rank, 𝑅𝑚𝑎𝑥 , 

in an MSMS directed graph is equal to the number of edges, 𝑚, minus the number of vertices, 𝑛, plus 𝑀 

(Eq. 14): 

𝑅𝑚𝑎𝑥 = 𝑚 − 𝑛 +𝑀 (14) 

where 𝑀 is the total number of measurement vertices (the total number of source vertices and target 

vertices where the head is known). For example, the directed graph of Figure 3d has 𝑚 =  32 edges, 

𝑛 =  24 vertices, and 𝑀 =  8 (4 sources plus 4 targets) giving 𝑅𝑚𝑎𝑥  =  32 − 24 + 8 =  16, which is the 

same as the number of vertices in the interior of the square flow matrix Ωo (Fig. 2). Those 16 paths will 

generate 16 linearly independent equations to be solved for the 16 unknown values of hydraulic 

 

Figure 4: Head drops defined by vertex set {1, 2, 3, 4, 5} or by edge set {A, B, C, D}. The first step goes 
from the first vertex (1) to the center of the first edge after the second vertex (B). The final step goes from 
the center of the next-to-last edge (in this example, C) to the last vertex (in this example: 5). 
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conductivity. If the flow matrix has 

more columns than rows the inverse 

problem will be underdetermined. 

Knowing the number of required 

independent paths, our next task is to 

list the vertices (or equivalently the 

edges) in each of those independent 

paths. This task requires us to define 

the minimum directed spanning tree 

(MDST). According to Sedgewick & 

Wayne (55, p. 604), a minimum 

spanning tree (MST) is a connected 

subgraph 𝐻  of a graph 𝐺  with no 

cycles that includes all the vertices in 

𝐺, with the total weight of its edges 

no more than any other spanning 

tree. The minimum directed spanning 

tree is the MST directed from source 

𝑠 to target 𝑡, which defines an (𝑠, 𝑡) 

pair. Following the method of Zwick 

(72), the MDST is identified by 

performing a sweep through all the 

vertices in 𝐻  to find the smallest-

weighted edges directed towards 

each vertex, which become the 

branches of the MDST of the 

subgraph 𝐻𝑠𝑡 . 

For example, the directed subgraph 

for (𝑠, 𝑡)  =  (3,22) is shown in Figure 

7, with the MDST outlined in red. The 

total number of directed paths from 

vertex 3 to vertex 22 is 14, as 

enumerated in Table 1 using a 

breadth–first algorithm, such as the 

one presented by Korte and Vygen 

(34, p. 26).  

When all the 𝑞𝑘
∗  coefficients (Eq. 12) 

have been sorted into the proper 

elements for every path, the resulting 

linear system of equations is solved directly using the Matlab function “mldivide” (which is informally 

called backslash) (43). The cell-by-cell reciprocal of the resistance field 𝐑  produces the hydraulic 

conductivity field 𝐊 , as shown in steps ℎ − 𝑙  of Figure 6. The FlowPaths inverse model has been 

implemented in Matlab, and the relevant codes are available through the findable, accessible, 

interoperable, and reusable (FAIR) online repository HydroShare (see Data, Code, and Protocol 

Availability). 

We note that the two-dimensional (2D) grid structure of the input is beneficial to obtain a low number 

of linearly independent paths, as determined by Equation 14, which provide a unique solution that can 

be solved directly. Our path enumeration method is readily generalized to 3D, however, the 

computational burden would grow by at least an order of magnitude. 

