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ABSTRACT 
Models for multiphysics problems often involve significant nonlinearities. 
When fracture contact mechanics are incorporated, discontinuous 
derivatives arise at the interfaces between open and closed fractures, or 
between sliding and sticking fractures. The resulting system of equations is 
highly challenging to solve. The naïve choice of Newton’s method frequently 
fails to converge, calling for more refined solution techniques such as line 
search methods. 
When dealing with strong nonlinearities and discontinuous derivatives, a 
global line search based on the magnitude of the residual of all equations is 
at best costly to evaluate and at worst fails to converge. We therefore suggest 
a cheap and reliable approach tailored to the discontinuities. Utilizing 
adaptive variable scaling, the algorithm uses a line search to identify the 
transition between contact states for each nonlinear iteration. Then, a 
solution update weight is chosen to ensure that fracture cells which change 
state do not move far beyond the transition point. 
We demonstrate the algorithm on a series of test cases for poromechanics 
and thermoporomechanics in fractured porous media. We consider both 
single- and multifracture cases, and study the importance of proper scaling 
of variables and equations. 
 

KEYWORDS 
Line search, Fracture deformation, Contact mechanics, Multiphysics, Porous 
media 
 

 
@2024 The Author  

This is an open access article published by InterPore under the terms of the Creative 
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 
4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/). 

1. INTRODUCTION 
This paper concerns solution strategies for numerically solving strongly nonlinear and non-smooth 

equation systems. The primary motivation is multiphysics problems involving fracture contact mechanics 

in porous media. The developed methods may, however, be relevant for other problems involving friction 

and contact constraints. 
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The Newton-Raphson method is widely favored for solving systems of nonlinear equations due to its 

quadratic convergence. However, this convergence is only locally guaranteed, which becomes 

particularly restrictive in non-smooth contexts. This limitation motivates the use of globalization 

techniques to ensure convergence across a broader range of initial guesses. Developing robust solution 

strategies for such cases is an emerging and highly relevant research area (18). 

Globalization schemes are well-studied in the field of optimization, including applications to problems 

arising from partial differential equations (PDEs). Following Nocedal and Wright (11), these schemes can 

be categorized into two main families of methods. Trust region methods define a local region around 

the current iterate within which the update is sought, often using the descent direction from Newton’s 

method. In contrast, line search methods first determine the update direction and then search along this 

direction for an optimal solution based on a chosen metric, such as minimizing the residual. Because line 

search methods tend to integrate more seamlessly with existing solution algorithms, they are the 

approach adopted in this paper. 

Inequality conditions such as those arising in contact mechanics lead to constrained optimization 

problems, requiring modification of the globalization scheme. A straightforward approach is to replace 

the objective function, which represents the system of equations, with a merit function that additionally 

incorporates constraint information. This is achieved using additional variables that penalize violation of 

the constraints. As discussed by Hiermeier (6), the penalty approach presents an inherent challenge: 

selecting and adapting penalty parameters which balance the two goals of minimizing the objective 

function and honoring the constraints. 

We expect the non-smooth constraints to be the main source of difficulty for the Newton solver. Indeed, 

in their review of numerical solution of contact problems, Acary et al.  (1) point out that the standard 

methods may need additional criteria to terminate the line search. Moreover, in multiphysics problems, 

valuable information contained in the constraint functions may be obscured by the rest of the residual.  

Together with the cost of performing a line search on the global residual, these considerations motivate 

a more targeted way of searching along the Newton direction. Herein, we pursue a line search exploiting 

knowledge of the problem’s irregularities. The search is based on the discontinuous derivatives of the 

contact mechanics relations and is evaluated for the fracture cells only. It prevents updates from passing 

far beyond a singular point of the constraints, as suggested in the context of multiphase flow by 

Khebzegga et al. (9) and Moyner (10). We combine this line search with adaptive scaling of the constraint 

conditions to achieve an algorithm which is both efficient and dependable. 

The rest of the paper is structured as follows: Section 2 outlines the mathematical model for frictional 

contact mechanics and mixed-dimensional thermoporomechanics, highlighting prominent 

nonlinearities and non-smoothness. The new solution strategy is described in Section 3 and illustrated 

and tested by the simulation results of Section 4. Finally, we offer concluding remarks in Section 5. 

