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ABSTRACT 
Per- and polyfluoroalkyl substances (PFAS) have become one of the most 
important contaminants due to their ubiquitous presence in the environment 
and potentially profound impacts on human health and the environment 
even at parts per trillion (ppt) concentration levels.  A growing number of 
field investigations have revealed that soils act as PFAS reservoirs at many 
contaminated sites, with significant amounts of PFAS accumulating over 
several decades. Because PFAS accumulated in soils may migrate downward 
to contaminate groundwater resources, understanding the fate and 
transport of PFAS in soils is of paramount importance for characterizing, 
managing, and mitigating long-term groundwater contamination risks.  
Many PFAS are surfactants that adsorb at air–water and solid–water 
interfaces, which leads to complex transport behaviors of PFAS in soils. 
Concomitantly, PFAS present in porewater can modify surface tension and 
other interfacial properties, which in turn may impact variably saturated flow 
and PFAS transport. Furthermore, some PFAS are volatile (i.e., can migrate in 
the gas phase) and/or can transform under environmental conditions into 
persistent PFAS. These nonlinear and coupled processes are further 
complicated by complexities of the soil environment such as thin water films, 
spatial heterogeneity, and complex geochemical conditions.  
In this commentary, we present an overview of the current challenges in 
understanding the fate and transport of PFAS in the environment. Building 
upon that, we identify a few potential areas where porous media research 
may play an important role in addressing the problem of PFAS contamination 
in groundwater.  
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1. THE PFAS CONTAMINATION PROBLEM 
PFAS is an acronym that stands for per- and polyfluoroalkyl substances, which are a family of thousands 
of synthetic chemicals widely used since the 1950s (53). Large-scale manufacturing and applications 
(such as non-stick and stain-resistant coating, waterproofing treatment, and firefighting foams) (53) have 
led to their ubiquitous presence in the environment, contaminating surface water, soils, sediments, and 
groundwater. A growing body of field data demonstrates that vadose zones (below land surface and 
above groundwater table) at PFAS-contaminated sites have become significant PFAS reservoirs after 
accumulating mass over decades (14), posing a long-term threat to groundwater resources underneath.  

The problem of PFAS contamination is distinctive compared to most of the previous contaminants due 
to a combination of the following aspects. First, PFAS have been widely used for many industrial 
applications and consumer products over many decades. Long-term releases from various pathways and 
sources at different concentration levels (e.g., local concentrated sources of aqueous film forming (AFFF)-
impacted sites versus wider and much less concentrated sources of agricultural lands receiving PFAS-
containing biosolids) have resulted in their widespread presence in the environment. For example, at 
least 6,189 sites are known to be contaminated by PFAS in the United States (37) and 45% of the United 
States drinking water was estimated to contain PFAS (96). Similarly, 22,934 contaminated sites have been 
reported across 32 European countries, with several countries (Belgium, Netherlands, Italy, Denmark, 
Germany, United Kingdom, and France) having more than 1,000 sites (28, 101). Note that these numbers 
may reflect only a fraction of the problem due to incomplete sampling and investigation. Second, 
unprecedentedly restrictive concentration levels have been established, or are being discussed by 
regulatory agencies internationally. These concentration levels are several orders of magnitude lower 
than regulatory levels established for most prior contaminants (74). For example, the maximum 
contaminant levels for PFOS and PFOA have been set to 4 parts per trillion (ppt) in the United States 
(102). Even more restrictive regulations are used in some European countries such as Denmark (34) (i.e., 
2 ppt for the sum of four PFAS). Third, PFAS consist of thousands of species with significantly different 
physicochemical properties (e.g., anionic vs. cationic vs. zwitterionic vs. neutral species, different 
functional groups, and carbon chain lengths) and transport behaviors. Fourth, because vadose zones at 
many contaminated sites are PFAS reservoirs (14), understanding and quantifying PFAS fate and 
transport in the vadose zone are central for characterizing, managing, and mitigating long-term 
groundwater contamination risks. These characteristics pose significant challenges in addressing the 
problem of PFAS contamination. 

