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1. GRAPH THEORY

In the language of graph theory, nodes are called vertices, links are called edges, and together they
constitute a graph with symbol G. Formally, V is the vertex set of G, E is the edge set of G, and G is
defined as the tuple G = (V,E). A directed graph (digraph) D = (V,E) consists of the same set V of
vertices together with the same set E of edges, but links them through ordered pairs (u, v) of vertices
called directed edges. A digraph H is a subdligraph of a digraph D if V(H) € V(D) and E(H) € E(D) and
every edge in E(H) has both end-vertices in V(H). Verticesu,v € V in a digraph that are joined by an
edge e € E are adjacentand e is called /incident to the predecessor vertex u and the successor vertex v.

In the context of this study, one of the most important concepts is a path. A path p in a digraph D is a
sequence of two or more vertices connected by directed edges, with no repeated edges. A simple path
has no repeated vertices (22). A ¢ycleis a path that starts and ends at the same vertex. A directed acyclic
graph (DAG), is the type of graph that we use in this study since it generally matches the conditions of
steady groundwater flow.

Graphs and digraphs may also have an attribute assigned to the edges, which we call wejghts. The weight
w; for edge e; is defined to be the intercellular specific discharge g;, which is equal to the total flow, Q;,
divided by the area of the cell face 4;. The complete description of the digraph D with weights assigned
to each edgeis D = (V,E,w), where w is the set of weights for the edge set of D, or E(D). For any vertex
except the root or sink in a weakly connected digraph the law of continuity (there is no change in mass
of any element of the system, whether it is a vertex or a grid cell) applies (Eq. S1):
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i=d
Z w; () = 0

where d is the degree of the vertex u, /.e. the number of edges that are incident to u. This condition is
established in porous media when the groundwater flow reaches a steady state. FlowPaths considers
only the specific discharges entering the vertices, implying that all edge weights must be non-negative.

(S1)

2. WELL-POSEDNESS

Here we elaborate on Tikhonov's third criterion for well-posedness (that the solution is stable) using the
following argument. Zijl et al. (27) distinguish between two cases. In case 1, an inverse model is being
used to calibrate a forward model with a priori information, such as certain known values of K(x,y). In
case 2, the inverse model is used to directly identify K(x,y) using some other observational data, such
as the measured specific discharges which we use in FlowPaths. In case 2 (but not case 1), a stability
analysis which uses a combined error result is appropriate. According to Higham (13, p. 7), this is a mixed
forward-backward error result, where the modeled input X 4+ Ax that is close to the actual input
produces a modeled output y + Ay that is close to the actual output 9. In our approach the computed
value is the inverse solution K(x,y), and the input is the array of specific discharges q(x,y). We use a
recursive error checker (9) that computes the cumulative sum of the mixed forward-backward error for
every recursive step and then examines the regression equation to see if the solution parameter is stable
within the significance level « = 0.05 as implemented in the MATLAB function “cusumtest” (17). If the
regression equation of the cumulative forward-backward error exceeds either the upper or lower error
bounds, that indicates a structural change in the system, rejecting the null hypothesis of instability in the
model, shown as the data points between the dotted 5% critical lines shown, for example, in Figure 8 in
the main text (3, 14). Thus, the mixed forward-backward error, implemented with the MATLAB function
“cusumtest”, confirms that small changes in the inputs produce small changes in the outputs for both
the ADI forward model and the FlowPaths inverse model.

