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1. GRAPH THEORY 
In the language of graph theory, nodes are called vertices, links are called edges, and together they 
constitute a graph with symbol 𝐺𝐺 . Formally, 𝑉𝑉 is the vertex set of 𝐺𝐺 , 𝐸𝐸 is the edge set of 𝐺𝐺 , and 𝐺𝐺 is 
defined as the tuple 𝐺𝐺 = (𝑉𝑉,𝐸𝐸). A directed graph (digraph) 𝐷𝐷 = (𝑉𝑉,𝐸𝐸) consists of the same set 𝑉𝑉 of 
vertices together with the same set 𝐸𝐸 of edges, but links them through ordered pairs (𝑢𝑢, 𝑣𝑣) of vertices 
called directed edges. A digraph 𝐻𝐻 is a subdigraph of a digraph 𝐷𝐷 if 𝑉𝑉(𝐻𝐻) ⊆ 𝑉𝑉(𝐷𝐷) and 𝐸𝐸(𝐻𝐻) ⊆ 𝐸𝐸(𝐷𝐷) and 
every edge in 𝐸𝐸(𝐻𝐻) has both end-vertices in 𝑉𝑉(𝐻𝐻). Vertices 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 in a digraph that are joined by an 
edge 𝑒𝑒 ∈ 𝐸𝐸 are adjacent and 𝑒𝑒 is called incident to the predecessor vertex 𝑢𝑢 and the successor vertex 𝑣𝑣.  

In the context of this study, one of the most important concepts is a path. A path 𝑝𝑝 in a digraph 𝐷𝐷 is a 
sequence of two or more vertices connected by directed edges, with no repeated edges. A simple path 
has no repeated vertices (22). A cycle is a path that starts and ends at the same vertex. A directed acyclic 
graph (DAG), is the type of graph that we use in this study since it generally matches the conditions of 
steady groundwater flow. 

Graphs and digraphs may also have an attribute assigned to the edges, which we call weights. The weight 
𝑤𝑤𝑖𝑖 for edge 𝑒𝑒𝑖𝑖  is defined to be the intercellular specific discharge 𝑞𝑞𝑖𝑖 , which is equal to the total flow, 𝑄𝑄𝑖𝑖 , 
divided by the area of the cell face 𝐴𝐴𝑖𝑖 . The complete description of the digraph 𝐷𝐷 with weights assigned 
to each edge is 𝐷𝐷 = (𝑉𝑉,𝐸𝐸,𝑤𝑤), where 𝑤𝑤 is the set of weights for the edge set of 𝐷𝐷, or 𝐸𝐸(𝐷𝐷). For any vertex 
except the root or sink in a weakly connected digraph the law of continuity (there is no change in mass 
of any element of the system, whether it is a vertex or a grid cell) applies (Eq. S1):  

 

https://doi.org/10.69631/ipj.v1i3nr30
https://orcid.org/0000-0002-8213-3055
https://orcid.org/0000-0002-8069-5046
https://orcid.org/0000-0002-5218-1670


 
Mont-Eton et al.  Page 2 of 10 
 

 
InterPore Journal, Vol. 1, Issue 3, 2024                                 https://doi.org/10.69631/ipj.v1i3nr30                

�𝑤𝑤𝑖𝑖

𝑖𝑖=𝑑𝑑

𝑖𝑖=1

(𝑢𝑢) = 0 
(S1) 

where 𝑑𝑑 is the degree of the vertex 𝑢𝑢, i.e. the number of edges that are incident to 𝑢𝑢. This condition is 
established in porous media when the groundwater flow reaches a steady state. FlowPaths considers 
only the specific discharges entering the vertices, implying that all edge weights must be non-negative. 

