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ABSTRACT

Porous materials are ubiquitous in various engineering and geological
applications, where their permeability plays a critical role in viscous fluid flow
and transport phenomena. Understanding and characterizing the microscale
properties, the effective hydraulic parameters, and the anisotropy of porous
materials are essential for the accurate modeling and predicting of fluid flow
behavior. This study pursues the Digital Rock Physics approach to retrieve
intrinsic permeability and its evolution in anisotropic configurations of
porous media, which are subjected to pore space alterations. Therefore, we
discuss the development and implementation of a computational framework
based on the finite difference method to solve the pseudo-unsteady Stokes
equations for fluid flow on the pore scale. We present an efficient and highly
parallelized implementation of this numerical method for large voxel-based
data sets originating from different image-based experimental setups. A
comprehensive variety of benchmarks has been conducted to assess and
evaluate the performance of the proposed solver. The solver’s compatibility
with huge domain sizes generated by state-of-the-art imaging techniques is
demonstrated. We investigate an open-cell foam undergoing deformation,
observing that contrary to initial expectations, no anisotropy emerges.
Further, we examine a microfluidic cell experiencing precipitation within its
pore space, resulting in clear anisotropic development during the clogging
process.
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1. INTRODUCTION

Experimental investigations and numerical simulations of fluid flow through porous materials with a large
variety of hydro-mechanical properties are of interest in many fields such as hydrosystems modeling,
groundwater flow and contaminant transport (7, 24), oil reservoir exploitation (4, 14), and industrial
applications such as membranes for water desalination (54). The majority of all investigations operate at
the macro, i.e.,, Darcy scale, and use a coarse-grained continuum theory, which means that individual
pore geometries are not physically resolved. Furthermore, the correlation between viscous fluid flow and
corresponding driving force is assumed to be linear. Porosity ¢ and the intrinsic permeability tensor
k = k;je; @ e; serve as input parameters for these models. Flow regimes where the components of the
permeability tensor k;; do not linearly depend on the driving force are denoted as non-Darcian and are
beyond the scope of this contribution. In general, ¢ and effective hydraulic properties like k of the
porous material are highly sensitive to the distinct porous microstructure. This work primarily centers on
the assessment and determination of the intrinsic permeability tensor k.

1.1. State of the Art

There are numerous experimental, semi-analytical and numerical methodologies for permeability
determination documented in the literature. Given the expense and complexity of flow experiments and
their limitations, as well as the limited applicability of semi-analytical models, it is preferable to assess
these parameters with computer simulations. Advances in three-dimensional (3D) imaging techniques,
such as micro X-Ray Computed Tomography (uXRCT), along with the widespread availability of suitable
devices (45, 62, 63, 64) enable the full resolution of 3D pore geometries. This development allows the
flow problem to be directly solved at the pore scale for various porous materials (11). Moreover, two-
dimensional (2D) data, e.g., generated from images of microfluidic experiments acquired by optical
microscopy, extended in the third spatial direction, can provide further input data (27, 60). Deformation
of the pore space or precipitation and a corresponding decrease in porosity have a direct influence on
the hydro-mechanical properties of a material. Certainly, the process of experimentally determining
anisotropic permeability during an experiment is inherently intricate. Acquiring the complete
permeability tensor k is mostly impossible. Nonetheless, this investigation is particularly significant due
to the non-trivial implications of deformation or precipitation on the principal directions of hydraulic
properties or the material’s anisotropic characteristics. In the literature, numerical solvers are applied to
porous materials undergoing changes in pore space, cf. for geochemical alteration like calcite
precipitation (40), carbonate precipitation for carbon capture and storage applications (30) or external
strain causing deformation (5, 25). Another field of interest is the benchmark of specially designed
materials whereby the permeability can be controlled via the manufacturing parameters on Al-Cu alloys
(9). Due to the limitations of experimentally viable boundary conditions, e.g. undrained boundary
conditions along the cylinder of the sample in conventional triaxial cells, a priori assumption must be
made for the orientation of principal directions of k. The utilization of the aforementioned imaging
techniques combined with computer simulations provides a way for achieving pore-scale resolved
computation of all coefficients of the permeability tensor in a systematic way while circumventing any
priori assumption. However, to determine changes in anisotropy or computing porosity-permeability
relationships, for example, many data points and correspondingly many individual simulations are
required. While various numerical methods like Finite Element Method (FEM) (12, 16), Finite Volume
Method (FVM) (16, 35) and Lattice-Boltzmann Methods (LBM) (12, 36), Smoothed Particle
Hydrodynamics (SPH) (41, 53, 26) or Pore Network Modeling (PNM) (10, 20, 43) have been employed to
simulate pore-scale fluid flow, each method comes with its own set of limitations and advantages. In this
work, we present an efficient and reliable solver for the Stokes equations by implementing a Finite
Difference Method (FDM) based algorithm. In terms of numerical efficiency, the solver is tuned for voxel-
based Cartesian grids as directly obtained from image-based characterization methods like pXRCT or
microfluidics. It stands out as a versatile and well-established choice due to its straightforward
implementation and suitability for complex geometries (1, 8, 21, 34, 42). In addition, FDM is a simple
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approach in terms of the algorithm, has advantages when using regular grids, and can be effectively
parallelized due to its local nature.