3. DETAILS ON FLOWPATHS

FlowPaths determines the hydraulic conductivity in a square flow matrix, starting with tables of specific
discharge data for each cell face, through four steps. Step 1 is to create a digraph D = (V,E,w), where
the weight w of each edge e € E is assigned the specific discharge q of the corresponding cell face. Step
2 is to decompose the digraph D into a set of subgraphs, labeled H;,;: one for each pair of source-target
vertices (s, t). For each (s, t) pair, FlowPaths finds a maximal linearly independent set of vectors (26) as
vertex paths, Py, based on the reachable vertices and edges in H, .. Using the head-drop equation for
each path, the q* coefficient for each vertex is calculated using Equation 12 from the main text. Step 3
is to assemble the output of the subroutine for each (s, t) pair into an over-determined array A of rows
of paths p; and columns of vertices v;, where each element 4;; contains a q* coefficient or a zero (the
latter of which indicates that vertex v; does not belong to path p;). A is reduced to a square matrix M of
q* coefficients and zeros containing linearly independent rows and columns. And finally, Step 4 is to
solve the system of equations (Mx=b), where x is the unknown column vector of resistances, R, and b is
the total head drop of the system divided by the length of each cell (edge). The solution K(x,y) is the
cell-by-cell reciprocal of R. The following subsections elaborate on each of these four steps.

Step 1: Transformation from the Cell Format to a Digraph

FlowPaths is based on head drop equations corresponding to independent paths identified using graph
theory as shown in Figure 3 of the main text.
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Step 2: Identify the Linearly Independent Paths in the Sub-digraphs H,

Many paths exist between the sources and sinks. As an example, four simp/e directed paths are shown
in Figure S1, each starting at a high-head source vertex. Paths 1-4 are identified by the vertices that they
traverse. Each path generates a head-drop equation in the form of Equation 13. In order to accentuate
the relationship between the R and g* coefficients as triplets, we identify the central vertex as belonging
to R and the subscripts in each g* coefficient belonging to the predecessor and successor vertices, as
(Eq. S2):

Path 1: hy = hy,
ledge
Path 2: h; —

h
. » 2 = R7(CI§,6) + R6(‘I;,1o) + R10(‘I2,14) + R14(‘II0,18) + R18(‘II4,22)
edge

Path 3: hs — hys
ledge
Path 4: hy — hys

ledge

= Rs(‘ﬁ,t;) + Rg(q§_13) + R13(Q5,14) + R14(q{3,18) + Ryg (‘Hz},zz) (52)

= R7(Q§,11) + Rll(q;,ls) + R15(‘H1,19) + R19(QI5,23)

= Ra(qz,u) + R12((I§,11) + R11(‘II2,15) + RIS(qILl‘)) + R19(‘II5,23)

The path-finding subroutine in FlowPaths considers each pair of source-target (s,t) vertices from D,
using the digraph and subdigraphs generated using graph functions in Matlab (15). The subroutine
comprises three blocks as follows:

Block 1: Identify the sub-digraph H based on the source and target vertices: The first step is to identify
all of the vertices in D, that are reachable from s and all of the vertices that lead to ¢ Let X(s) be the set
of successor vertices in D, of s and Y (t) be the set of vertices which are predecessors in D, of t. Let the
vertex set V(H) be the intersection of X(s) and Y(t):V(H) = X(s) nY(t). If V(H) has no members,
return a vertex path matrix of all zeros. If V(H) is not empty, let the edge set E(H) be the edges in D,
that are incident to any pair of vertices in H;,.

Block 2: Identify the Minimum Directed Spanning Tree (MDST) in H, rooted at s: As detailed in Block 3
below, independent paths are identified using two concepts from graph theory, first, minimum directed
spanning trees, and second, chords. A treeT is a connected acyclic graph, and its edges are called
branches (7, p. 27). The other edges are called chords, and are elements of the co-tree T (4, p. 80). Here
we use the term tree loosely to indicate a subdigraph that is rooted at a vertex on the boundary of the
flow matrix. Every chord is identified as an edge of H which is not in the MDST (the co-tree). The name
of the chords and their weights (specific discharges) are stored in a table, such as Table S1.