2. WELL-POSEDNESS 
Here we elaborate on Tikhonov’s third criterion for well-posedness (that the solution is stable) using the 
following argument. Zijl et al. (27) distinguish between two cases. In case 1, an inverse model is being 
used to calibrate a forward model with a priori information, such as certain known values of 𝐾𝐾(𝑥𝑥,𝑦𝑦). In 
case 2, the inverse model is used to directly identify 𝐾𝐾(𝑥𝑥,𝑦𝑦) using some other observational data, such 
as the measured specific discharges which we use in FlowPaths. In case 2 (but not case 1), a stability 
analysis which uses a combined error result is appropriate. According to Higham (13, p. 7), this is a mixed 
forward-backward error result, where the modeled input 𝑥𝑥� + Δ𝑥𝑥  that is close to the actual input 𝑥𝑥� 
produces a modeled output 𝑦𝑦� + Δ𝑦𝑦 that is close to the actual output 𝑦𝑦�. In our approach the computed 
value is the inverse solution 𝐾𝐾(𝑥𝑥, 𝑦𝑦), and the input is the array of specific discharges 𝑞𝑞(𝑥𝑥,𝑦𝑦). We use a 
recursive error checker (9) that computes the cumulative sum of the mixed forward-backward error for 
every recursive step and then examines the regression equation to see if the solution parameter is stable 
within the significance level α =  0.05 as implemented in the MATLAB function “cusumtest” (17). If the 
regression equation of the cumulative forward-backward error exceeds either the upper or lower error 
bounds, that indicates a structural change in the system, rejecting the null hypothesis of instability in the 
model, shown as the data points between the dotted 5% critical lines shown, for example, in Figure 8 in 
the main text (3, 14). Thus, the mixed forward-backward error, implemented with the MATLAB function 
“cusumtest”, confirms that small changes in the inputs produce small changes in the outputs for both 
the ADI forward model and the FlowPaths inverse model. 

3. DETAILS ON FLOWPATHS 
FlowPaths determines the hydraulic conductivity in a square flow matrix, starting with tables of specific 
discharge data for each cell face, through four steps. Step 1 is to create a digraph 𝐷𝐷 =  (𝑉𝑉,𝐸𝐸,𝑤𝑤), where 
the weight 𝑤𝑤 of each edge 𝑒𝑒 ∈ 𝐸𝐸 is assigned the specific discharge 𝑞𝑞 of the corresponding cell face. Step 
2 is to decompose the digraph 𝐷𝐷 into a set of subgraphs, labeled 𝐻𝐻𝑠𝑠,𝑡𝑡 : one for each pair of source-target 
vertices (𝑠𝑠, 𝑡𝑡). For each (𝑠𝑠, 𝑡𝑡) pair, FlowPaths finds a maximal linearly independent set of vectors (26) as 
vertex paths, 𝑃𝑃LI, based on the reachable vertices and edges in 𝐻𝐻𝑠𝑠,𝑡𝑡 . Using the head-drop equation for 
each path, the 𝑞𝑞∗ coefficient for each vertex is calculated using Equation 12 from the main text. Step 3 
is to assemble the output of the subroutine for each (𝑠𝑠, 𝑡𝑡) pair into an over-determined array A of rows 
of paths 𝑝𝑝𝑖𝑖 and columns of vertices 𝑣𝑣𝑗𝑗 , where each element 𝐴𝐴𝑖𝑖,𝑗𝑗 contains a 𝑞𝑞∗ coefficient or a zero (the 
latter of which indicates that vertex 𝑣𝑣𝑗𝑗 does not belong to path 𝑝𝑝𝑖𝑖). A is reduced to a square matrix M of 
𝑞𝑞∗ coefficients and zeros containing linearly independent rows and columns. And finally, Step 4 is to 
solve the system of equations (Mx=b), where x is the unknown column vector of resistances, R, and b is 
the total head drop of the system divided by the length of each cell (edge). The solution 𝐾𝐾(𝑥𝑥,𝑦𝑦) is the 
cell-by-cell reciprocal of R. The following subsections elaborate on each of these four steps. 

Step 1: Transformation from the Cell Format to a Digraph 

FlowPaths is based on head drop equations corresponding to independent paths identified using graph 
theory as shown in Figure 3 of the main text. 
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Step 2: Identify the Linearly Independent Paths in the Sub-digraphs 𝑯𝑯𝒔𝒔𝒔𝒔 

Many paths exist between the sources and sinks. As an example, four simple directed paths are shown 
in Figure S1, each starting at a high-head source vertex. Paths 1-4 are identified by the vertices that they 
traverse. Each path generates a head-drop equation in the form of Equation 13. In order to accentuate 
the relationship between the 𝑅𝑅 and 𝑞𝑞∗ coefficients as triplets, we identify the central vertex as belonging 
to 𝑅𝑅 and the subscripts in each 𝑞𝑞∗ coefficient belonging to the predecessor and successor vertices, as 
(Eq. S2): 