2. MATHEMATICAL MODEL 
We consider a mixed-dimensional discrete fracture-matrix model as described by Boon et al. (4), where 

the domain is partitioned into subdomains  of dimension . Each pair of neighbouring subdomains 

separated by one dimension is connected through an interface . We detail only the equations of 

particular relevance to the suggested algorithm herein, referring to the paper by Stefansson et al. (17) 

for the full mixed-dimensional models: the quasi-static poromechanical model consists of Equations 1, 

4-10, 32 and 34, ignoring the temperature terms. We obtain the thermoporomechanical by adding 

Equations 2 and 33. We close the models by including the relevant boundary conditions and constitutive 

laws as defined in the paper’s Sections 3.4 and 3.5, replacing Equation 28 by Equation 2 as defined 

below. 

https://doi.org/10.69631/ipj.v1i3nr33
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The fracture contact mechanics being of particular importance in the present context, we repeat the 

central expressions here. Following Hüeber et al (7), we formulate the fracture deformation constraints 

as non-smooth complementarity functions (Eq. 1): 

𝐶⊥(𝝈, ⟦𝒖⟧) = −𝜎⊥ − max{0,  − 𝜎⊥ − 𝑐(⟦𝒖⟧⊥ − 𝑔)} (1) 

𝐶∥(𝝈, ⟦𝒖⟧) = 𝜒𝑜𝝈∥ − (1 − 𝜒0)[𝝈∥ max{𝑏, ‖𝝈∥ + 𝑐⟦�̇�⟧∥‖} − 𝑏(𝝈∥ + 𝑐⟦�̇�⟧∥)]  

Here, 𝝈 denotes the contact traction, which equals the difference between the trace of the effective 

poromechanical traction onto the fracture surfaces and the fracture pressure. ⟦𝒖⟧  denotes the 

displacement jump between the two sides of the fracture, with the dot indicating increment between 

successive (time) states. 𝑏(𝜎⊥) : = −𝐹𝜎⊥ is the friction bound. The friction coefficient 𝐹 is assumed to 

be constant for simplicity. The characteristic function 𝜒𝑜 ≔ 𝑏 ≤ 0 indicates whether the fracture is open, 

while 𝑐 > 0 is a numerical parameter. Subscripts ⊥ and ∥ denote the normal and tangential direction of 

the fracture, respectively. Finally, 𝑔 is the gap function, i.e., the distance between the fracture surfaces 

when in mechanical contact. 𝑔 accounts for shear dilation according to Equation 2: 

𝑔 = tan 𝜙 ‖⟦𝒖⟧∥‖ (2) 

The dilation angle 𝜙  determines the strength of the coupling between tangential and normal 

displacement and by extension the effect on the hydraulic aperture 𝑎 ≔ 𝑎𝑟𝑒𝑠 + ⟦𝒖⟧⊥ , with 𝑎𝑟𝑒𝑠 

denoting the residual hydraulic aperture. To emphasize the strength of the nonlinear coupling, we 

specify that the fracture permeability is related to 𝑎 by the cubic law.    

3. SOLUTION STRATEGY 
The spatial discretisation uses multi-point finite volume methods for stress and diffusive fluxes (12) and 

a first-order upwind scheme for advective fluxes. We use the two-point flux approximation scheme in 

the fractures. With this discretisation scheme, the nonlinearity in the fracture permeability may be treated 

fully implicitly as described in Stefansson & Keilegavlen (16). This removes a source of deterioration of 

the nonlinear convergence which could otherwise obscure the results, thus allowing us to focus on the 

effect of the contact mechanics solution strategy. 

The implementation is provided in the PorePy simulation toolbox for fractured porous media, which is 

described by Keilegavlen et al. (8) and Stefansson et al. (17), which also contains a description of the 

parts of the solution strategy and discretization not detailed herein. 

Denoting the solution vector by 𝑥 ∈ ℝ𝑛, we write the full system of discretised nonlinear equations using 

Equation 3: 

𝑟(𝑥) = 0 (3) 

The strongly nonlinear and tightly coupled nature of 𝑟 causes significant difficulties in solving the system, 

which we do using the semi-smooth Newton method as described in (3, 7, 15). The following sections 

present an algorithm centred around the fracture deformation equations. It consists of an adaptive 

scaling and a line search local to the fractures. 

3.1. Scaling 
As for most solution algorithms, the present one relies on judgements on the magnitude of (updates) of 

the variables and equations. Wishing to avoid the error-prone approach of combinations of relative and 

absolute tolerances throughout the algorithm, we attempt to scale 𝝈 and ⟦𝒖⟧ towards unity.  