Block 3: Find the independent set of edge paths, going both ways from the chord: The chords identified
in Block 2 provide the starting point to find the independent paths. The subroutine starts with the first

o! o o .’ o’ .
- Path 1:(1,5,9,13,14,18,22)
N O T
> Path 2:(3,7,6,10, 14,18,22)
P Py pess o o’ o3 Path 3:(3,7,11,15,19,23)
Path 4:(4,8,12,11,15,19,23)
.4 .8 .12 .15 .20 24
I |
Figure S1: Four simple paths connect high head source cells to low head target cells.
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chord in the table, which for the example of Table S1: Chords belonging to the co-tree T from
Table S1 is e. A path from the source to the in- the sub—digraph Hs »5.

vertex of e within the MDST is formed. Then a

shortest path is found from the out-vertex of e Chord In- Out- Weight
t The t ts of verti dincident ed Name vertex vertex (cm/day)
ot. e two sets of vertices and incident edges o 5 9 1.38956
along with the chord are concatenated into a

. . f 6 10 1.52726
full path. This process is repeated for all chords.
The second segment of any path p, starting at g 7 R 1.44822
chord ¢, may also traverse some other chord m 10 14 1.57701
(or chords) ¢,, but a path p, generated by ¢, n n 15 1.37437
cannot include c,, because each chord is the P 13 14 0.12137
first one in its generated path. This is the reason t 14 15 1.70985

why the constructed set of paths is linearly

independent. The Matlab function “shortestpath” (16) implements the shortest path algorithm (22)
through the MDST for each chord, where that chord is the first one the path. The subroutine continues
through the table of chords, finding all of the unique paths generated by the chords. The number of
paths at this point equals the number of chords, and thus is equal to the cyclomatic number v(G). The
final path to be added to the path set P is the trunk path, which has no chords, by implementing a depth-
first search through the MDST itself. For the example of Table 1 and Figure 7 (both in the main text),
this trunk path is [3, 7, 8, 12, 11, 10, 9, 13, 17, 18, 22]. Now we have that P;; = 8 for this subdigraph.

Step 3: Pass the paths from the sub-digraph back to the main program

The set of paths from each subdigraph H are assembled into a vertex path matrix (VPM), which is similar
to an edge path matrix as defined by Foulds (7, p. 90). The VPM consists of a row for each path between
s and t and a column for each vertex in H. If vertex k is in path i, then p;, = 1, otherwise p;, = 0. Recall
that the number of LI paths in H is equal to the number of chords in the co-tree of the rooted tree plus
1 (Eq. S3) where |~| is the number of elements in set ~:

[Pyl =ITI+1=C (S3)

If T € H is a spanning tree, and e is a chord in H, a fundamental cycle C, is the simple cycle made by the
union of e and the path in T that connects the endpoints of e. The set of all the fundamental cycles in H
constructed consecutively in this fashion form the fundamental (linearly independent) cycle basis of H,
C(H), with e — v + 1 cycles (5, p. 27). The set of paths developed using the MDST and its chords (the
chord paths plus the trunk path) are also linearly independent, forming a path basis of H, P(H). The
resulting VPM is thus a fundamental vertex path matrix (FVPM). All other paths between s and t are
linear combinations of these independent paths. For H; ,,, the FVPM is (Eq. S4) where the source and
target vertices are not shown in the matrix:

5 6 7 8 9 10 11 12 13 14 15 16 17 18 (S4)
1If1 110100010001 1]
2001 1. 01 1 001 00011
30 01 01 11 01 00 011
40 01 1 01 1101 00 01
P, (3,22)=
: 550 01 1. 001 1011 00°1
60 0 1 1 1 1 1 111 00 0°1
770 01 1. 0001 01 11 0°1
80 01 1 1 1. 1. 1.1 00 0 1 1]
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Now that the FVPM has been identified for each sub-digraph H, the q* coefficients are determined for
each vertex on a path using Equation 12 and the serial head-drop (Eq. 13) for each path. The coefficients
of the edge polynomials are mapped to the coefficients of the vertex polynomials. For any path
P; € P, (s,t) (Eq. S5):

Pi(Ri Qi1 i41) K23 =RaGis + R3qss + -+ Ry_aGn-sn-1 + Ru_1@r-an (S5)