Path 1: ℎ1 − ℎ22
𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= 𝑅𝑅5�𝑞𝑞1,9
∗ � + 𝑅𝑅9�𝑞𝑞5,13

∗ � + 𝑅𝑅13�𝑞𝑞9,14
∗ � + 𝑅𝑅14�𝑞𝑞13,18

∗ � + 𝑅𝑅18�𝑞𝑞14,22
∗ � (S2) 

Path 2: ℎ3 − ℎ22
𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= 𝑅𝑅7�𝑞𝑞3,6
∗ � + 𝑅𝑅6�𝑞𝑞7,10

∗ � + 𝑅𝑅10�𝑞𝑞6,14
∗ � + 𝑅𝑅14�𝑞𝑞10,18

∗ � + 𝑅𝑅18�𝑞𝑞14,22
∗ �  

Path 3: ℎ3 − ℎ23
𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= 𝑅𝑅7�𝑞𝑞3,11
∗ � + 𝑅𝑅11�𝑞𝑞7,15

∗ � + 𝑅𝑅15�𝑞𝑞11,19
∗ � + 𝑅𝑅19�𝑞𝑞15,23

∗ �  

Path 4: ℎ4 − ℎ23
𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= 𝑅𝑅8�𝑞𝑞4,12
∗ � + 𝑅𝑅12�𝑞𝑞8,11

∗ � + 𝑅𝑅11�𝑞𝑞12,15
∗ � + 𝑅𝑅15�𝑞𝑞11,19

∗ � + 𝑅𝑅19�𝑞𝑞15,23
∗ �  

The path-finding subroutine in FlowPaths considers each pair of source-target (𝑠𝑠, 𝑡𝑡) vertices from 𝐷𝐷, 
using the digraph and subdigraphs generated using graph functions in Matlab (15). The subroutine 
comprises three blocks as follows: 

Block 1: Identify the sub-digraph H based on the source and target vertices: The first step is to identify 
all of the vertices in 𝐷𝐷Ω that are reachable from s and all of the vertices that lead to t. Let X(s) be the set 
of successor vertices in 𝐷𝐷Ω of 𝑠𝑠 and 𝑌𝑌(𝑡𝑡) be the set of vertices which are predecessors in 𝐷𝐷Ω of 𝑡𝑡. Let the 
vertex set 𝑉𝑉(𝐻𝐻) be the intersection of 𝑋𝑋(𝑠𝑠) and 𝑌𝑌(𝑡𝑡):𝑉𝑉(𝐻𝐻) = 𝑋𝑋(𝑠𝑠) ∩ 𝑌𝑌(𝑡𝑡) . If 𝑉𝑉(𝐻𝐻)  has no members, 
return a vertex path matrix of all zeros. If 𝑉𝑉(𝐻𝐻)  is not empty, let the edge set 𝐸𝐸(𝐻𝐻) be the edges in 𝐷𝐷𝛺𝛺 
that are incident to any pair of vertices in 𝐻𝐻𝑠𝑠,𝑡𝑡 . 

Block 2: Identify the Minimum Directed Spanning Tree (MDST) in 𝐻𝐻, rooted at 𝑠𝑠: As detailed in Block 3 
below, independent paths are identified using two concepts from graph theory, first, minimum directed 
spanning trees, and second, chords. A tree 𝑇𝑇 is a connected acyclic graph, and its edges are called 
branches (7, p. 27). The other edges are called chords, and are elements of the co-tree 𝑇𝑇� (4, p. 80). Here 
we use the term tree loosely to indicate a subdigraph that is rooted at a vertex on the boundary of the 
flow matrix. Every chord is identified as an edge of 𝐻𝐻 which is not in the MDST (the co-tree). The name 
of the chords and their weights (specific discharges) are stored in a table, such as Table S1. 

Block 3: Find the independent set of edge paths, going both ways from the chord: The chords identified 
in Block 2 provide the starting point to find the independent paths. The subroutine starts with the first 

 