 

Figure 5: Schematic of the FlowPaths algorithm (Section 1). 
Inputs include the flow domain dimensions ( ), the given 
specific discharges ( ) and the boundary head difference 
( ). Inputs also include the given hydraulic conductivity (K0) 
and head distribution h0 used for the stability analysis shown 
in Figure 6. (a) Convert cells in the flow domain Ω to graph G 
using adjacency matrix A(G). (b) Create directed graph D from 
the known . (c) Start nested loops si  S and tj  T. (d) Find 
the intersection of out-trees rooted at source si and in-trees 
rooted at target tj, which form the envelope of the minimum 
directed spanning tree (MDST). Find the set of linearly 
independent (LI) paths for each subgraph. If at least one path 
exists from si to tj, add the set of paths P(s,t) to the edge path 
matrix. Continue to Section 2 (Fig. 6). 
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2.4. Model Verification 
Model verification was performed with 13×98×10 = 12,740 proof-of-concept simulations where the 

hydraulic conductivity field 𝐊𝑜 and the corresponding specific discharge field 𝐪𝑜 are both known. There 

are 13 model sizes from 4×4 to 16×16; for each model size, there are 98 levels of heterogeneity 

quantified by a reservoir heterogeneity index, 𝑉𝑑𝑝, from 0.01 to 0.98. The reservoir heterogeneity index 

is calculated from the standard deviation of the log-hydraulic conductivity, �̂�, as follows (30, p. 153) (Eq. 

15): 

𝑉dp = 1 − exp(−�̂�) (15) 

For example, when 𝑉dp = 0.01 , then �̂� = 0.01 ; when 𝑉dp = 0.98 , then �̂� = 3.9 . For each level of 

heterogeneity, there are 10 realizations of a spatially correlated stochastic model for hydraulic 

conductivity, with lognormal univariate statistics and an isotropic Gaussian covariance structure, 

following the algorithm of Eftekhari (12), implemented using Matlab code by Bergström (5). The 

correlation length scale was chosen to be 1/200 of the cell size, rendering an essentially uncorrelated 

hydraulic conductivity field. This creates a worst case scenario that tests the ability of FlowPaths to find 

the hydraulic conductivity for uncorrelated fields with strong cell-to-cell contrast. To quantify the range 

 

Figure 6: Schematic of the FlowPaths algorithm (Section 2), comprising the following 
steps: (e) Convert the edge path matrix to the 𝒒∗  matrix, representing head drop 
equations for all independent paths. (f) Reduce the overdetermined 𝒒∗  matrix to a 
square m×m matrix. (j) Solve for 𝐑𝟏. (g) Is the result unique and full rank? If so, proceed 
to (h). If not, return an error. (h) Calculate 𝐊𝟏 = 𝐑𝟏

−𝟏. (i) Calculate the fractional mean 
symmetric error (FMSE) between 𝐊𝟏  and 𝐊𝟎 . Continue to recursive error test? If so, 
proceed to (j). If not, end FlowPaths. (k) Call the forward solver, using 𝐊𝟏 as input, then 
return to Section 1 (Fig. 5) and use 𝐪𝟏 as input. 
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of order of magnitudes (ROM) of the hydraulic conductivity in each realization, we calculate the ROM as 

follows in Equation 16: 

ROM = log10 (
𝐾𝑚𝑎𝑥
𝐾𝑚𝑖𝑛

) (16) 

where 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛 are the maximum and minimum values of hydraulic conductivity, respectively, for 

each realization of 𝐊o. 

For each realization of 𝐊o  the discrete cellular head field, 𝐇o  and the specific discharge field 𝐪o  are 

determined by solving the forward problem using an alternating direction implicit (ADI) scheme 

developed by Esfandiari (17). The ADI forward solution algorithm is unconditionally stable (50), and has 

the advantage of using any stopping criteria for convergence. The ADI scheme, implemented using the 

Matlab function “lsqminnorm” (41), is executed until the changes in 𝐇o between iterations are less than 

1×10-12 cm; an additional stopping criterion limits the scheme to 1×109 iterations. The precision of the 

simulated data (𝐇o and 𝐪o) is on the order of 10 significant digits. Finally, we use the simulated 𝐪o (but 

not the simulated 𝐇o ) as 

an input to the FlowPaths 

inverse model to estimate 

the underlying hydraulic 

conductivity field 𝐊1 . In 

principle, the estimated 

field 𝐊1 should match the 

simulated field 𝐊o.  

