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ABSTRACT 
Mixed-dimensional mathematical models for flow in fractured media have 
been prevalent in the modeling community for almost two decades, utilizing 
the explicit representation of fractures by lower-dimensional manifolds 
embedded in the surrounding porous media. In this work, for the first time, 
direct qualitative and quantitative comparisons of mixed-dimensional 
models are drawn against laboratory experiments. Dedicated displacement 
experiments of steady-state laminar flow in fractured media are investigated 
using both high-resolution PET images as well as state-of-the-art numerical 
simulations. 
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1. INTRODUCTION 
The presence of fractures strongly influences both the flow and transport in porous media. As fractures 

are ubiquitous in many geological rocks (5) and are induced by subsurface operations (30), accurate, 

reliable, and verified models for fractured porous media are essential for the modeling and simulation 

of flow and transport in fractured porous media subsurfaces. 

Since their inception approximately 20 years ago (2, 3, 25), models where fractures are represented as 

lower-dimensional objects (relative to the surrounding rock) have received much attention. Such mixed-

dimensional fracture models, as we will refer to them, provide a natural framework for modeling and 

efficient computation related to fractured porous media. Therefore, the models have been extensively 

studied both in terms of their approximation properties to full equidimensional models (see, e.g., (25)) 

and their mathematical properties (see, e.g., (8)). In numerical benchmark studies, mixed-dimensional 
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models and their numerical discretization have been further validated against numerical discretization 

of equidimensional models (19). 

Flow experiments have been key to understanding the process of fluid transfer between the fracture and 

matrix and between adjacent matrix blocks, often focusing on multi-phase flow and the balance of 

capillary to viscous and gravitational forces (31). Important recovery mechanisms in fractured media, 

such as spontaneous imbibition (26) and gravity drainage (18), have been investigated experimentally. 

In situ imaging has occasionally been applied to improve insight, for example, revealing the existence of 

wetting-phase bridges forming in vertical fractures to aid capillary continuity (4). 

Despite the rich literature from both modeling and experimental perspectives, direct validation of mixed-

dimensional fracture models compared to actual physical flow in fractured rock is largely missing. 

Consequently, key questions regarding model applicability have not been addressed, particularly those 

related to fracture tips and intersections. Indeed, the majority of modeling literature has emphasized the 

role of the fracture and its interaction with the matrix, and the modeling of fracture tips and intersections 

is often either treated summarily (7, 9) or simply assumed to not exist in the sense that fractures are 

assumed to extend to the boundary of the domain (25). In the context of discrete fracture networks, 

which follow a different methodology, intersections have been discussed, partially with dependence on 

the intersection angle (35). Considering this background, we identify three key objectives, which, to our 

knowledge, have not been satisfactorily addressed in previous studies: 

Primarily, we ask: Is mixed-dimensional modeling of fractured porous media a suitable framework for 

quantitative analysis? 

Our primary objective is substantiated through two secondary objectives. Most concretely, we address: 

Does the actual physical geometry of the fracture tip impact the flow both in the fracture and 

surrounding matrix? From a modeling perspective, mass balance arguments imply a no-flow condition 

on the fracture tip (3). Other studies have discussed non-trivial pressure and flux singularities at fracture 

tips depending on the fracture tip geometry (14), as well as imposing a matching flux coupling through 

an additional degree of freedom (34), which is postulated to be of greater relevance in the case of high 

transversal permeability. Notwithstanding the above references, the most common modeling choice is 

the flow barrier at the fracture tips. As a real physical system has no flow barrier at the fracture tips, this 

implies a modeling assumption that the tip geometry is completely irrelevant. 

 

Figure 1: Schematic of available data formats considered in the verification study. PET images in 
vertically averaged 2D and denoised 3D views (top row); mixed-dimensional simulation data in 
compatible equidimensional formats (bottom row). 
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Implicitly, we also address the following questions: Is the hierarchical modeling of fracture intersections 

of suitable accuracy? In the modeling literature, various constitutive modeling approaches for fracture 

intersections have been introduced, which are often guided by present fracture permeabilities. In 

addition to the imposed mass balance, the extreme cases are the pressure continuity (3, 20) and local 

flux/Darcy laws (20, 35). The latter consistently follows a hierarchical mixed-dimensional modeling 

approach, introducing pressure at the intersection, and thus pressure discontinuity. To the best of our 

knowledge, it has not yet been established whether these nuances matter within the context of the 

overall uncertainties of subsurface flows.  