Figure S1: Four simple paths connect high head source cells to low head target cells. 
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chord in the table, which for the example of 
Table S1 is 𝑒𝑒. A path from the source to the in-
vertex of 𝑒𝑒 within the MDST is formed. Then a 
shortest path is found from the out-vertex of 𝑒𝑒 
to 𝑡𝑡. The two sets of vertices and incident edges 
along with the chord are concatenated into a 
full path. This process is repeated for all chords. 
The second segment of any path 𝑝𝑝𝑎𝑎 starting at 
chord 𝑐𝑐𝑎𝑎  may also traverse some other chord 
(or chords) 𝑐𝑐𝑏𝑏 , but a path 𝑝𝑝𝑏𝑏  generated by 𝑐𝑐𝑏𝑏 
cannot include 𝑐𝑐𝑎𝑎 , because each chord is the 
first one in its generated path. This is the reason 
why the constructed set of paths is linearly 
independent. The Matlab function “shortestpath” (16) implements the shortest path algorithm (22) 
through the MDST for each chord, where that chord is the first one the path. The subroutine continues 
through the table of chords, finding all of the unique paths generated by the chords. The number of 
paths at this point equals the number of chords, and thus is equal to the cyclomatic number 𝑣𝑣(𝐺𝐺). The 
final path to be added to the path set P is the trunk path, which has no chords, by implementing a depth-
first search through the MDST itself. For the example of Table 1 and Figure 7 (both in the main text), 
this trunk path is [3, 7, 8, 12, 11, 10, 9, 13, 17, 18, 22]. Now we have that PLI =  8 for this subdigraph. 

Step 3: Pass the paths from the sub-digraph back to the main program 

The set of paths from each subdigraph 𝐻𝐻 are assembled into a vertex path matrix (VPM), which is similar 
to an edge path matrix as defined by Foulds (7, p. 90). The VPM consists of a row for each path between 
𝑠𝑠 and 𝑡𝑡 and a column for each vertex in 𝐻𝐻. If vertex 𝑘𝑘 is in path 𝑖𝑖, then 𝑝𝑝𝑖𝑖𝑖𝑖 = 1, otherwise 𝑝𝑝𝑖𝑖𝑖𝑖 = 0. Recall 
that the number of LI paths in 𝐻𝐻 is equal to the number of chords in the co-tree of the rooted tree plus 
1 (Eq. S3) where |~| is the number of elements in set ~: 

|𝑃𝑃𝐿𝐿𝐿𝐿| = |𝑇𝑇�| + 1 = 𝐂𝐂 (S3) 

If 𝑇𝑇 ⊆ 𝐻𝐻 is a spanning tree, and 𝑒𝑒 is a chord in 𝐻𝐻, a fundamental cycle 𝐶𝐶𝑒𝑒 is the simple cycle made by the 
union of 𝑒𝑒 and the path in 𝑇𝑇 that connects the endpoints of 𝑒𝑒. The set of all the fundamental cycles in 𝐻𝐻 
constructed consecutively in this fashion form the fundamental (linearly independent) cycle basis of 𝐻𝐻, 
𝐶𝐶(𝐻𝐻), with 𝑒𝑒 − 𝑣𝑣 + 1 cycles (5, p. 27). The set of paths developed using the MDST and its chords (the 
chord paths plus the trunk path) are also linearly independent, forming a path basis of 𝐻𝐻,𝑃𝑃(𝐻𝐻). The 
resulting VPM is thus a fundamental vertex path matrix (FVPM). All other paths between 𝑠𝑠 and 𝑡𝑡  are 
linear combinations of these independent paths. For 𝐻𝐻3,22, the FVPM is (Eq. S4) where the source and 
target vertices are not shown in the matrix: 

 

(S4) 

 

( ),

5     6    7     8     9     10   11  12   13  14   15   16   17   18                          
1 1 1 1 0 1 0 0 0 1 0 0 0 1 1
2 0 1 1 0 1 1 0 0 1 0 0 0 1 1
3 0 0 1 0 1 1 1 0 1 0 0 0 1 1
4 0 0 1 1 0 1 1 1 0 1 0 0 0 1

3,22
5 0 0 1 1 0 0 1 1 0 1 1 0 0 1
6 0 0 1 1 1 1 1 1 1 1 0 0 0 1
7 0 0 1 1 0
8

f v =P

0 0 1 0 1 1 1 0 1
0 0 1 1 1 1 1 1 1 0 0 0 1 1

 
 
 
 
 
 
 
 
 
 
 
  

Table S1: Chords belonging to the co-tree 𝑻𝑻� from 
the sub–digraph 𝑯𝑯𝟑𝟑,𝟐𝟐𝟐𝟐. 
 Chord 
Name 