1.2. Objective

We aim to develop a resilient and modular open-source tool that advances our comprehension of fluid
flow at the pore scale and addresses the issue of evolving anisotropies in porous media under varying
conditions. The software tool should be able to handle state-of-the-art data sets from pXRCT scans (up
to 20003 voxels) on various computing architectures and should allow for further extensions. Besides
research codes that do not allow for further extensions (only executable of the software available (21))
or commercial solvers such as GeoDict (38), there are common open-source packages such as
OpenFoam, e.g. used in Icardi, Boccardo, Marchisio, Tosco, and Sethi (29); Guibert, Horgue, Debenest,
and Quintard (22), which are extremely flexible, however these are not tuned for the mentioned
demands. Others, such as the tool from the National Institute for Standards and Technology (8), which
is written in Fortran, are not multi-node parallelized. The rationale behind developing a new solver,
despite the existence of current solutions, is multilayered. We present a fully open-source, platform-
independent FDM solver that relies exclusively on the Message Passing Interface (MPI). This solver
operates directly on binarized datasets, making it an essential tool for porous media research. Moreover,
its full integration into existing experimental setups streamlines the research process, promoting a more
cohesive and comprehensive approach to investigating complex phenomena. Since large domains
(state-of-the-art uXRCT data sets comprise up to 10°-10'° voxels) must be simulated, in combination
with several snapshots for time-resolved investigations, the efficiency and performance as well as the
simplicity of the presented FDM solver, is the main focus. The code is written in procedural, functional
C++ and is parallelized with the MPI to run on multi-node, multi-core CPU systems.

1.3. Structure

For these reasons, in addition to the permeability determination derivation (Sec. 2), the mathematical
basics (Sec. 3), and the numerical principles (Sec. 4), it is particularly important for us to address the
implementation and technical aspects (Sec. 5) as well as to provide a detailed validation against various
benchmark cases (Sec. 6). In Section 7, we demonstrate the developed solver’s ability to investigate two
distinct materials characterized by alterations in their pore space. These alterations are anticipated to
result in changes not only in the magnitude of the permeability but also in the permeability anisotropy
ratio. Specifically, our study focuses on an open-cell foam, which defies expectations by not exhibiting
anisotropy as it undergoes deformation. Additionally, we investigate a porous microstructure exposed
to mineral precipitation and subsequently clogging, revealing a development of anisotropy that is
notably influenced by the boundary conditions of the underlying experiment.

2. PERMEABILITY TENSOR AND PRINCIPAL PERMEABILITIES

Permeability is defined as a proportionality factor between the pressure gradient across the examined
sample and fluid fluxes (grad p « q). For homogeneous materials that are known to have isotropic
material behavior, a scalar value is used for the hydraulic permeability. Intrinsic permeability quantifies
viscous losses in continuum-based Darcy-type models. In the generic case, the effective permeability k
is a second order tensor (Eq. 1):

kll k12 k13 (1)
k= kl.] €; ® € = k21 k22 k23 €; ® €;
k31 k32 k33

Here k;; are the components of the coefficient matrix and the Cartesian basis vectors e; build the
tensorial basis through its dyadic product. Boldface is employed to represent tensors and vectors, with
the implicit assumption that equations in index notation abide by Einstein’s summation convention. The
coefficient matrix is symmetric and positive definite (7, 50). In contrast to the experimental determination

of permeability, the numerical approach is capable of computing secondary diagonal elements of k;;,
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which is required for a complete hydraulic characterization. Solving the characteristic polynomial
det(k — AI) = 0 for the eigenvalues 2; (also referred to principal permeabilities k;, k;;, k;;;) we obtain the
permeability tensor in its spectral form (Eq. 2) expressed in a basis system with the principle axes &;, that
are computed by solving (k — A;I) - & = 0. 1 is the second order identity tensor.

3
)
kZZAl éi®éi

The orientation of the principal axes with respect to the basis system e; is computed via the rotation
tensor R = R;;(e; @ e,) whereby & = R-e; and Ry; = cos «(ey, &;) hold. Determining the principal
permeabilities enables categorization of the material into one of the following classes:

1. Isotropy: k; = k;; =k,
Same hydraulic properties in all three principal directions.
2. Orthotropy: k; # k;; A k; # ki N ky # kg
Unique and independent hydraulic properties in three mutually perpendicular directions.