Each vertex polynomial now becomes a member of the system of equations, Gm,; = d that describes
the resistance problem, that is, the reciprocal of the hydraulic conductivity problem. Before the system
can be solved for R, using matrix methods (ie, Ax =b), where x = Rand b =ATH, the qr_1 41

coefficients of each vertex polynomial P;(q*, R) must be mapped to the correct j** element in row i of
the coefficient matrix 4;;. The mapping is accomplished by using a set of logical descriptors built into
the attributes of every vertex of the digraph, because each vertex may have up to four values of ¢
depending on the combinations of flow into and out of the vertex. Once all of the paths in the other
sub-digraphs have been aggregated, the union of the FVPMs produces an over-determined array (A) of
q* coefficients, because some of the paths may be linear combinations of other paths.

Step 4: Solve the System for the Hydraulic Conductivity

When all of the q;, coefficients have been sorted into the proper elements for every path, the redundant
rows are removed from A. The solution step for computing R is accomplished using a function in Matlab
that uses two measures of a least-norm solution, called “Isgminnorm” (18). The reciprocal of R is
computed, producing a column vector of grid cell hydraulic conductivities, K, then K is converted into
an array of dimension (r X ¢ — 2), where r is the number of rows in A and c is the number of columns
in A. The first and last columns of K are reflected across the x-direction boundaries, producing a final
array of size r X ¢, which matches the size of the closure of the model domain, Q.

4. CYCLOMATIC COMPLEXITY

The maximum number of LI Paths in each subdigraph is equal to the cyclomatic complexity, C, (19), which
is defined for weakly connected, single-source single-sink digraphs as (Eq. S6):

C=vG)+1=m-n+ 2 (S6)
P - ). V|
-~
/ e
/
/ y
Virtual / Vy *L,. Vs
edge 7/
€ [
€|0! -
b e Y
Il V3 Ve
\ €3 e?
\ A é Y
8
\\ Vy V?
\
AN €9 e
. 12
AN Virtual "< Ve -
~ Y - -
-..,.,__. Vg cdgc ~N—— -
Control Flow Graph 1 Control Flow Graph 2

Figure S2: Control Flow Graphs with virtual edges returning to the source vertex. Control flow graph
#1 has one entry point where the program is initiated (v,), two decision points (v, and v3), two
function points (vg and v5), two collector points (v4 and vg) , and one exit point (vg) where the
program would terminate. Control flow graph #2 also has one entry point, but has three decision
points, three collector points, and one exit point. They both have a virtual edge which turns them into
connected graphs.
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where v(G) is the cyclomatic number,
defined by Berge (1, p. 16) as the number of
elementary cycles in a graph or digraph
needed to form a cycle basis using the
associated vectors for each cycle. The size of m

a path basis is the size of the cycle basis plus | X, 0 ) —0 184
one; see, e.g., Gleiss et al. (10, p. 3). Since a

basis of a vector space V must span V and be
formed from linearly independent vectors

Y
(6, p. 182). The spanning property implies P o_)@_@ @
that a linearly independent set P of (s,t)
paths {p;,p,,...pn} is a path basis in the
single-source single-sink digraph H if every | Figure S3: The path graphs of the incidence vectors
(s, t) path not belonging to P can be formed | y, ,;.Each digraph demonstrates a sequence of the

by a linear combination of other (s,t) paths | vertices in the three independent paths shown in
in P (12). Figure S2 and defined in Equation S7.

VAR ® 60 0

A corollary of Berge's definition of v(G) is that in a strongly connected graph G, the cyclomatic number
is equal to the maximum number of independent cycles (1, p. 17). The result was a diagram called a
Control Flow Graph (25) that added a virtual edge to the structured program. One of the corollaries of
the definition given earlier is that every vertex in the Control Flow Graph has to be reachable from the
entry vertex and each vertex can reach the exit vertex. Two examples are shown in Figure S2.