To address the key modeling questions identified above, we considered a series of qualitative and 

quantitative comparison studies between dedicated high-fidelity laboratory tracer experiments, 

visualized by high-resolution in situ positron emission tomography (PET) imaging (17), and numerical 

mixed-dimensional fracture models utilizing the state-of-the art open-source fracture flow simulator 

PorePy (24) (both detailed below), as illustrated in Figure 1. 

The experiments were designed to enable the following discussion of spatiotemporal data: 

• A pair of experiments were constructed, differing only in the absence and presence of added 

physical flow barriers in the fracture tips, which resembled the mathematical modeling 

assumption, thus directly addressing the impact of the fracture tip. 

• Disparities of tracer plumes between experiments and mixed-dimensional fracture models were 

compared qualitatively through visual inspection and quantitatively in terms of Wasserstein 

distances, considering experiments with and without fracture intersections, thus implicitly 

addressing the impact of the modeling of intersections. 

The remainder of this paper is organized as follows. First, we recall the principles of mixed-dimensional 

modeling in Section 2, which will be challenged in the present study. Dedicated laboratory tracer 

experiments aimed at addressing the above research questions are presented in Section 3. To enable 

qualitative and quantitative data comparison between the experiments and associated numerical 

simulations, dedicated data processing and analysis are required, as introduced in Section 4. Finally, a 

detailed model verification study is presented in Section 5, and the conclusions are drawn in Section 6. 

2. MIXED-DIMENSIONAL CONCEPTUALIZATION OF FRACTURES 
The dimensional reduction and representation of fractures as lower-dimensional objects has three 

central implications: the 

introduction of (I) mixed-

dimensional geometry, (II) 

mixed-dimensional represent-

ation of physical fields, and (III) 

meaningful model equations 

coupling the physics between 

adjacent objects of varying 

dimensions (8, 9, 25). This is 

exemplified in the context of the 

flow and tracer transport.  

2.1. Mixed-
dimensional 
geometry (I) 

Fractures are three-dimensional 

geometrical features with high 

aspect ratios. Compared to the 

dimensions of the surrounding 

 

Figure 2: Conceptual mixed-dimensional representation of Core A, 
cf. Figure 3 in 2D with subdomains  (gray) and interfaces 

 (blue). 
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matrix, the width of the cross-section is several orders of magnitude smaller. Hence, from a geometrical 

standpoint, a lower-dimensional representation of the fractures appears natural. The argumentation 

recursively continuous to fracture intersections. Consequently, a general fractured medium  can 

be conveniently described as a hierarchy of mixed-dimensional geometries, , with 

the matrix as a subdomain of the ambient dimension, fractures of codimension 1 (planes), intersections 

of fractures of codimension 2 (lines), and intersections of codimension 3 (points) (9). Interfaces, 

, between subdomains of co-dimension 1 allow for data exchange via suitable 

projections. Examples are shown in Figure 2. 

2.2. Mixed-dimensional fields (II) 
As a result of the dimensional reduction (25), physical fields originally defined in the equidimensional 

geometry receive distinct representations on each subdomain, collected in the form of a mixed-

dimensional field. In the context of flow and transport, the mixed-dimensional fluid pressure  and 

tracer concentration  are defined. 

2.3. Mixed-dimensional equations (III) 
A complete mathematical description of the flow on mixed-dimensional geometries requires the 

assignment of equations on both the subdomains and connecting interfaces. Starting from an 

equidimensional model, these can be derived by averaging or integrating over the fracture apertures. In 

addition, postulation of closure relations is required. A key feature of the prototypical model is the 

conceptually identical treatment of each dimension. 

The focus of this study lies on the incompressible, quasi-static, laminar flow in porous media. Based on 

the fundamental principle of mass conservation, together with Darcy’s law, the governing equation for 

flow on the subdomain , is given by (Eq. 1): 

 (1) 

where  is the specific volume resulting from dimension reduction (equal to 1 at the ambient dimension, 

the fracture width for fractures, their product for intersections etc.), is the tangential differential 

operator (void on 0-dimensional subdomains),  is the tangential permeability tensor,  is the 

dynamic viscosity,  is the volumetric source,  identifies neighboring interfaces towards subdomains 

of one dimension higher (empty for subdomains of ambient dimension) and  are associated 

interface fluxes. The tangential permeability  simply equals the matrix permeability at ambient 

dimension; for fractures and intersections, we choose a cubic law associated with perfect Poiseuille flow 

(7), that is, we set   for fractures. 