In-
vertex 

Out-
vertex 

Weight 
(cm/day) 

e 5 9 1.38956 
f 6 10 1.52726 
g 7 11 1.44822 
m 10 14 1.57701 
n 11 15 1.37437 
p 13 14 0.12137 
t 14 15 1.70985 

 

https://doi.org/10.69631/ipj.v1i3nr30
https://ipjournal.interpore.org/index.php/interpore/article/view/30/36


 
Mont-Eton et al.  Page 5 of 10 
 

 
InterPore Journal, Vol. 1, Issue 3, 2024                                 https://doi.org/10.69631/ipj.v1i3nr30                

Now that the FVPM has been identified for each sub-digraph 𝐻𝐻, the 𝑞𝑞∗ coefficients are determined for 
each vertex on a path using Equation 12 and the serial head-drop (Eq. 13) for each path. The coefficients 
of the edge polynomials are mapped to the coefficients of the vertex polynomials. For any path 
𝑃𝑃𝑖𝑖 ∈ 𝑃𝑃𝑓𝑓,𝑣𝑣(𝑠𝑠, 𝑡𝑡) (Eq. S5): 

𝑃𝑃𝑖𝑖�𝑅𝑅𝑘𝑘,𝑞𝑞𝑘𝑘−1,𝑘𝑘+1
∗ � |𝑘𝑘=2𝑘𝑘=𝑛𝑛−1 = 𝑅𝑅2𝑞𝑞1,3

∗ + 𝑅𝑅3𝑞𝑞2,4
∗ + ⋯+ 𝑅𝑅𝑛𝑛−2𝑞𝑞𝑛𝑛−3,𝑛𝑛−1

∗ + 𝑅𝑅𝑛𝑛−1𝑞𝑞𝑛𝑛−2,𝑛𝑛
∗  (S5) 

Each vertex polynomial now becomes a member of the system of equations, 𝐆𝐆𝐦𝐦𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐝𝐝 that describes 
the resistance problem, that is, the reciprocal of the hydraulic conductivity problem. Before the system 
can be solved for 𝐑𝐑 , using matrix methods (i.e., 𝐀𝐀𝐀𝐀 = 𝐛𝐛 ), where 𝐱𝐱 =  𝐑𝐑  and 𝐛𝐛 = ∆𝐻𝐻

𝑙𝑙
 , the 𝑞𝑞𝑘𝑘−1,𝑘𝑘+1

∗  

coefficients of each vertex polynomial 𝑃𝑃𝑖𝑖(𝑞𝑞∗,𝑅𝑅) must be mapped to the correct 𝑗𝑗𝑡𝑡ℎ element in row 𝑖𝑖 of 
the coefficient matrix 𝐴𝐴𝑖𝑖𝑖𝑖 . The mapping is accomplished by using a set of logical descriptors built into 
the attributes of every vertex of the digraph, because each vertex may have up to four values of 𝑞𝑞∗, 
depending on the combinations of flow into and out of the vertex. Once all of the paths in the other 
sub-digraphs have been aggregated, the union of the FVPMs produces an over-determined array (A) of 
𝑞𝑞∗  coefficients, because some of the paths may be linear combinations of other paths. 

Step 4: Solve the System for the Hydraulic Conductivity 

When all of the 𝑞𝑞𝑘𝑘∗  coefficients have been sorted into the proper elements for every path, the redundant 
rows are removed from A. The solution step for computing R is accomplished using a function in Matlab 
that uses two measures of a least-norm solution, called “lsqminnorm” (18). The reciprocal of R is 
computed, producing a column vector of grid cell hydraulic conductivities, K, then K is converted into 
an array of dimension (𝑟𝑟 × 𝑐𝑐 − 2), where 𝑟𝑟 is the number of rows in A and 𝑐𝑐 is the number of columns 
in A. The first and last columns of K are reflected across the 𝑥𝑥-direction boundaries, producing a final 
array of size 𝑟𝑟 × 𝑐𝑐, which matches the size of the closure of the model domain, Ω�. 