An educated a priori guess about the expected magnitude of the unscaled variables can be based on 

the driving forces (boundary conditions and source and sink terms). The simulations in Section 4 all have 

a Dirichlet boundary condition for displacement as a primary driving force. In this case, we can define 

the characteristic displacement 𝑢𝑐 to equal the boundary value. Furthermore, since the examples are 

defined on unit cube domains, we set the characteristic traction to 𝜎𝑐 = 𝐸𝑢𝑐 , with 𝐸  being Young’s 

https://doi.org/10.69631/ipj.v1i3nr33
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modulus in the matrix. Note that, in cases of elastic normal deformation of the fracture, as described, for 

example, by Bandis et al. (2), the fracture’s normal stiffness may be a more appropriate parameter than 

𝐸. Given a choice of 𝜎𝑐 and 𝑢𝑐, we can replace 𝝈 in Equation 1 by the scaled traction variable �̃� =
𝝈 𝜎𝑐⁄ . Instead of using a scaled displacement, we choose 𝑐 = 1 𝑢𝑐⁄ , thus scaling 𝑔 as well as 𝒖. The rest 

of the model remain unchanged by this scaling. 

We stress that, however experienced the practitioner, this guess will contain high uncertainty, typically 

several orders of magnitude, for complex, real world applications. Therefore, we suggest an adaptive 

scaling to be used in combination with the line search as described in the subsequent sections. We first 

define a scaling estimate 𝑠𝜈 , with the superscript denoting cell 𝜈 . Aiming to emphasize high values 

without ignoring lower ones, we then employ the p-mean with 𝑝 = 5 to the local estimate for all fracture 

cells (Eq. 4): 

𝑠𝜈 = ‖�̃�𝜈‖ + ‖𝑐(⟦𝒖⟧𝜈 − 𝒏𝑔𝜈)‖ (4) 

𝑠 = (
∑(𝑠𝜈)𝑝

#𝑛𝑓
)

1/𝑝

 
 

Here, 𝜈 denotes individual cells, #𝑛𝑓 the total number of fracture cells and 𝒏 is the normal vector of the 

fracture. While 𝑝 is heuristically chosen, our experience is that the algorithm is only slightly sensitive to 

its value. The scale 𝑠  is fixed to its value at the previous iteration. For numerical robustness, we 

recommend capping 𝑠, herein between 10−8 and 108. 

3.2. Line search 
To pose the problem in optimisation terminology, we define an objective function 𝑓 , which is the 

standard choice using the Euclidian norm of 𝑟. Following Nocedal and Wright (11), we consider the 

standard choice  𝑓 = 1 2⁄ ‖𝑟‖2  and seek the minimizer 𝑥∗  satisfying  ∇𝑓(𝑥∗) = 0.  Using Newton’s 

method, the update at iteration 𝑘 is 𝑝𝑘 = −𝐽−1(𝑥𝑘)𝑟(𝑥𝑘), with 𝐽(𝑥) denoting the Jacobian of 𝑟. A line 

search method determines a beneficial step length 0 < 𝛼𝑘 ≤ 1 and updates the iterate according to 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘. 

3.2.1. Global, residual-based line search 
The basic line search algorithms are based on minimizing 𝑓  along 𝑝𝑘  subject to some conditions 

ensuring convergence. These approaches inevitably add significantly to the computational cost of each 

iteration. This is especially true for non-smooth problems, which may require dense sampling of trial 

values of 𝑓 . ooreover, standard line search algorithms involve criteria (e.g. Wolfe or Goldstein 

conditions) which require evaluation of gradients (11). This is problematic due to the lack of 

differentiability of Equation 1 at the transition between contact states. 

However, we include a simple residual-based algorithm minimising 𝑓 as a comparison to the approach 

described in the subsequent section. To avoid differentiability issues, we resort to sampling values of 𝑓 

and using a bisection algorithm. To alleviate computational cost, we sample at a limited number of points 

and bisect based on an interpolation using the monotone cubic spline scheme proposed by Fritsch and 

Carlson (5), as suggested by ooyner (10) in a similar context involving discontinuities.  