One can represent the information on a path basis either by listing the incident vertices or the incident
edges. Each set of specific discharges (Fig. 3 in the main text) represents a multi-source multi-sink
(MSMS) network as described by Deo (4, p. 478) and by Borradaile et al. (2). Paths are visualized as a set
of alternating distinct vertices and edges starting with a vertex on the high head side (source vertices:
s € §) and connecting to a vertex on the low head side (target vertices: t € T). For example, there are 69
simple, directed paths in the digraph of Figure 3b in the main text, determined using a “find all paths”
search between all (s, t) pairs. This brute force approach to identify paths is certainly valid, but costly in
terms of computer resources and time (11). To minimize this cost, the FlowPaths method takes advantage
of a minimalistic approach to finding the linearly independent paths, which agrees with an approach
taken by Vatinlen et al. (24) to solve a single (s, t) flow for forward problems. They found that, for a
unique optimal solution, the incidence vectors of the paths must be linearly independent. Here, optimal
means that the total flow value of the set of paths is optimized with respect to the feasible flows. The
incidence vector y_P of a path P of the digraph D having a single source and single sink, D(s,t), is a
sequence of integers, such that if a vertex v is incident to an edge e on a path p, then it is assigned a
one, zero otherwise. For the control flow graph of Figure S2, three such paths exist, consisting of the
vertex sets {1,2,3,4,8}, {1,2,5,6,7,4,8}, and {1,2,3,6,7,4,8} so the incidence vectors are (Eq. S7):

xn=[1 111 0 0 0 1]7 (S7)
=110 1 1 1 1 1]
=1 1110 1 1 1]

The path graphs of the incidence vectors y; , 3 may be shown in a canonical, or planar form as in Figure
S3.
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Darcy's Law

G: q:—K§
fx

FlowPaths
G': Ax=b
A: [q] x: [K‘l} b: A

Figure S4: Schematic illustration of the forward model G used to generate the specific
discharge field and the inverse model G~ used to reconstruct the synthetic hydraulic
conductivity field. The forward mapping of the synthetic hydraulic conductivity K,;onto the
data space Up uses a version of Darcy’s law to produce specific discharges, and the inverse
mapping uses FlowPaths to calculate the estimated hydraulic conductivity K3 .

5. THE FORWARD AND INVERSE PROBLEM CYCLE

According to Tarantola (23, p. 10), solving an error-free forward problem means to perfectly predict the
values of a set of observations d = [d1,d2,d3 ...dN] (an element of the data space D, where N is the
number of observations) that came from some set of model parameters m = [m1,m2, m3...mM] (an
element of the model space M, where M is the number of model parameters), using a forward operator,
g(*), which may or may not be linear, as (Eq. S8) which represents the set of equations d; = gi(mj).

d = g(m) (S8)
If the operator is linear, as in groundwater modeling of a confined aquifer, then g is a linear operator
mapping from M (a vector) into D (also a vector). According to Menke (21), the discrete forward problem
may be stated as shown in Equation S9 where the matrix G is the representation of the mapping
function.

M
(S9)
di = Gl.] m]
5

The forward mapping produces a matrix of discrete head values, and a matrix of intercellular flows. In
FlowPaths, we have that the number of observations of specific discharges (g;) is equal to the number
of model parameters (K;), so i = j and N = M. The discrete inverse problem solution can then be stated
as shown in Equation S10 or as in Equation S11 where m,, is the estimated version of the true model.

m.; = Gld (510)
Gmg, = d (S11)
There are several possible models, (m;), that solve the forward problem for head at discrete locations,
so that m; € M. Our forward solution of the groundwater flow equation uses the alternating direction
implicit (ADI) method to calculate head in the domain (hy) and to find the corresponding specific
discharge field (§,). Conversely, our inverse method FlowPaths uses the specific discharge field ¢, to
compute the estimated parameter K; . Figure S4 shows the forward map, using Darcy's law, from the
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Pll
Up Un Exa,cl///_/_,.,? *
Sx) Sx) ?"(ﬂh:: | 0y @ Inverse
b | 3 f:f(;;=ahﬂhﬁh):. Solution Error
0 | 8, : Forward Error & } |
Koo : | |
T b o | 0
Calculapeg =~ »o J1=f(X)+6; Vi e |
S — I
-1 — _ o
4 @) ~=>e =) +o
P,
a. Forward Error from K, to (q,h): & b. Accumulated Error: €; = gy + 8,
Figure S5: Schematic of error analysis. (a) The forward solution creates an initial error, §;, going from
the input parameter P, to the observed data Up. (b) When the inverse solution is applied to the
uncertain data, y,, another layer of error, 64, is added to the inverse solution P;.