On neighboring pairs of lower- and higher-dimensional subdomains,  and  (with  and  

associating subdomains with interface , cf. Fig. 2), the flux across their interface  respectively 

appears as source terms as in Equation 1 and Neumann boundary condition (Eq. 2): 

 on  (2) 

where  denotes the outer normal vector onto . Based on a linearity assumption, the flux  

across  follows a Darcy-like law, introducing the normal permeability , which is inversely correlated 

to the intrinsic aperture  (9)), effectively representing a discrete normal derivative (25), (Eq. 3): 

,                (3) 

Boundary conditions are assigned to close the system. At the external boundaries of the host medium 

, the pressure and flux boundary conditions depend on the use case. At the internal boundaries, i.e., 

fracture tips, we employ the widely used consensus and impose no-flow conditions (Eq. 4): 

 (4) 
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With these modeling choices, all parameters are defined exclusively in terms of the matrix permeability 

and fracture apertures; thus, our model, as applied in this study, contains no free tuning parameters. 

Following the same methodology, passive tracer transport in fractured media can be similarly modelled 

as mixed-dimensional advection-dispersion (21). The tracer transport in subdomain , is 

governed by (Eq. 5):  

 (5) 

where  is the porosity,  is the advective flux,  is the tangential dispersion 

(tensor), and  is the volumetric source term. In this work, the dispersion  follows an anisotropic 

model, decomposing in longitudinal dispersion  and transversal dispersion 

, see e.g. (15). The system is closed following the same modelling principles as for mixed-

dimensional flow, introducing advective-diffusive interface fluxes . 

Remark 1 (Numerical approximation). Numerical simulations allow for the approximation of mixed-

dimensional models, such as Equation 1 to Equation 5, for highly complex geometries. For this study, 

the choice of numerical discretization is not essential, as long as it is locally conservative, consistent, and 

stable across all dimensions. This ensures that, by choosing a sufficiently fine grid, the approximation 

error is negligible compared to the modeling error. In this study, a locally conservative finite volume 

discretization is employed with diffusive fluxes approximated with the MPFA method (1, 29), yet tailored 

to mixed-dimensional models following the unified framework in (28). Convective fluxes are 

approximated using first-order upstream weighting (16). For the implementation, the open-source 

software framework PorePy (24) is used, which provides mass-conservative finite volume discretizations 

that have been extensively validated against the model equations through participation in code 

comparison studies (6) and by a posteriori error analysis (37). We highlight a series of other numerical 

modeling approaches, for which we expect similar results, given that the meshes are sufficiently fine. 

This includes conforming approaches (13, 22, 23), and nonconforming approaches (20, 33, 36), see also 

the benchmarking studies (6, 19), and references therein. 

3. LABORATORY TRACER EXPERIMENTS OF FRACTURE FLOW 
For the subsequent model verification study aimed at addressing the above research questions, 

dedicated laboratory tracer experiments were conducted. For all four setups, as illustrated in Figure 3, a 

cuboid Bentheimer sandstone core material was used and cut using a diamond saw blade to create thin 

smooth fractures. Aiming at investigating the fracture tips and intersections, four configurations were 

chosen: two geometries with a simple cut (Core A and Core B); Core A but with the fracture tip closed 

by a metal splinter (Core A*) resembling an actual physical flow barrier, thus imitating the mathematical 

model equation (Eq. 4); and a geometry with a simple fracture network consisting of two intersecting 

fractures (Core C), realized by assembling the rock pieces with epoxy on a fixed plate. 

 

Figure 3: Geometrical specifications of Cores A/A* (A* but with splinter in tip), B, and C, including length 
(L), width (W), height (H), fracture aperture (A); injection strategy and rate (Q) (blue). 
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Each core sample was treated as 

homogeneous and isotropic. Based on 

independent displacement experiments 

using intact core material, effective 

hydraulic matrix properties (porosity, 

permeability, and dispersion) were 

determined, see Table 1 for respective 

values. 

The rock cores were initially saturated with 3.5% NaCl brine (viscosity  =1.09cP at ambient temperature) 

under vacuum. Brine was thereafter injected into the inlet of each core, using slightly different conditions; 

Figure 3 shows the injection across the entire inlet or directly into the fracture, while the outlet end face 

is open to flow and fluid is produced at atmospheric pressure. Polyoxymethylene end-pieces were 

machined and attached to the inlet and outlet end-faces to define and facilitate injection and extraction. 

The remaining core faces were impervious to fluid flow owing to the use of epoxy. 

High-resolution in situ PET imaging was used to track the flow patterns, cf. Figure 1. The cores were 

placed in a high-resolution, multimodal PET-CT scanner and radioactive 18F-FDG-labelled brine was used 

as the injection fluid. Low concentrations, which are still detectable by PET, are used to avoid notably 

altering the fluid density and viscosity. Consequently, the experiments were quasi-2D. 