Furthermore, most PFAS are surfactants that tend to accumulate at fluid–fluid and solid–fluid interfaces 
(60). These interfacially-active properties lead to their relatively unique transport behaviors in the 
environment, particularly in the vadose zone due to abundant air–water and solid–water interfaces in 
soils. Concomitantly, PFAS accumulating at fluid–fluid and solid–fluid interfaces can also modify the 
properties of the interfaces (60), including surface tension and wettability. The changes in interfacial 
properties may in turn impact variably saturated water flow and the transport of PFAS in the vadose zone 
(45, 110). Any effective characterization and remediation of contaminated vadose zones will require 
conceptualizations that incorporate these critical interfacial processes. In this commentary, we discuss 
these complexities of PFAS fate and transport in the vadose zone, and identify the challenges and 
opportunities where porous media research may be relevant. 

2. COMPLEXITY OF THE PFAS PROBLEM FROM A FATE AND 
TRANSPORT PERSPECTIVE 

Air–water interfaces in the vadose zone may arise from the bulk water (e.g., pendular rings) between soil 
grains (i.e., bulk capillary air–water interfaces) and the thin water films on grain surfaces (Fig. 1). Under 
most field-relevant conditions, the latter accounts for more than 90% of air–water interfaces (19, 20, 30, 
55, 58, 76). Air–water interfacial adsorption has been demonstrated to be a major mechanism controlling 
the fate and transport of PFAS in the vadose zone by laboratory column transport experiments (10, 18, 
22, 70, 71, 99), field observations (16, 89), and mathematical modeling (43, 45, 46, 94, 105, 109, 110, 111). 
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These studies highlight the importance of understanding and quantifying partitioning of PFAS at air–
water interfaces in soils and how it controls PFAS transport in the vadose zone.  

Fluid–fluid interfaces have been long recognized as an important factor controlling flow, transport, and 
reactions in porous media (9). The processes at fluid–fluid interfaces include adsorption and desorption 
of interfacially-active solutes (38, 56, 59, 86, 98), attachment and detachment of colloids (41, 63, 100, 
106), and mass transfer between fluid phases (72, 81). One of the earlier drivers to quantify air–water 
interfacial area was to test a functional relationship among capillary pressure, saturation, and fluid-fluid 
interfacial area in a porous medium derived from thermodynamic principles (48, 49, 50). A corollary of 
this functional relationship suggests that accounting for air–water interfacial area may eliminate 
hysteretic behaviors observed in capillary pressure and saturation relationships during cyclic drainage 
and imbibition processes (48, 49, 50, 82). Driven by this fundamental investigation and other more 
applied problems (e.g., dissolution of non-aqueous phase liquids [NAPL] in groundwater), multiple 
experimental methods have been developed to measure fluid–fluid interfacial areas in porous media 
since the late 1990s. One group of methods uses pore-scale imaging to explicitly count interfacial areas, 
such as X-ray computed tomography (XMT) (5, 15, 32, 33, 90, 107, 108). Another group uses interfacially-
active tracers to indirectly measure and compute fluid–fluid interfaces, either by retardation in the 
breakthrough curves during transport experiments or via the mass of a tracer at fluid–fluid interfaces (6, 
21, 25, 38, 59, 86, 88). These interfacially-active tracers can be in the gas or liquid phase. Usually, the gas-
phase tracer is an alkane (i.e., not charged) and the liquid-phase tracer an anionic hydrocarbon surfactant 
(i.e., negatively charged). Additionally, air–water interfacial area can also be estimated from measured 
soil water characteristic curves using a thermodynamic approach based on energy balance (65, 73).  

X-ray computed tomography (and other imaging-based methods) can separate thin-film fluid–fluid 
interfaces from bulk capillary interfaces. For a water saturation smaller than 0.5, the former measured by 
XMT is generally much greater than the latter in natural porous media (5, 15). The actual thin-film fluid–
fluid interfacial area is typically much greater, as XMT tends to underestimate the thin-film fluid–fluid 
interfacial area in sand and soil media. This underestimation occurs because XMT does not capture the 
additional thin-film interfacial area resulting from microscale grain surface roughness (15, 20). For 
example, by combining XMT and liquid-phase tracer methods, Brusseau et al. (20) reported that thin-
film fluid–fluid interfacial areas in a sandy soil accounted for more than 90% of the total fluid–fluid 