To quantify the error for 

each realization, we use 

an unbiased estimator of 

error, 𝜁  , which measures 

the logarithmic differ-

ences between all estim-

ated values 𝑦 ∈  𝐾1  and 

simulated values 𝑥 ∈ 𝐾𝑜 . 

This estimator, based on 

the median symmetric 

accuracy defined by 

Morley et al. (46), is the 

fractional mean sym-

metric error (FMSE) (Eq. 

17) where 𝜇()  computes 

the mean. 

ζ = exp {𝜇 [|ln (
𝑦

𝑥
)|]} − 1 (17) 

Perfect accuracy would be denoted as 𝜁 =  0 , and 𝑦  and 𝑥  are interchangeable because FMSE is 

symmetric. In addition, for each realization, we record the maximum log-difference, 𝜁𝑚𝑎𝑥 (Eq. 18): 

𝜁𝑚𝑎𝑥, 𝑘 = 𝑚𝑎𝑥 (|𝑙𝑛 (
𝑦𝑖
𝑥𝑖
)|)

𝑘

 (18) 

We measure the robustness of the inverse solution using a recursive error test (19, 21, 51). The estimated 

hydraulic conductivity field 𝐊1 is fed into the forward solver, producing 𝐪2, which in turn is fed into the 

FlowPaths inverse model, producing 𝐊2. The FMSE is calculated for each iteration, and the cumulative 

FMSE is calculated as follows (Eq. 19): 

𝐶𝑟 =∑ζ𝑖

𝑖=𝑟

𝑖=1

 
(19) 

Table 1: The 14 possible directed paths from vertex 3 to vertex 22 in 
subgraph 𝑯𝟑,𝟐𝟐  shown in Figure 7. The eight independent paths, 
determined using the MDST, are in italics. The trunk line, a part of the 
MDST, is in bold. 
 Path Vertices Edges 

1 [3,7,6,5,9,13,14,18,22] [a,c,b,e,l,p,t,v] 

2 [3,7,6,5,9,13,17,18,22] [a,c,b,e,l,s,u,v] 

3 [3,7,6,10,9,13,14,18,22] [a,c,f,i,l,p,t,v] 

4 [3,7,6,10,9,13,17,18,22] [a,c,f,i,l,s,u,v] 

5 [3,7,6,10,14,18,22] [a,c,f,m,t,v] 

6 [3,7,8,12,11,10,9,13,14,18,22] [a,d,h,k,j,i,l,p,t,v] 

7 [3,7,8,12,11,10,9,13,17,18,22] [a,d,h,k,j,i,l,s,u,v] 

8 [3,7,8,12,11,10,14,18,22] [a,d,h,k,j,m,t,v] 

9 [3,7,8,12,11,15,14,18,22] [a,d,h,k,n,q,t,v] 

10 [3,7,8,12,16,15,14,18,22] [a,d,h,o,r,q,t,v] 

11 [3,7,11,10,9,13,14,18,22] [a,g,j,i,l,p,t,v] 

12 [3,7,11,10,9,13,17,18,22] [a,g,j,i,l,s,u,v] 

13 [3,7,11,10,14,18,22] [a,g,j,m,t,v] 

14 [3,7,11,15,14,18,22] [a,g,n,q,t,v] 
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If the cumulative FMSE remains 

bounded over 𝑟  recursions, this 

rules out fundamental error in the 

model (mis-specification). The 

recursive error test is imple-

mented with the MATLAB function 

“cusumtest” (42), and additional 

information on the forward-

inverse problem cycle (Fig. 5 and 

Fig. 6) is available in the 

Supporting Information (Section 

S5, available online). 