3.2.2. Local, constraint-based line search 
To design a more targeted line search, we borrow concepts used in the context of transport problems 

by ooyner (10) and Pour et al. (13). Since the discontinuities are due to the maximum functions, we 

design an algorithm based on the relative values of their arguments: If the computed Newton update 

leads to a reversal of which of the arguments of a maximum function is bigger, we seek a weight 

corresponding to a damped update just beyond the transition point. 

To facilitate efficient weight computation, we introduce state indicator functions related to max(𝜃, 𝜑) 

which are linear in the arguments 𝜃 and 𝜑 and change sign at the discontinuity. For comparison, we 

define both a constantly and adaptively scaled version (Eq. 5): 

https://doi.org/10.69631/ipj.v1i3nr33
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𝑖𝑐 = (𝜃 − 𝜑)   (5) 

𝑖𝑎: =
𝑖𝑐

𝑠
= (𝜃 − 𝜑)/𝑠 

  

Note that the magnitude range of the arguments should be similar to ensure robustness of the root 

seeking. Scaling 𝑖 to approximate unity implies the tolerance introduced below is independent of the 

problem specifics. For the normal constraint of Equation 1, we compose 𝑖𝑐⊥ from Equation 6: 

𝜃⊥ = −�̃�⊥ (6) 

𝜑⊥ = 𝑐(𝑢⊥ − 𝑔)   

while in the tangential case, we have Equation 7: 

𝜃∥ = |�̃�∥ − 𝑐∥�̇�∥|  (7) 

𝜑∥ = 𝑏(�̃�)   

The tangential constraint is inactive for open cells. Thus, to avoid artificial restriction of open cells, we 

multiply by the Heaviside function 𝐻(𝑖𝑐⊥) = 𝑖⊥ > 0, obtaining 𝑖𝑐∥ = (𝜃∥ − 𝜑∥)𝐻(𝑖𝑐⊥). 

Denoting a trial weight by 𝛼𝑡
𝑘 and using square brackets as shorthand notation 𝑖[⋅] ≔ 𝑖(𝜃(⋅), 𝜑(⋅)), we 

define the transition indicator as shown in Equation 8: 

𝑡(𝛼𝑡
𝑘) ≔ −sgn{𝑖(𝑥𝑘) ⋅ 𝑖[𝑥𝑘 + 𝛼𝑡

𝑘𝑝𝑘]} ⋅ |𝑖[𝑥𝑘 + 𝛼𝑡
𝑘𝑝𝑘]| (8) 

The first factor identifies cells transitioning between contact states, while the second factor limits the 

degree to which they transition into the new state. By introducing a constraint violation tolerance, 𝛿 > 0, 

we compute cell-wise weights, 𝛼𝑡
𝜈, for the cells where 𝑡𝜈 > 𝛿, as defined in Equation 9: 

𝑖[𝑥𝑘 + 𝛼𝑐
𝜈,𝑘𝑝𝑘] + 𝛿sgn(𝑖[𝑥𝑘]) = 0 (9) 

This is achieved using the interpolation line search described above. By design of Equation 9, the weight 

𝛼𝑡
𝜈 ensures that the solution in cell 𝜈 does not move too far beyond the transition point. The global trial 

weight 𝛼𝑡 is taken as the minimum among all 𝛼𝑡
𝜈 .  

The tolerance 𝛿 may allow multiple fracture cells to transition within one iteration. While significantly 

speeding up convergence, this can in rare cases lead to loss of convergence if too many cells transition. 

Therefore, we recursively impose a tightening of the tolerance whenever the number of transitioning 

cells of fracture 𝑖, #𝑡𝑖 = ∑ 𝑡𝜈 > 0𝜈∈Ω𝑖
,  is high relative to the fracture’s number of cells, #𝜈𝑖 , i.e. (Eq. 10), 

with the cutoff 1 intended for poorly resolved meshes and 𝛾 denoting the relative tolerance. 

#𝑡𝑖 > max(1, 𝛾 ⋅ #𝜈𝑖) (10) 

That is, we halve 𝛿 and recompute 𝛼𝑡
𝜈 according to Equation 9 as long as Equation 10 is satisfied. The 

weight computation procedure is performed for both the normal constraints using 𝑖⊥  and their 

tangential counterpart using 𝑖∥. Finally, the minimum of the two resulting trial weights is assigned to all 

degrees of freedom. 