Figure 1: Interfacial retention processes for per- and polyfluoroalkyl substances (PFAS) in the vadose zone. (a) 
Schematic for PFAS contamination in the vadose zone and groundwater, (b) adsorption of PFAS at air–water 
interfaces arising from bulk capillary water and thin water films in soils under different wetting conditions, (c) mass 
transfer of PFAS between bulk capillary water and thin water films, and (d) an example PFAS molecule (e.g., 
perfluorooctane sulfonic acid (PFOS)), where the colors denote different atoms: gray = carbon, green = fluorine, red 
= oxygen, yellow = sulfur, and white = hydrogen. In panel (d), the molecule consists of a hydrophobic and 
oleophobic tail (the fluorocarbon chain on the left) and a hydrophilic head (the sulfonic acid functional group on 
the right). Figure originally reported in Chen & Guo (25) and used here with permission of the authors and Wiley. 
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interfacial area at water saturations less than 0.5. Furthermore, the fluid–fluid interfacial area measured 
by gas-phase tracer methods is greater than that by liquid-phase tracers, especially under drier 
conditions (20, 30, 77). The significant difference between fluid–fluid interfacial areas measured by liquid- 
and gas-phase tracers is not yet fully understood, although it has been hypothesized that gas-phase 
tracers may access additional air–water interfacial domains (13, 30). Figure 2 provides an example of the 
differences in air–water interfacial areas determined by various methods (13).  

While the prior works quantifying the air–water interfacial area made the distinction between the bulk 
capillary and thin-water-film air–water interfaces, the two types of air–water interfaces are not 
differentiated in most transport model conceptualizations for the retention and transport of interfacially-
active contaminants. These model concepts often build upon two premises that significantly 
underrepresent the role of thin water films: 1) adsorption at the bulk capillary and thin-film air–water 
interfaces can be treated the same; and 2) interfacially-active contaminants in the thin water films and 
the bulk capillary water are in chemical equilibrium. These assumptions may be challenged in the vadose 
zone, especially under drier conditions. Recent theoretical analysis (112) illustrated that the adsorption 
of PFAS at thin-film air–water interfaces can strongly deviate from that at a bulk capillary air–water 
interface due to complex surface forces from the solid surface (i.e., electrostatic and Van der Waals 
forces). Additionally, slow mass transfer in thin water films can greatly reduce the accessibility of thin-
film air–water interfaces for PFAS, and thereby introduce nonequilibrium conditions between thin water 
films and bulk capillary water (26) (Fig. 1). Surface diffusion of the adsorbed PFAS along air–water 
interfaces, while rarely discussed in the hydrology and PFAS literature, was identified as a primary 
mechanism for transferring PFAS mass along the thin water films and between the thin water films and 

 

Figure 2: Air–water interfacial area as a function of water saturation for a sand determined by different 
measurement methods and models. “GPITT” denotes gas-phase interfacial tracer test, “AQITT” denotes aqueous 
interfacial tracer test. “XMT-total” is the total air–water interfacial area (bulk capillary and film-associated air–water 
interfacial area) measured by XMT. “Function” refers to an empirical fit. “Thermodynamic” denotes the results 
computed from the thermodynamic approach (65, 73). “Pore-scale Model” refers to the air–water interfacial area 
computed by the model from Jiang et al. (55).  Figure originally reported in Brusseau (13) and used here with 
permission of the author and Elsevier. 
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bulk water (26). The potentially slow mass transfer along the thin water films may also provide a plausible 
explanation for some of the differences observed between the air–water interfacial areas measured by 
liquid- and gas-tracer methods. Because thin water films account for most air–water interfaces in the 
vadose zone, not representing the above thin-film-mediated fundamental processes may predict 
significantly different field-scale migration of PFAS. 

It is important to point out that the impact of air–water interfaces has been studied previously for the 
transport of interfacially-active constituents before PFAS, such as the attachment and detachment of 
colloidal particles at air–water interfaces (11, 62, 85, 95). The impact of water films on colloidal transport 
was also examined, but the modeled mechanisms are simple—films trap and immobilize colloids with a 
diameter greater than their thickness (11, 106)—without representing any of the complex surface forces. 
Additionally, non-PFAS surfactants in the subsurface were also studied for various applications including 
enhanced oil recovery (36, 80), surfactant-enhanced aquifer remediation (35, 78), and the impact of 
surfactant on unsaturated water flow (31, 51, 97, 98). Somewhat surprisingly, all the earlier surfactant-
related work primarily focused on how surfactants affect fluid flow and dissolution with minimal 
discussion of air–water interfacial adsorption (see more detailed discussion in Guo et al. (45)). In contrast, 
the impact of air–water interfacial adsorption on transport has been a focal point of the recent PFAS 
work.  