3. RESULTS 
Results are presented first for a 

4×4 proof-of-concept example 

(Fig. 3, Fig. 7, Table 1) and then 

empirical error bounds are 

reported for the 12,740 model 

verification simulations. Complete results, with associated metadata, are available through HydroShare 

(see Data, Code, and Protocol Availability). 

3.1. 4×4 Example 
The 4×4 example, whose specific discharge field is shown in Figure 4, is based on the particular 

realization of 𝐊o  shown in Table 2a. For this realization, the average hydraulic conductivity is 10.2 

cm/day, the reservoir heterogeneity index is 𝑉𝑑𝑝  =  0.5, and the range of order of magnitudes of the 

hydraulic conductivities is ROM = 0.82. This average hydraulic conductivity is typical of fractured oil 

reservoir rock or silty sand (20, p. 29). Using cubic grid blocks of size (1 cm)3, the forward solution 

produced specific discharge fluxes through the cell faces, with a maximum cell balance error of 1.55× 

10-15 cm3. 

Using the specific discharge field from the forward model as an input, the FlowPaths inverse model 

produced 𝐊1 shown in Table 2b. The cell-by-cell error 𝐊1 − 𝐊0  is shown in Table 2c. These results have 

FMSE = 2.22×10-15 cm/sec and a maximum log-difference error of 9.10×10-15 compared to the simulated 

hydraulic conductivity parameter, 𝐊0. The recursive error test for the 4x4 example is shown in Figure 8. 

 

Figure 7: Directed subgraph  connecting source vertex 3 to 
target vertex 22 in the directed graph shown in Figure 3d. The 
MDST of  is shown with thick red edges. 
 

 

Table 2: Results from the 4×4 example (Fig. 2 and Fig. 7) in units of [m/d]. 

a: Simulated hydraulic conductivity field 𝐊𝐨 b: Estimated hydraulic conductivity field 𝐊𝟏 

0.146 0.146 0.041 0.041 0.146 0.146 0.041 0.041 

0.213 0.119 0.042 0.075 0.213 0.119 0.042 0.075 

0.226 0.115 0.034 0.067 0.226 0.115 0.034 0.067 

0.155 0.142 0.034 0.037 0.155 0.142 0.034 0.037 

c: Cell-by-cell model error 𝐊𝟏 - 𝐊𝐨 d: Cell-by-cell log error 
(FMSE for the trial is 1.776×10-15 m/d, maximum 
absolute error is 9.104×10-15 m/d) 

4.441 
×10-16 

5.274 
×10-16 

-3.469 
×10-17 

-4.857 
×10-17 

3.109 
×10-15 

3.553 
×10-15 

-8.882 
×10-16 

-8.882 
×10-16 

5.551 
×10-16 

4.996 
×10-16 

-4.163 
×10-17 

-9.714 
×10-17 

2.665 
×10-15 

3.997 
×10-15 

-8.882 
×10-16 

-1.332 
×10-15 

4.441 
×10-16 

7.355 
×10-16 

-4.857 
×10-17 

-6.939 
×10-17 

1.998 
×10-15 

6.217 
×10-15 

-1.776 
×10-15 

-8.882 
×10-16 

1.665 
×10-16 

1.277 
×10-16 

-2.776 
×10-17 

-4.857 
×10-17 

1.110 
×10-15 

9.104 
×10-15 

-8.882 
×10-16 

-1.332 
×10-15 
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Tables of the specific discharges for the 

4×4 example are available in the 

Supporting Information (Section S6, 

available online). 

3.2. Empirical Error Bounds 
For each of the 13 model sizes from 

4×4 to 16×16, the one realization (out 

of 980) with the largest FMSE, 

calculated with Equation 17, is 

reported on Table 3. For each of these 

worst-case realizations, we report the 

reservoir heterogeneity index 𝑉𝑑𝑝 , the 

ROM, and FMSE, and the maximum 

log-difference. Accordingly, Table 3 

provides empirical error bounds for the 

FlowPaths inverse model. 