4. CYCLOMATIC COMPLEXITY 
The maximum number of LI Paths in each subdigraph is equal to the cyclomatic complexity, C, (19), which 
is defined for weakly connected, single-source single-sink digraphs as (Eq. S6): 

𝐂𝐂 =  𝑣𝑣(𝐺𝐺)  +  1 =  𝑚𝑚 –  𝑛𝑛 +  2 (S6) 

 

Figure S2: Control Flow Graphs with virtual edges returning to the source vertex. Control flow graph 
#1 has one entry point where the program is initiated (𝒗𝒗𝟏𝟏), two decision points (𝒗𝒗𝟐𝟐  and 𝒗𝒗𝟑𝟑), two 
function points (𝒗𝒗𝟓𝟓  and 𝒗𝒗𝟕𝟕 ), two collector points (𝒗𝒗𝟒𝟒  and 𝒗𝒗𝟔𝟔 ) , and one exit point (𝒗𝒗𝟖𝟖 ) where the 
program would terminate. Control flow graph #2 also has one entry point, but has three decision 
points, three collector points, and one exit point. They both have a virtual edge which turns them into 
connected graphs. 
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where 𝑣𝑣(𝐺𝐺)  is the cyclomatic number, 
defined by Berge (1, p. 16) as the number of 
elementary cycles in a graph or digraph 
needed to form a cycle basis using the 
associated vectors for each cycle. The size of 
a path basis is the size of the cycle basis plus 
one; see, e.g., Gleiss et al. (10, p. 3). Since a 
basis of a vector space 𝕍𝕍 must span 𝕍𝕍 and be 
formed from linearly independent vectors  
(6, p. 182). The spanning property implies 
that a linearly independent set P  of (𝑠𝑠, 𝑡𝑡) 
paths {𝑝𝑝1, 𝑝𝑝2, … 𝑝𝑝𝑛𝑛}  is a path basis in the 
single-source single-sink digraph 𝐻𝐻 if every 
(𝑠𝑠, 𝑡𝑡) path not belonging to 𝑃𝑃 can be formed 
by a linear combination of other (𝑠𝑠, 𝑡𝑡) paths 
in 𝑃𝑃 (12). 

A corollary of Berge’s definition of 𝑣𝑣(𝐺𝐺) is that in a strongly connected graph 𝐺𝐺, the cyclomatic number 
is equal to the maximum number of independent cycles (1, p. 17). The result was a diagram called a 
Control Flow Graph (25) that added a virtual edge to the structured program. One of the corollaries of 
the definition given earlier is that every vertex in the Control Flow Graph has to be reachable from the 
entry vertex and each vertex can reach the exit vertex. Two examples are shown in Figure S2. 

One can represent the information on a path basis either by listing the incident vertices or the incident 
edges. Each set of specific discharges (Fig. 3 in the main text) represents a multi-source multi-sink 
(MSMS) network as described by Deo (4, p. 478) and by Borradaile et al. (2). Paths are visualized as a set 
of alternating distinct vertices and edges starting with a vertex on the high head side (source vertices: 
𝑠𝑠 ∈ 𝑆𝑆) and connecting to a vertex on the low head side (target vertices: 𝑡𝑡 ∈ 𝑇𝑇). For example, there are 69 
simple, directed paths in the digraph of Figure 3b in the main text, determined using a “find all paths” 
search between all (𝑠𝑠, 𝑡𝑡) pairs. This brute force approach to identify paths is certainly valid, but costly in 
terms of computer resources and time (11). To minimize this cost, the FlowPaths method takes advantage 
of a minimalistic approach to finding the linearly independent paths, which agrees with an approach 
taken by Vatinlen et al. (24) to solve a single (𝑠𝑠, 𝑡𝑡) flow for forward problems. They found that, for a 
unique optimal solution, the incidence vectors of the paths must be linearly independent. Here, optimal 
means that the total flow value of the set of paths is optimized with respect to the feasible flows. The 
incidence vector ꭓ_𝑃𝑃 of a path 𝑃𝑃 of the digraph 𝐷𝐷 having a single source and single sink, 𝐷𝐷(𝑠𝑠, 𝑡𝑡), is a 
sequence of integers, such that if a vertex 𝑣𝑣 is incident to an edge 𝑒𝑒 on a path 𝑝𝑝, then it is assigned a 
one, zero otherwise. For the control flow graph of Figure S2, three such paths exist, consisting of the 
vertex sets {1,2,3,4,8}, {1,2,5,6,7,4,8}, and {1,2,3,6,7,4,8} so the incidence vectors are (Eq. S7): 

𝜒𝜒1 = [1 1 1 1 0 0 0 1]𝑇𝑇 (S7) 
𝜒𝜒2 = [1 1 0 1 1 1 1 1]𝑇𝑇  
𝜒𝜒3 = [1 1 1 1 0 1 1 1]𝑇𝑇  

 

The path graphs of the incidence vectors 𝜒𝜒1,2,3 may be shown in a canonical, or planar form as in Figure 
S3. 