In addition to the different interfacial area domains and thin water films, PFAS transport in the vadose 
zone involves several other complexities. First, PFAS interfacial partitioning is sensitive to geochemical 
conditions (e.g., water chemistry and interactions with other interfacially-active constituents). For 
example, the partitioning of PFAS at air–water interfaces can vary greatly under different ionic strengths 
and electrolyte compositions (22, 23, 29, 42, 44, 61, 92, 112). The presence of co-PFAS and other 
interfacially-active solutes may also modify the strength of air–water interfacial partitioning (42, 44, 52, 
93). Second, in addition to accumulating at air–water interfaces, it was also hypothesized that PFAS may 
form supramolecular structures (4) such as aggregated structures, micelles, and vesicles. Although 
micelles and vesicles are unlikely to form due to porewater concentrations at PFAS-contaminated sites 
being much lower than the critical micelle concentrations (16, 44), self-assemblies of different PFAS 
molecules may still occur in complex PFAS mixtures. If present, the movement of these supramolecular 
structures can transport PFAS themselves as well as partitioning mass with the other phases (aqueous 
phase, air–water interfaces, and solid surfaces). Third, strong transient flow dynamics coupled with spatial 
heterogeneity may introduce transport behaviors unique to PFAS due to partitioning to air–water 
interfaces and mass redistribution among the different phases. An example is the amplified acceleration 
of PFAS transport along preferential flow pathways with reduced air–water interfacial retention due to 
greater water saturation collapsing air–water interfaces (110, 111). 

Finally, while most of the current PFAS fate and transport work focuses on anionic PFAS (i.e., 
perfluoroalkyl acids, [PFAAs]), other types of PFAS including cationic, zwitterionic, and neutral 
compounds have been shown to be present at contaminated sites (3, 8, 39, 68, 75, 84, 91). Unlike the 
environmentally persistent PFAAs, some of these PFAS can react under environmental conditions— 
driven by either abiotic or biotic processes—and eventually transform into PFAAs (27, 67, 83). The fate 
and transport of these PFAA “precursors” in the vadose zone remain poorly understood. Additionally, 
some of the neutral PFAS have relatively high vapor pressure and may partition to the gas phase as PFAS 
vapor (2, 17). The migration of vapor-phase PFAS and their partitioning with the other phases represent 
another set of potentially important processes for PFAS transport in the vadose zone (17).  

3. CHALLENGES AND OPPORTUNITIES FOR POROUS MEDIA 
RESEARCH 

While significant progress has been made in recent years to advance our understanding of PFAS fate 
and transport in the vadose zone, many critical areas are underexplored, and substantial challenges 
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remain. Here, we discuss some of the major challenges from both fundamental research and practical 
application perspectives. 

3.1. Quantification of air–water interfacial area 
Various methods including direct imaging-based and indirect tracer-based approaches were developed 
to measure or estimate air–water interfacial area at varying water saturations as discussed in Section 2. 
However, there are still internal inconsistencies among these different methods, e.g., different methods 
may measure different air–water interfacial areas under the same conditions for the same media. 
Furthermore, the characterization of air–water interfacial area has only been done on a very limited 
number of soils. Since air–water interfaces play an important role in controlling the transport of 
interfacially-active substances like PFAS, it is critical to conduct comprehensive investigations of the air–
water interfacial area across a wide range of soils and under different wetting conditions, as recently 
discussed (13). Detailed characterizations of the air–water interfacial area could enable the development 
of process-based models or robust empirical correlations based on more readily available parameters. 
These improved quantifications are expected to significantly enhance the modeling of PFAS fate and 
transport in the vadose zone.  