For the 11×11 matrix in Table 3, the 

FMSE is three orders of magnitude 

larger than the next largest FMSE. It is 

the only result out of the 12,740 trials 

that had a log-difference error for any 

cell greater than five parts per 

thousand. The recursive error test for 

this trial (similar to Figure 8) showed no instability over one million iterations, suggesting that this 

apparently isolated error resulted from a random grouping of cells with a strong contrast in hydraulic 

conductivity between adjacent cells that prevented the forward model from producing a correct set of 

specific discharges. 

4. DISCUSSION 
FlowPaths opens a new avenue to study the feedback between flow, transport, reaction, and clogging in 

porous media. Essentially any technology conducted in porous media—including but not limited to 

groundwater remediation—carries the risk of clogging, which can result from many processes including 

deposition of suspended colloids, geochemical dispersion of clay minerals, precipitation reactions, 

biofilm growth, air entrapment, or consolidation (40). These processes make clogging a technical 

challenge in a variety of applications such as managed aquifer recharge, groundwater remediation, and 

oil and gas development. In all of these applications, the spatial distribution and temporal evolution of 

hydraulic conductivity 𝐾(𝑥, 𝑦, 𝑧, 𝑡)  results from a feedback process: It depends on the processes 

mentioned above, but it also controls flow and therefore the transport and reaction that trigger the 

processes mentioned above. Simultaneously being a result and a cause is the essence of a feedback 

process. Following the motivational example presented in the Introduction (Fig. 1), for two-dimensional 

flow domains, FlowPaths opens a new avenue to study this feedback process through laboratory 

experiments that measure the spatial distribution and temporal evolution of specific discharge 𝑞(𝑥, 𝑦, 𝑡) 

as an independent variable, for example, using particle image velocimetry (PIV). Specifically, FlowPaths 

provides a mechanism to interpret the measured 𝑞(𝑥, 𝑦, 𝑡) in terms of the fundamental 𝐾(𝑥, 𝑦, 𝑡), and 

through this interpretation, to study dynamic hydraulic conductivity, extending the foundational work in 

this area (14, 16, 36, 61, 68). 

Table 3: Empirical error bounds for the FlowPaths inverse 
model. For each model size, the realization with the 
maximum fractional mean symmetric error (FMSE) is 
shown. ROM: range of order of magnitudes. Vdp: reservoir 
heterogeneity index (Eq. 15). 
Model 
Size 

Vdp ROM FMSE Maximum Log-
Difference 

4×4 0.01 0.02 5.6×10-11 8.7×10-11 

5×5 0.98 7.33 3.1×10-9 7.4×10-8 

6×6 0.93 5.50 2.4×10-10 9.2×10-10 

7×7 0.97 7.27 4.7×10-8 3.7×10-6 

8×8 0.98 7.57 3.5×10-8 8.8×10-7 

9×9 0.98 9.57 4.3×10-7 1.3×10-5 

10×10 0.98 8.93 1.2×10-7 5.9×10-6 

11×11 0.97 8.08 3.0×10-2 1.8×100 

12×12 0.97 8.15 1.5×10-6 9.6×10-5 

13×13 0.98 8.84 2.9×10-6 3.3×10-4 

14×14 0.98 8.84 3.0×10-6 5.7×10-4 

15×15 0.97 7.46 5.4×10-6 4.2×10-4 

16×16 0.92 6.44 3.0×10-5 4.7×10-3 
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Like any numerical model, 

computational effort merits a brief 

discussion. One of the drawbacks of 

finding a solution for an inverse 

problem is that the demand on 

computer resources tends to 

escalate with the size of the problem 

(48, p. 2). Our approach has a 

comparatively short time complexity 

due to the use of a fast shortest-path 

algorithm (7, p. 566). Computational 

times on a standard laptop, with 

16GB of RAM running on a Windows 

10 platform scale from about 3 sec 

for the 4×4 example to about 5600 

sec = 1.6 hour for the 16×16 

example. The subroutine that finds 

the MDSTs for the directed 

subgraphs 𝐻𝑠𝑡  accounts for about 

50% of the computation time in 

smaller flow matrices, but increases 

to about 90% in larger ones. These 

computational times stem from the 

more challenging nature of inverse 

computations compared to forward 

computations, specifically, a set of inner loops for each combination of inflow and outflow vertices to 

generate the sets of unique paths. Although it is beyond the scope of the present work,  parallel 

implementation of FlowPaths could lead to reduced computation times. 