3. Transverse anisotropy: k; # k;; =k, V ky =k #kyy V ko =k # kyy

Same hydraulic properties in one plane. Thus, there are two independent constants in the
permeability tensor. Typical examples of this material are wood, unidirectional fiber composites or
sedimentary sandstones.

3. GOVERNING EQUATIONS ON THE PORE SCALE

Pore scale refers to the length scale at which individual pores and their geometrical features, such as
pore size and shape, are significant. At this scale, the fluid flow pattern is strongly influenced by the
morphology of the pores, as well as the viscous momentum interactions between the fluid phase and
the solid skeleton. Pore-scale simulations are used to study fundamental aspects of porous media flow
as well as the determination of properties used in coarse-grained Darcy scale methods. We are interested
in calculating the intrinsic effective permeability, and therefore consider solving for fluid flow under
stationary creeping flow conditions. Accordingly, the following applies for the Reynolds number (Eq. 3)
and the fundamental equations to be solved are the Stokes equations consisting of the balance of linear
momentum for an incompressible Newtonian fluid (42) (Eq. 4) and the balance of mass (Eq. 5) where p,
Po. V. I, b, V, L are the fluid density, the rest density of the fluid, fluid velocity vector, (constant) dynamic
viscosity of the fluid, pore fluid pressure and the characteristic velocity and length, respectively.

VL
Re =222 1 [-] 3
0 = pdiv(grad v) — grad p 4)
divv =0 ©)

No body force is used. In addition to characteristic properties, indicated by notation in script typestyle,
to scale for physical quantities we denote dimensionless variables and operators by (-)*. It is well known
that solving for Equation 4 and Equation 5 causes problems due to the special role of pressure.
Therefore, this set of governing equations is extended with an artificial time derivative and a so-called
pseudo-unsteady method (42). In this manner, for the numerical implementation, we do not fulfill the
incompressibility condition as an algebraic constraint. Instead, an artificial compressibility formulation
will be considered with an equation of state for the fluid pressure p(p). Hence, we obtain for the
nondimensional equations to be solved (Eq. 6), where c¢* is the dimensionless speed of sound, also
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referred to as the artificial compressibility parameter, and dimensionless time derivatives are indicated
by ()

pr(v*y = % div gr*ad (v*) — grzzd(p*) and (p*) = —c*zd’iﬁv(v*) (6)

This numerical approach solves the steady-state Stokes equations by transforming them into a pseudo-
time dependent problem which is feasible when dealing with low Reynolds number fluid flows in porous
media. It provides a computationally efficient alternative to directly solving the steady-state equations
and it can be shown that the solution converges for t —» o to the steady-state solution of the original
problem (17, 21, 42). The detailed non-dimensionalization with introduction of all quantities,
dimensionless differential operators, and the constitutive equations can be found in Appendix B
(Available online).

4. FINITE DIFFERENCE SCHEME FOR STOKES EQUATIONS

4.1. Simulation parametrization

We introduce the reference length £ =1 vx (voxel) and the reference velocity V = % As the driving
force, a constant pressure gradient across the domain is employed with the initial condition grad(p*) =
é. Furthermore, there is no body force present (b = 0). We require a small Reynolds number and fix

Re = 0.01 and ¢** = 1.5 x 10° as in Bentz and Martys (8). Note that the dimension c** =~ 10° fits well to
the physical ratio of the speed of sound in water to the assumed characteristic velocity of creeping flow
conditions.

4.2. Grid

Space is discretized with a central difference stencil on a regular staggered Marker-And-Cell (MAC) grid
(23), where fluid velocities are stored on the faces of the cells, while the pressure values are stored at the
cell centers. Storing different quantities on different locations within each cell allows for an efficient and
accurate computation of the pressure gradients as well as for the exact modeling of no-penetration
conditions at the fluid-solid interfaces.

4.3. Boundaries in the numerically considered domain and second order

derivatives
For the domain boundaries, we apply periodic boundary conditions to simulate a periodic or repeating
behavior of the physical system in a unit cell. Periodic boundary conditions allow for transverse flow
which is required for anisotropy investigations. However, it is possible to set no-slip conditions on
domain boundaries at lateral surfaces if needed, e.g. to replicate a permeameter experiment. The domain
boundary in the direction of the pressure gradient is always periodic for the flow. Fluid-solid boundaries
correspond to the pixel boundaries of the binary 3D image, and we use no-slip no-penetration boundary
conditions on the interfaces, cf. Figure 1. Second-order derivatives perpendicular to the local flow
direction are analytically determined based on Taylor series approximations. This ensures that the no-

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

III]III B joon

Uy Vksg Vg, Uk Uk,  Vkg Vg, Uk Uk Vky Vkq

€j

l_’ . solid voxel D fluid voxel fluid voxel

er €; considered

Figure 1: Different cases for the identification of the voxel neighborhood to calculate the second-order

- %v\ . . . . . S .
derivatives ( a;k) in the perpendicular directions to the considered flow velocity direction for

i

i,j,k=(1,2,3),(2,3,1),(31,2).