3.2. Coupled nonlinear multi-physics processes 
The transport of PFAS in soils is a multi-physics problem that involves various nonlinear processes in the 
vadose zone. For example, while surfactant-induced flow may not be significant for many lower 
concentration sites (45, 110), it could modify the transport behavior of PFAS at some of the highly 
contaminated AFFF-impacted sites (45, 103, 110), especially during the early period of PFAS release from 
fire training activities. Additionally, PFAS at contaminated sites are typically present as mixtures of 
numerous individual PFAS and other substances. Initial experimental studies have examined the effects 
of PFAS mixtures and hydrocarbon surfactants on interfacial tension (23, 47, 87, 93, 104) and transport 
(1, 52, 54, 66, 69). The Langmuir model extended for multiple components has been employed to 
describe potential competitive adsorption among different components (7, 42, 52, 54, 66). However, the 
multicomponent Langmuir model is thermodynamically inconsistent unless all components have equal 
maximum adsorption capacities (12, 40, 44, 57, 64). A more rigorous thermodynamically consistent 
model was recently developed for multicomponent adsorption of PFAS (44). However, all the studies to 
date focus primarily on PFAS mixtures with no opposite charges. The potentially synergistic interactions 
among PFAS with opposite charges (e.g., between anionic and cationic PFAS), and how they affect the 
fate and transport of PFAS in the vadose zone remain minimally explored. This is also the case for the 
transport of PFAS in the vapor phase and the transformation of PFAA precursors. In addition to the 
processes discussed above, PFAS transport in the vadose zone is driven by transient and nonlinear 
variably saturated flow, which has been considered one of the most computationally challenging 
processes in hydrology (24, 79). Understanding and quantifying how these processes and their coupling 
control PFAS transport in the vadose zone will require comprehensive experimental and field data, along 
with the development of new mathematical models and numerical methods.  

3.3. Physical chemistry of PFAS interfacial partitioning and mass transfer in 
the thin water films  

While the importance of thin water films has been recognized in porous media literature for fluid 
displacement, they are often considered insignificant for solute transport because they represent a tiny 
fraction of the total fluid volume and hence a negligible amount of the solute mass. This 
conceptualization needs to be revised for PFAS transport because the majority of the PFAS mass may be 
associated with the thin water films (26) due to the significant amounts of air–water interfaces arising 
from the thin water films. Whether these thin water films can be accessed by PFAS, and under what 
conditions they occur, may directly affect PFAS transport in the vadose zone (26, 111). Furthermore, the 
physical chemistry of PFAS partitioning at the air–water interface in the vicinity of a complex solid surface 
may deviate from that at bulk air–water interfaces (112). These detailed processes occurring in thin water 
films are potentially critical, but they are only begun to be explored. 

https://doi.org/10.69631/ipj.v1i2nr35
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3.4. Scale translation & development of practical modelling approaches 
An outstanding challenge prevalent in all subsurface-related problems is the significant disparity 
between the scales at which dominant physical and chemical processes occur (nanometers to 
millimeters) and that at which we make observations and engineering decisions (tens of centimeters to 
meters or larger). This is also the case for PFAS transport in the vadose zone. Ultimately, site 
characterization and remediation applications require models developed for the field scale that can be 
practically applied to real-world contaminated sites. These practical models must be computationally 
efficient and relatively simple to parameterize, which means that they likely cannot account for all the 
complexities discussed in Section 2. We will need to identify the sub-pore and pore-scale processes with 
a first-order impact and approximate them at greater scales. Experimental data and more advanced 
models that represent a greater level of complexities may be used to aid the development of these 
practical models (26).  

We note that the aspects discussed above are not an exhaustive list of important topics related to PFAS 
transport in the vadose zone. Rather, they represent a sample of the topics that we think the porous 
media community may find interesting. Addressing each of these challenges will likely require an 
integrated investigation through experiments, field observations, and development of theory and 
computational models from sub-pore-scale, pore-scale, and greater scales. Just like the prior non-PFAS 
research efforts that helped to prepare us for tackling the PFAS contamination problem, the fate and 
transport research of PFAS will likely generate new knowledge and tools that may find use in addressing 
emerging environmental problems in the future, with the interfacially-active micro- and nano-plastics 
being a potential example.   

4. CONCLUSION  
This commentary provides an overview of the complexities and challenges for understanding and 
quantifying the fate and transport of PFAS in the environment, with a particular focus on the vadose 
zone. We have focused on issues unique to PFAS compared to previous contaminants and how these 
processes manifest in the complex environment of porous media. It is evident that addressing PFAS 
contamination can greatly benefit from the expertise of the porous media community, both from 
fundamental and practical perspectives. This commentary highlights some of the opportunities where 
the porous media community could make substantial contributions. 
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