4. DATA PROCESSING AND ANALYSIS 
The model verification in Section 5 relies on visual and quantitative data comparisons of both 

experimental and corresponding numerical data. The tools for data processing and analysis employed 

the open-source Darcy-Scale Image Analysis toolbox DarSIA (27), as detailed below. 

4.1. Unified Data Format for Qualitative Comparison 
The foundation of the model validation study is a direct comparison of laboratory PET data and the 

corresponding mixed-dimensional simulation data. Such a comparison solicits a common ground, 

chosen here as a time-series of volumetric (Darcy-scale) concentration with respect to the matrix, cf. 

Figure 1. We note the omission of pressure data, as a PET-CT scanner is not equipped to measure the 

pressure within the 3D space. Therefore, the tracked and simulated tracer concentrations were the only 

dense quantities available for a direct comparison. While the simulation data undergoes mass-

conservative equidimensional reconstruction, the sparse PET signal of the experimental data requires 

space-time smoothing to extract the Darcy-scale concentration data. To this end, snapshots were 

obtained from the dynamic 4D PET images through signal accumulation over 4D space-time cubes (60 

seconds × 0.4 mm voxels); total variation denoising was used for simultaneous shape-preserving 

denoising and inpainting, and signal rescaling allowed for matching the known injection rate, finally 

defining the cleaned data sets used in this study. This workflow retains the quality of the dataset and 

regularizes the signal in the order of the measurement error (27), (please also refer to Section B.2 in the 

Supplementary Material, available online here). Dimension reduction (3D to 2D) was applied to enable 

visual comparison of the (almost) plane symmetric tracer plumes. 

4.2. Dissimilarity metric for quantitative comparison 
In addition to assessing the qualitative match via visual comparison of tracer plumes, the disparity 

between the concentration data can be quantified in terms of the 1-Wasserstein distance (11) (Earth 

Mover’s Distance (32)). It explicitly measures the mass distance required to transport a tracer density 

from one location to another in the form of a mass-conservative flux field (here termed Wasserstein flux). 

For universal interpretation, we employ a relative distance with the reference value given by the average 

mass distance of the current concentration profile from the injection boundary (see Section B.1 in the 

Supplementary Material for the details, available online here). The relative 1-Wasserstein distance allows 

for the discussion of experimental variability. 

Table 1: Material properties at ambient dimension. 
Property (Unit) Core A/A* Core B Core C 

 0.232 0.221 0.211 
 1.9±0.1 1.8±0.07 1.5±0.1 
 7e-4 7e-4 7e-4 
 0.2  0.2  0.2  
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Remark 2 (Experimental variability). To obtain a baseline estimate of the deviation of the experiment 

from its design, we consider the deviation in the tracer distributions for Cores A, A*, and B, from a 

symmetric distribution (the experimental design has a North-South symmetry axis), in terms of a 

(relative) Wasserstein distance. The identical operating conditions across all experiments justify its 

interpretation as a proxy for measurement uncertainty and the reduction to a characteristic value (of the 

order of 0.046 ± 0.013, cf., Sec. B.3 in the Supplementary Material available online). We emphasize that 

this should be seen as a lower bound on the actual experimental uncertainty, as it does not account for 

any experimental artifacts that are not symmetry-breaking (impact of epoxy casing, imperfections in 

cutting of fracture, variability in the flow pumps, etc.). 

5. QUALITATIVE AND QUANTITATIVE COMPARISON OF EXPERIMENTS 
AND SIMULATIONS 

Access to experimental data (12) and the corresponding accurate numerical simulation data (10), as 

described above, allows for model verification through direct data comparison. The fracture tips and 

intersections are discussed separately. 

5.1. Direct assessment of the impact of fracture tip geometry 
To probe the validity of the central modeling assumption of a no-flow condition in the fracture tip (Eq. 

4), the focus lies on comparing the laboratory experiments conducted using the Cores A and A*, recalling 

that these are identical from a modeling perspective. The Wasserstein distance for different time steps 

between the experimental data of the two different experimental series as well as the simulation data is 

employed to assess the fit. The relative distances are displayed in Figure 4, together with the Wasserstein 

 

Figure 4: Quantitative cross comparison over time (color labeled) between experimental and 
simulation data for Cores A/A*; error bars indicate mean measuring uncertainty; Wasserstein 
fluxes between physical experiments for early and mid-time illustrated in boxes; see Figure 6S 
in the Supplementary Material (available online) for close-up views. 
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flux for a single time step, illustrating the structure of the error. Considering only the experimental results 

(triangles), we observe that after an early time transient, the deviation between the two experiments is 

of the order of 3-10%, which is comparable to the experimental uncertainty. In contrast to the 

experiments with the simulation results (indicated by crosses), we see that (within experimental 

uncertainty) the mathematical model is equally close to either of the two experiments, and at later times 

is as close to the experiments as the variability between them. Thus, we make two observations. 