parameter space P to the data space Up and the complimentary inverse map, using FlowPaths, from the
data space Up to the estimated parameter space P~.In particular, the admissible parameter space, P,, =
K, > 0 is constrained to be strictly positive to produce the data ug(y,,) = ¢, (20).

The mapping G will also contain error (Figure S5 and Figure S6). The admissible data, (P,p), that is
generated by the forward mapping is the head and specific discharge in cells of finite size, h(i,j), and
q(i,j). The admissible set, Pyp, of K usually found in porous media is between 10" cm/sec and
10% cm/sec (8). The admissible set of head observations, Aaq, is strictly bounded by the static head
measurements on the two boundaries.The range of gq,4 is as follows in Equation S12, where Q;,:q; is the

Py
x
|
| 02 : New Inverse
Solution Erroi

[
[
|
|
I I
[ [
| | I
| [ [
| | |
| ' |
i _ | | |
:61—0'1-!-51 | i | €2 =€ +5;
[ \ |
| € | |
| I I ]
| I I ]
| I J ]
- | I I I
B . | g :
P, afcufatc& T —— _p“ 9, g :
——— |
V.= f(X) + €+ 6, }:::1?3-;“““—-& !
2 T 5= TPt e
P,
a. Forward Error from K, to (q.h): 8, b. Accumulated Error: €, = 0, + §; +6->

Figure S6: Schematic of the recursive error test after finding the first inverse solution, X;. (a) The exact
forward solution maps parameter space Py to model space Up, while the calculated forward solution
maps the estimated parameter space Py to the estimated model space y,. In addition to the error &4
from the estimate of Py, the calculated solution imposes new forward error §,. (b) The exact inverse
solution maps model space Up backto parameter space Py, while the calculated inverse solution maps
the estimated model space ¥, to the estimated parameter space X,. In addition to the error &1 + 8,
from the forward solution, the calculated inverse solution imposes new error g,. For errors which are
above a threshold and not random, the test will quickly indicate that a model error exists.
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total volumetric flow of water through the porous media, A;yq; is the total area of the porous media
perpendicular to the macroscopic flow direction, and N, is the number of cells perpendicular to the
macroscopic flow direction. Thus, the maximum admissible specific discharge corresponds to the special
case where all flow passes through a single cell (Eq. S12).

Qtotal

__ <total (S12)
(1/Nc)Atotal

0<qua <

6. 4X4 EXAMPLE DATA TABLES

For the 4x4 running example, the specific discharge entering cells from the left, q;, is shown on Table
S2; the specific discharge entering cells from the top, gr, is shown in Table S3.

Table S2: For the 4x4 example, the specific discharge entering cells from the left, q; .

1 2 3 4 5 6
1 0 1.233406316  1.389561673  1.440069412  1.318699565  1.154178457
2 0 1.607555994  1.527264142  1.577009080  1.709846106  1.852747944
3 0 1.623388820  1.448221000  1.374366672 @ 1.471149851 1.636089196
4 O 1.196349797  1.295654112  1.269255763  1.161005406  1.017685330

Table S3: For the 4x4 example, the specific discharge entering cells from the top, gt (negative denotes
specific discharge leaving from the top).

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 -0.156155357 -0.050507739 0.121369847  0.164521108 O

3 0 -0.075863505 -0.100252677 -0.011467179 0.021619270 O

4 0 0.099304315  -0.026398349 -0.108250357 -0.143320076 O
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