4. SIMULATIONS 
This section demonstrates the algorithm’s efficiency and reliability for a range of test cases, which differ 

along five dimensions as detailed in the subsections. We compare the suggested constraint based line 

search with adaptive scaling (CLS 𝑖𝑎) to three approaches: no line search (No LS), a residual-based line 

search (RLS), and a constraint line search with constant scaling using 𝑖𝑐 from Equation 5 (CLS 𝑖𝑐). The 

tolerances of the constraint-based algorithm are set to 𝛿 = 0.3 and 𝛾 = 0.2 throughout and use a single 

time step of length 106 s in all simulations. 

https://doi.org/10.69631/ipj.v1i3nr33
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We compare the results in terms of number of nonlinear iterations, marking runs which either did not 

converge within one hundred iterations or diverged (i.e., the residual containing infinite entries or similar) 

in grey and labelling them with NC or Div, respectively. While we do not report run times due to a non-

optimised implementation, we note that, unlike the local line search, the global line search adds 

perceptively to overall computational cost. 

4.1. Single fracture 
In the first suite of test cases, we include both poromechanics and thermoporomechanics, thus 

demonstrating applicability to different physics. We vary the dilation angle 𝜙 ∈ {0.1, 0.2} , which 

influences the coupling strength from deformation to fracture flow, cf. Equation 2. We prescribe two 

different mesh sizes ℎ ∈ {1 6⁄ , 1 12⁄ }, thus testing efficiency with respect to the number of fracture cells. 

Finally, we vary the characteristic displacement scaling employed in Equation 1 to investigate the 

robustness in cases where this quantity is difficult to assess a priori. Since using differently scaled 

variables affects the residual magnitude, we employ a convergence criterion based on the normalised 𝐿2 

norm of the nonlinear increment, ‖𝑝𝑘‖ √𝑛 < 10−10⁄ , thus allowing comparison across cases. 

This example is defined on a unit cube domain with a single throughgoing fracture as shown in Figure 

1. There is inflow on the left and outflow on the right fracture boundary, and no-flow conditions 

elsewhere. We prescribe zero and heterogeneous displacement values on the bottom and top boundary, 

respectively, resulting in fracture deformation containing both sticking, sliding and open fracture cells 

as shown in Figure 1. The remaining parameters are listed in Table 1. While these do not represent any 

particular physical setting, some characteristics, such as relatively low values for permeability and high 

ones for stiffness, contribute to retaining the relevant relative importance of the different terms and 

couplings in the equation system. 

Taking the undamped method (No LS) as the baseline, the results reported in Figure 2 show that the 

thermoporomechanical problem is more challenging than the poromechanical. Similarly, increasing the 

number of cells or the dilation angle adds to the difficulty. Both the residual-based and the constantly 

scaled constraint-based line search (RLS and CLS 𝑖𝑐) obtain convergence in some of the cases where the 

reference method does not. However, neither is robust with respect to the characteristic displacement 

scaling, with increased iteration counts or failure to converge in several cases. In contrast, the adaptively 

scaled constraint-based method (CLS 𝑖𝑎) reliably converges with an iteration count which is constant 

with respect to the characteristic displacement. The number of iterations is also consistently low and 

 

 
Figure 1: Geometry, selected boundary conditions and fracture deformation solution for the poromechanics 
ϕ = 0.1 cases. On the left, we show a Section 4.1 case, with v denoting specific fluid discharge. In the Section 
4.2 case on the right, fractures included in the four-fracture case are shown with black edge lines and those 
unique to the eight-fracture case with white lines. The mostly hidden fracture is fully open. 
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competitive with all other converging algorithms. ooreover, the iteration count hardly increases with 

the number of fracture cells, which equals 1 ℎ2⁄ . 

4.2. Multiple fractures 
The second suite also considers two physical models and 𝜙 ∈ {0.1, 0.2}, but fixes 𝑢𝑐 = 0.01. Additionally, 

we run with both four and eight fully immersed, randomly oriented fractures in the unit cube domain 

(see Supplementary oaterial for their vertex coordinates, available online). We prescribe zero fluid and 

energy flow at all external boundaries. For the momentum balance, we use zero and a constant 

compressive displacement at the bottom and top, respectively, and zero traction elsewhere. In the 

centremost cell of each fracture, we prescribe a constant pressure and temperature value, which we pick 

from two values (which may be interpreted as mimicking injection and production wells). This results in 

deformation regimes for individual fractures ranging from mostly open through sliding to sticking, 

depending on fracture orientation and assigned pressure. The remaining parameters are as in the 

previous section. Figure 3 shows the fracture geometry, as well as illustrating the contact mechanical 

state of the poromechanical simulation with 𝜙 = 0.1. Since the equations are scaled consistently for all 

cases, we use a residual-based convergence criterion ‖𝑟𝑘‖ √𝑛 < 10−10⁄ . 