1. The equidistance between the simulation and the two experiments indicates that the dominant 

modeling error cannot be ascribed to the treatment of the fracture tip. 

2. Clustering of the experiments and the simulation within a 5-10% relative error implies that the 

modeling error is within the general uncertainty associated with the reproducibility of the 

experiment. 

A qualitative visual comparison, as illustrated in Figure 5, supports the assessment of close agreement 

between the modeling and experimental results. The discrepancies can be summarized as follows. For 

all cores, slight dispersive overshoots and undershoots can be observed at single locations along the 

front (highlighted), which are not reproduced by the simulations. However, for all cases with a single 

fracture (Core A/A* and Core B, being equivalent to Core A apart from the boundary condition), the 

general structure of the concentration distribution is comparable between simulation and experiment, 

with the largest discrepancies for Core A/A* near the inlet boundaries, indicating that the realization of 

the boundary conditions may be of greater significance than the modeling of the fracture tip. We stress 

that a certain degree of uncertainty will be present in the experimentally imposed inlet boundary 

conditions because the manufactured inlet end-face converts a point to an approximated uniform face 

 

Figure 5: Side-by-side comparison of concentration plumes from experimental and simulation data 

for Cores A, A*, B, and C. Yellow boxes highlight regions with subtle discrepancies discussed further 

in the text, and a red 5% contour line on the simulated tracer data aids in visual comparison. 
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source (cf. Sec. 3). This aligns with the quantitative analysis of Cores A/A∗ and B (Fig. 6), where Core B, 

with the simplest boundary condition, has the closest fidelity between experiment and simulation. 

Further snapshots are displayed in Section A of the Supplementary Material (available online). 

5.2. Implicit assessment of impact of fracture intersections 
Fracture intersections have numerous structural parameters that prohibit a full direct comparison in the 

experimental setting. Therefore, we must rely on more implicit arguments by constructing a single core 

with non-orthogonal crossing. We first return to the qualitative impressions gained from Figure 5. The 

impression is that all the main features of the tracer distribution associated with Core C are reproduced 

by the simulation, including the asymmetric flow out of the fractures and the nontrivial distribution of 

the tracer near the intersection and the fracture tips. The time chosen in Figure 5 is representative; 

snapshots for other times are provided in Section A of the Supplementary Material (available online). 

To support this qualitative comparison, Wasserstein distances are again computed between the 

regularized laboratory data and the corresponding simulation data, cf. Figure 6. The relative distances 

again substantiate the qualitative comparison above, with the discrepancy between the simulation and 

model for Core C being within a factor of 2 of the other cores, despite the increase in geometric 

complexity. Inspection of the associated Wasserstein fluxes (insets) allows for the interpretation of the 

deviations, emphasizing the unbalanced fluid distribution among the fractures in Core C. Based on the 

available data, it is not possible to determine whether these deviations are due to experimental 

imperfections or modeling. 

 

Figure 6: Temporal evolution of Wasserstein distances comparing the model with corresponding 
experiments, with error bars representing the mean measurement uncertainty. Wasserstein fluxes are 
shown for individual time steps. 
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6. CONCLUSION 
In conclusion, we return to our primary objective, that is, by means of careful experiments, assess the 

validity of mixed-dimensional modeling of fractured porous media. Overall, across all four experimental 

setups, we see a relative error of the order of 10% between the simulation and model, which in the 

context of the complexity associated with transport in fractured porous media (5), we consider it to be 

very satisfactory. As such, our overall assessment is that the data and simulations presented herein 

provide a strong experimental justification for the applicability of mixed-dimensional modeling concepts 

in fractured porous media. Finally, we highlight the availability of the laboratory data (12) which could 

also serve as basis for future validation of equidimensional fracture-matrix models, exceeding the Darcy-

Darcy reduced order models as discussed here. 

Conceptually, mixed-dimensional models naturally extend to geometries featuring non-planar fractures 

with varying apertures and rough surfaces. While the present study has focused on an idealized setup 

aiming to thoroughly evaluate the mathematical model under reduced uncertainty, future validation in 

a more complex setting would be of high interest. This includes more complex fracture networks with 

dominating interaction between fractures, inspired by geological field applications. 
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