FlowPaths has been tested against simulations that provided an assumed ground truth. What might be 

the effect of (inevitable) experimental errors in specific discharge measurements? Application of 

FlowPaths requires a specific discharge field that obeys continuity, so the first step would be to allocate 

experimental errors in a way that preserves continuity (e.g., 11). In our recursive error tests, such as the 

one displayed in Figure 8, small changes in the inputs (i.e., velocity or equivalently specific discharge) 

give small changes in the outputs (i.e., hydraulic conductivity). We therefore expect that the small velocity 

measurement errors from the envisioned future experiments, on the order of epsilon, are likely to 

generate small errors, some function of epsilon, in the estimated hydraulic conductivity. 

We conclude this section by posing a more philosophical question: If one knew the velocity field, why 

would one want to know the hydraulic conductivity field? This is not a trivial question, and it gets to the 

heart of the new approach proposed here. If the only goals were to predict water supply and contaminant 

transport in a static system—that is, a system in which hydraulic conductivity does not change with 

time—then there would be no need for FlowPaths. Knowing the velocity field, one would know 

everything there is to know about the flow. But we argue that, in many practical applications, the premise 

of a static system is too limiting, because hydraulic conductivity evolves dynamically. If our goal is to 

understand the nature of that evolution, and if we posit that hydraulic conductivity encapsulates the 

essence of transport in porous media, then we need a way to measure its evolution quantitatively. 

5. CONCLUSIONS 
We show that it is possible to uniquely solve the inverse problem for the hydraulic conductivity from 

observed flow vectors using the FlowPaths algorithm. The method relies on an analysis of the possible 

paths from the higher constant head cells to the lower constant head cells (the source vertices to the 

target vertices) through a square flow matrix. The minimum number of paths needed for a unique 

 

Figure 8: Cumulative sum of the regression residuals, Cr, 
versus iteration, r, for the 4×4 example. The null hypothesis is 
that small changes in the data (the result of the inversion) do 
not produce large changes in the next inversion. The “Fail to 
Reject Null Hypothesis” is signified by the graphic result that Cr 
does not exceed the α = ±5% significance levels represented by 
the dotted critical lines at any step of the recursive error 
checker. 
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solution is equal to the number of vertices (cells) in the flow matrix, with the necessary condition that 

the paths be linearly independent of each other. Graph theory is used to find the paths between all 

sources and targets, which are converted to first order linear head-drop equations in the variable 𝑞∗, a 

combination of the specific discharges entering and leaving a vertex following a path. Then matrix 

algebra is used to solve the problem. The results of the inverse method are verified two ways: 1) by 

comparing the estimated 𝐊1 to the known 𝐊o, and 2) using a recursive error test, which detects very 

little variation in the inverse solution when the results are fed back into the forward solution. Future work 

is required to extend FlowPaths to non-square domains, to three-dimensional domains, and to 

anisotropic media, but in all these cases, the approach outlined here—based on identifying linearly 

independent paths using graph theory—is expected to prove itself useful. 

STATEMENTS AND DECLARATIONS 

Supplementary Material 
The online Supporting Information provides additional information on graph theory (Section S1), well-

posedness (Section S2), details on FlowPaths (Section S3), cyclomatic complexity (Section S4), the 

forward and inverse problem cycle (Section S5), and 4x4 example data tables (Section S6). This material 

can be downloaded here.  
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