 

 

 

 

 

 

Figure S3: The path graphs of the incidence vectors 
𝜒𝜒1,2,3 .Each digraph demonstrates a sequence of the 
vertices in the three independent paths shown in 
Figure S2 and defined in Equation S7. 
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5. THE FORWARD AND INVERSE PROBLEM CYCLE 
According to Tarantola (23, p. 10), solving an error-free forward problem means to perfectly predict the 
values of a set of observations 𝐝𝐝 = [𝑑𝑑1,𝑑𝑑2,𝑑𝑑3 …𝑑𝑑𝑁𝑁] (an element of the data space 𝐷𝐷, where 𝑁𝑁 is the 
number of observations) that came from some set of model parameters 𝐦𝐦 = [𝑚𝑚1,𝑚𝑚2,𝑚𝑚3 …𝑚𝑚𝑀𝑀] (an 
element of the model space 𝑀𝑀, where 𝑀𝑀 is the number of model parameters), using a forward operator, 
𝐠𝐠(∙), which may or may not be linear, as (Eq. S8) which represents the set of equations 𝑑𝑑𝑖𝑖 = 𝑔𝑔𝑖𝑖�𝑚𝑚𝑗𝑗�. 

𝐝𝐝 =  𝐠𝐠(𝐦𝐦) (S8) 
If the operator is linear, as in groundwater modeling of a confined aquifer, then 𝐠𝐠 is a linear operator 
mapping from M (a vector) into D (also a vector). According to Menke (21), the discrete forward problem 
may be stated as shown in Equation S9 where the matrix 𝐆𝐆 is the representation of the mapping 
function. 

𝑑𝑑𝑖𝑖 = �𝐺𝐺𝑖𝑖𝑖𝑖

𝑀𝑀

𝑗𝑗=1

𝑚𝑚𝑗𝑗 
(S9) 

The forward mapping produces a matrix of discrete head values, and a matrix of intercellular flows. In 
FlowPaths, we have that the number of observations of specific discharges (𝑞⃗𝑞𝑖𝑖) is equal to the number 
of model parameters (𝐾𝐾𝑗𝑗), so 𝑖𝑖 = 𝑗𝑗 and 𝑁𝑁 = 𝑀𝑀. The discrete inverse problem solution can then be stated 
as shown in Equation S10 or as in Equation S11 where 𝐦𝐦est is the estimated version of the true model. 

𝐦𝐦est =  𝐆𝐆−𝟏𝟏𝐝𝐝 (S10) 
𝐆𝐆𝐆𝐆est =  𝐝𝐝 (S11) 

There are several possible models, (𝑚𝑚𝑖𝑖), that solve the forward problem for head at discrete locations, 
so that m𝑖𝑖 ∈ M. Our forward solution of the groundwater flow equation uses the alternating direction 
implicit (ADI) method to calculate head in the domain (ℎΩ ) and to find the corresponding specific 
discharge field (𝑞⃗𝑞𝜆𝜆). Conversely, our inverse method FlowPaths uses the specific discharge field 𝑞⃗𝑞𝜆𝜆 to 
compute the estimated parameter 𝐾𝐾λ~. Figure S4 shows the forward map, using Darcy’s law, from the 

 

Figure S4: Schematic illustration of the forward model 𝐆𝐆  used to generate the specific 
discharge field and the inverse model 𝐆𝐆−𝟏𝟏  used to reconstruct the synthetic hydraulic 
conductivity field. The forward mapping of the synthetic hydraulic conductivity 𝑲𝑲𝝀𝝀onto the 
data space 𝐔𝐔𝐃𝐃 uses a version of Darcy’s law to produce specific discharges, and the inverse 
mapping uses FlowPaths to calculate the estimated hydraulic conductivity 𝑲𝑲𝛌𝛌

~. 
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parameter space 𝑃𝑃 to the data space 𝑈𝑈D and the complimentary inverse map, using FlowPaths, from the 
data space 𝑈𝑈D to the estimated parameter space 𝑃𝑃~. In particular, the admissible parameter space, 𝑃𝑃𝐴𝐴𝐴𝐴 =
𝐊𝐊𝛺𝛺 > 0 is constrained to be strictly positive to produce the data 𝑢𝑢𝑑𝑑(𝑥𝑥,𝑦𝑦) = 𝑞⃗𝑞𝜆𝜆 (20). 

