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A ADDITIONAL SNAPSHOTS SUBSTANTIATING THE MODEL 
VERIFICATION 

Side-by-side comparisons serve as a key method in the main text for evaluating the quality of the match 

between the model and experiments. As in the aforementioned qualitative analysis, three snapshots 

from each fluid displacement experiment are provided to visually compare plume shapes across 

experiments, complemented by Wasserstein flux illustrations to indicate match quality. Auxiliary close-

up views of marked regions highlight the most visually pronounced discrepancies. The development of 

the fronts for Cores A, A*, B, and C is displayed in Figure 1S, Figure 2S, Figure 3S, and Figure 4S, 

respectively. The additional snapshots substantiate the observations and analysis of the main material.  

The visual material is further supported by illustrations of Wasserstein fluxes, providing a visual 

representation of the Wasserstein distance discussed in Section B. Figure 5S offers a closer look at 

several Wasserstein fluxes, corresponding to the same time steps as referenced above. In addition, the 

experimental and numerical 3D data are overlaid to demonstrate a close fit in terms of shape. 

Supplementing Figure 4 in the main text, Figure 6S provides close-up views of Wasserstein flux 

snapshots, highlighting the optimal transport distance between Core A and Core A*.  

 

Figure 1S: Core A: Evolution of the (essentially symmetric) tracer concentration plumes for the 
experimental results, presented in side-by-side comparison with the corresponding numerical simulation. 
An additional 5% contour line is included to aid visual comparison. Close-up visualizations highlight two 
characteristic regions with dispersive undershoots and overshoots. 
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Figure 2S: Core A*: Evolution of the (essentially symmetric) tracer concentration plumes for the 
experimental results, presented in side-by-side comparison with the corresponding numerical simulation. 
An additional 5% contour line is included to aid visual comparison. Close-up visualizations highlight two 
characteristic regions with dispersive undershoots and overshoots. 

 

Figure 3S: Core B: Evolution of the (essentially symmetric) tracer concentration plumes for the 
experimental results, presented in side-by-side comparison with the corresponding numerical simulation. 
An additional 5% contour line is included to aid visual comparison. Close-up visualizations highlight two 
characteristic regions with dispersive undershoots and overshoots. 

https://doi.org/10.69631/ipj.v1i3nr31


 
Both et al.  Page 3 of 7 

 

 
InterPore Journal, Vol. 1, Issue 3, 2024                                 https://doi.org/10.69631/ipj.v1i3nr31  

 

Figure 4S: Core C: Evolution of the (essentially symmetric) tracer concentration plumes for the 
experimental results, presented in side-by-side comparison with the corresponding numerical simulation. 
An additional 5% contour line is included to aid visual comparison. Close-up visualizations highlight two 
characteristic regions with dispersive undershoots and overshoots. 
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Figure 5S: Cores A, B, C: Three-dimensional qualitative comparison of tracer plumes corresponding to 
Figures 1S, 3S, and 4S. The upper and lower plumes are displayed transparently. Additionally, scaled 
Wasserstein fluxes are shown to illustrate the conversion from one distribution to another. 

 

 

Figure 6S: Cores A/A*: Scaled Wasserstein fluxes are displayed to illustrate the conversion from one 
distribution to the other, corresponding to Figure 4 in main text. 
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B WASSERSTEIN METRIC ENTERING THE QUANTITATIVE ANALYSIS 
AND ERROR QUANTITIES 

The quantitative analysis in the main text relies extensively on the Wasserstein distance, as summarized 

below. Additionally, a statistical analysis of regularization and experimental errors is conducted to 

confirm the high quality of the study’s experimental data. 

B.1 Relative Wasserstein distance 
The quantitative analysis presented in the main text is based on the Wasserstein distance measuring the 

difference between upscaled laboratory data and simulation data. We recall a standard definition of the 

1-Wasserstein distance in terms of the solution of a variational problem also called Beckmann problem 

(2). For two compatible concentration profiles,  and , defined over the domain  with ∫

∫ 𝐵 , we define the 1-Wasserstein distance to be (Eq. S1): 

(S1) 

The associated flux  is also termed Wasserstein flux in the main material. To compute  for 

voxel distributions  and , we use a numerical approximation (1). To put the results of the quantitative 

analysis in context, relative distances have been used. Using the average transport distance as the 

reference value, we consider the relative distance between two concentration profiles,  (typically 

experimental data) and  (typically simulation data) (Eq. S2):  

Relative Wasserstein distance =  
,Γ

 
(S2) 

where ,Γ denotes a Dirac-type concentration variant of  with same total mass but concentrated to 

some part of the domain ; i.e., ,Γ  has support in , is constant on  and satisfies ,Γ

. Here, we choose  to be the intersection of the inlet and the connected fracture, cf. Figure 7S. 

By design the relative Wasserstein distance is unit-free. Values of the order 1 indicate a first-order 

deviation from the reference data (here ). 

 

Figure 7S: Support 𝚪 for Dirac variants of Cores A/A*B, and C, indicated in red. Refer to Figure 3 in the main 
text for complete geometrical specifications. 

B.2 Regularization error 
The upscaled data is obtained through regularization of the raw, to large extent sparse, and noisy PET 

signal. As the used regularization (total variation denoising) enables inpainting, the Wasserstein distance 

between the raw and regularized signals, rescaled to same mass, identifies the cost required to distribute 

the sparse signal. This distribution is of local nature and thus identifies a small reference distance. The 

regularization error given by the Wasserstein distance between raw and regularized data for the four 

experiments (Cores A, A*, B, and C) are displayed in Figure  8Sa; we employ relative distances with the 

reference value defined through the regularized data, compatible with the quantitative analysis in the 

main material. We conclude that the relative regularization error is approximately 0.05 ± 0.03, indicating 

that the regularization error is relatively low. 
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(a) 

 

(b) 

Figure 8S: Relative regularization and symmetry error for all experiments across all time steps, with the 
mean and standard deviation illustrated by a gray box. 

 

B.3 Experimental variability measure 
The experiments for Cores A, A*, and B are designed to be plane symmetric. However, imperfections in 

the experiments arising from nearly isotropic conditions and various influences (e.g., operating 

conditions) naturally affect fluid displacement. Ultimately, the resulting fluid displacement is not ideally 

symmetric. We leverage this observation to quantify the degree of variability. For this we quantify 

asymmetry by measuring the Wasserstein distance of the regularized experimental data sets and its 

mirrored image, across the presumed North-South symmetry plane (along the fracture). The resulting 

symmetry error for the experiments with symmetric characteristics is shown in Figure 8Sb. Consistent 

with the main text, we use relative distances based on the reference value defined by one of the two 

regularized concentrations for the regularization error. We conclude that the relative symmetry error is 
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approximately 0.046 ± 0.013, indicating a high quality of the data. Due to the identical operating 

conditions, it is assumed that the symmetry error is also representative for the experimental data for 

Core C. 
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