The iteration counts shown in Figure 3 demonstrate trends in convergence behaviour with respect to 

physical models and 𝜙 similar to the previous section. Unsurprisingly, increasing the number of fractures 

also reduces the likelihood of convergence. Again, the residual-based search offers significant but 

unsatisfactory improvement over the undamped Newton algorithm. The two constraint-based methods 

consistently converge with similar iteration count, which indicates a quite accurate estimate of 𝑢𝑐 . The 

number of iterations scales very modestly with the number of fractures. This indicates that employing a 

permissive tolerance 𝛿 allows multiple fractures to partly transition within the same iteration.  

Table 1: Simulation parameters. 

FLUID PARAMETERS 
Compressibility  1.0 ⋅ 10−6 1/Pa 
Density  1.0 kg/ m3 
Normal thermal conductivity  1.0 W/m/K 
Reference pressure  0.0 Pa 
Specific heat capacity  100.0 J/kg/K 
Reference temperature  0.0 K 
Thermal conductivity  1.0 W/m/K 
Thermal expansion  0.01 1/K 
Viscosity  0.1 Pa s 
Inlet/outlet pressure  1.5 ⋅ 105/−1.0 ⋅ 105 Pa 
Inlet/outlet temperature  −10.0/0.0 K 
SOLID PARAMETERS 

Biot coefficient  0.8 - 
Density  1.0 kg/m3 
Dilation angle  0.1, 0.2 - 
Friction coefficient  1.0 - 
First Lamé parameter  2.0 ⋅ 106 Pa 
Normal permeability  1.0 ⋅ 10−6 m2  
Permeability  1.0 ⋅ 10−8 m2  
Porosity  0.01 - 
Residual aperture  1.0 ⋅ 10−3 m 
Shear modulus  2.0 ⋅ 106 Pa 
Specific heat capacity  100.0 J/kg/K 
Reference temperature   0.0 K 
Thermal conductivity  1.0 W/m/K 
Thermal expansion  1.0 ⋅ 10−3 1/K 
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We emphasize that no convergence issues arose with the relatively lenient tolerances in any test case. 

Since reducing the tolerances will at some point increase the number of iterations, we recommend this 

more aggressive choice.  

  

  

  

  
Figure 2: Iteration counts for the examples of Section 4.1. Simulations labeled as 'NC' did not converge within 
one hundred iterations, while those marked 'Div' indicate cases where the simulation diverged. No LS: 
undamped method; RLS: residual-based method; CLS 𝑖𝑐: constantly scaled constraint-based method; CLS 𝑖𝑎: 
adaptively scaled constraint-based method.  
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5. CONCLUSION 
We have presented a line search algorithm for solving multiphysics problems involving fracture contact 

mechanics. The nonlinear and non-smooth nature of the equations is addressed in a targeted manner 

producing a simple, efficient and reliable algorithm. The algorithm consists of adaptive variable scaling 

and a line search based on the non-smooth part of the fracture contact mechanics equations. 

Numerical simulations demonstrate applicability to both poromechanical and thermoporomechanical 

problems and ability to deal with variables of challenging scales. The suggested approach consistently 

converges, as opposed to both the standard Newton method and less targeted line search approaches. 

We also assess efficiency in terms of number of nonlinear iterations. The results show competitiveness 

with the alternative approaches for the cases where the latter converge, indicating that the line search 

hardly introduces any reduction in convergence rate. ooreover, we obtain very favourable scaling with 

respect to both number of fracture cells and the number of fractures. 

STATEMENTS AND DECLARATIONS 
Supplementary Material 
The supplementary material contains the coordinates defining the fractures used in Section 4.2. This 

material can be downloaded here.  
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Figure 3: Iteration counts for the Section 4.2 test case with multiple fractures. Simulations labeled as 'NC' did 
not converge within one hundred iterations, while those marked 'Div' indicate cases where the simulation 
diverged. No LS: undamped method; RLS: residual-based method; CLS 𝑖𝑐: constantly scaled constraint-based 
method; CLS 𝑖𝑎: adaptively scaled constraint-based method. 
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