The mapping 𝐆𝐆 will also contain error (Figure S5 and Figure S6). The admissible data, (𝑃𝑃AD), that is 
generated by the forward mapping is the head and specific discharge in cells of finite size, ℎ(𝑖𝑖, 𝑗𝑗), and 
𝒒𝒒(𝑖𝑖, 𝑗𝑗) . The admissible set, 𝑃𝑃AD , of 𝐾𝐾  usually found in porous media is between 10-11 cm/sec and 
102 cm/sec (8). The admissible set of head observations, had, is strictly bounded by the static head 
measurements on the two boundaries.The range of 𝑞𝑞ad is as follows in Equation S12, where 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the 

 

Figure S5: Schematic of error analysis. (a) The forward solution creates an initial error, 𝜹𝜹𝟏𝟏, going from 
the input parameter 𝐏𝐏𝟎𝟎  to the observed data 𝐔𝐔𝐃𝐃 . (b) When the inverse solution is applied to the 
uncertain data, 𝒚𝒚�𝟏𝟏, another layer of error, 𝝈𝝈𝟏𝟏, is added to the inverse solution 𝐏𝐏𝟏𝟏. 
 

 

 

Figure S6: Schematic of the recursive error test after finding the first inverse solution, 𝒙𝒙�𝟏𝟏. (a) The exact 
forward solution maps parameter space 𝐏𝐏𝟎𝟎 to model space 𝐔𝐔𝐃𝐃, while the calculated forward solution 
maps the estimated parameter space 𝐏𝐏𝟏𝟏 to the estimated model space 𝒚𝒚�𝟐𝟐. In addition to the error 𝜺𝜺𝟏𝟏 
from the estimate of 𝐏𝐏𝟏𝟏, the calculated solution imposes new forward error 𝜹𝜹𝟐𝟐. (b) The exact inverse 
solution maps model space 𝐔𝐔𝐃𝐃 back to parameter space 𝐏𝐏𝟎𝟎, while the calculated inverse solution maps 
the estimated model space 𝒚𝒚�𝟐𝟐  to the estimated parameter space 𝒙𝒙�𝟐𝟐. In addition to the error 𝜺𝜺𝟏𝟏 + 𝜹𝜹𝟐𝟐 
from the forward solution, the calculated inverse solution imposes new error 𝝈𝝈𝟐𝟐. For errors which are 
above a threshold and not random, the test will quickly indicate that a model error exists. 
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total volumetric flow of water through the porous media, 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total area of the porous media 
perpendicular to the macroscopic flow direction, and 𝑁𝑁𝑐𝑐  is the number of cells perpendicular to the 
macroscopic flow direction. Thus, the maximum admissible specific discharge corresponds to the special 
case where all flow passes through a single cell (Eq. S12).  

0 < 𝑞𝑞𝑎𝑎𝑎𝑎 <
𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(1/𝑁𝑁𝑐𝑐)𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (S12) 

6. 4X4 EXAMPLE DATA TABLES 
For the 4×4 running example, the specific discharge entering cells from the left, 𝑞𝑞L, is shown on Table 
S2; the specific discharge entering cells from the top, 𝑞𝑞T, is shown in Table S3.  

Table S2: For the 4×4 example, the specific discharge entering cells from the left, 𝒒𝒒𝐋𝐋. 
 

1 2 3 4 5 6 
1 0 1.233406316 1.389561673 1.440069412 1.318699565 1.154178457 
2 0 1.607555994 1.527264142 1.577009080 1.709846106 1.852747944 
3 0 1.623388820 1.448221000 1.374366672 1.471149851 1.636089196 
4 0 1.196349797 1.295654112 1.269255763 1.161005406 1.017685330 

 
Table S3: For the 4×4 example, the specific discharge entering cells from the top, 𝒒𝒒𝐓𝐓 (negative denotes 
specific discharge leaving from the top).  

1 2 3 4 5 6 
1 0 0 0 0 0 0 
2 0 -0.156155357 -0.050507739 0.121369847 0.164521108 0 
3 0 -0.075863505 -0.100252677 -0.011467179 0.021619270 0 
4 0 0.099304315 -0.026398349 -0.108250357 -0.143320076 0 
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