InterPore Journal, Vol. 2, Issue 1, 2025 https://doi.org/10.69631/ipj.v2ilnr39


https://doi.org/10.69631/ipj.v2i1nr39

Krach, et al Page 6 of 21

slip condition is fulfilled on the fluid-solid voxel surfaces. We distinguish six basis cases as in Bentz and
Martys (8) and Gerke et al. (21). In Figure 1 the six distinguished cases are exemplary illustrated for the
flow direction e, and the perpendicular direction e;.

Based on the velocity definitions in Figure 1, the second-order derivatives for the different cases can be

computed by solving a resulting system of equations. For instance, for case 2, we have a set of three

2
aa;?k as follows (Eq. 7):

equations to compute

10v, 10%v, 1 3% 7
Viy X Vi — 55t zm—g e = 0 )
' 2 20x; 8 0x{ 48 0x;
N vy, N 10%v, N 193y, > 0*v, 8 16
=~ _— - — A — = — —_——_—
Vks X Ve T ox T2 0x? T 6 0x? axf 3 3 Ve
+36vk +962vk+ 9 v
Vka T Ve T 0%, T8 0x? 16 0xF

All considered neighborhood cases can be found in the Appendix C (Supplementary Material available
online).

4.4. Permeability computation
In the so-called creeping flow regime, characterized by low Reynolds numbers, Re < 1.0, it is valid to
employ Darcy's law (18) (Eq. 8) to compute the entries of the second order permeability tensor where

h; = —% = —p, is the pressure gradient and 4, 4; are the total and the effective cross-sectional areas
12

with the normal vectors n; | e;.

1 1 1 ) 1 _ (8)
gq=—-k-h - gqe = —kij(ei ® ej) -h.e, =—k;he; with q; = A_f v;d4;
u u U iJom

qQZALfoQdAQ

V9 9
Pin fYﬁ\ m m Pout
- L >

v3 A3 Ag I

|/

porous material with
ey k = kl] e, ® ej
A
e

> =
1 i, ©l
Q3—A—3f03(1A3

3

Figure 2: Illustration of the components of Darcy’s law with the given boundary values for the
pressure pj, and p,,: Used to compute the gradient h;. Volumetric fluxes q,, q; are evaluated
over the respective boundaries (total and effective cross-sectional areas 4;, 4;). In e;-direction,

the volumetric flux is not shown here, but is handled analogously. With given pressure gradients
h; # 0and hy = h, = 0, this represents case c¢) in Equation 9.
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In order to determine the nine entries in the coefficient matrix of the permeability tensor, three numerical
simulations must be performed. The following pressure gradients h; are specified for the different
simulations (Eq. 9), and we measure three fluxes q; for each case.

For case c), all properties are illustrated in Figure 2. By comparing the coefficients (Eq. 8, right), nine
equations are obtained for nine entries of the coefficient matrix of the permeability tensor. A detailed
list of the equations for determining the complete permeability tensor k can be found in Appendix D
(Supplementary Material available online).

5. COMPUTATIONAL ASPECTS

5.1. Processing Input Data

Binarized 3D image data (8-bit file format) distinguishing between solid phase and pore space are
employed as input for the solver. Commonly performed image pre-processing steps, such as denoising
and segmentation, depend on the specific imaging technique and are well-documented in the literature
(e.g., Andra et al. (2, 3); Burger and Burge (13); lassonov, Gebrenegus, and Tuller (28); Russ and Neal (48);
Schliter, Sheppard, Brown, and Wildenschild (51); Tuller, Kulkarni, and Fink (55)). These steps will not be
further elaborated upon here. Depending on the boundary conditions and material, a few pre-processing
steps need to be conducted, such as mirroring for symmetric periodicity, domain cropping, or the
elimination of disconnected pore spaces. This depends upon the specific problem at hand, a topic that
will be delved into within the dedicated application sections. The solver operates under the assumption
that the percolation condition is met, meaning that at least one flow path through the material is
available.

Algorithm 1: Program Flow Stokes Solver
Data: Binarized 3D image data
Initialize MPI;
Domain decomposition, read partial domains, add halos;
Impose initial pressure gradient;
Evaluate neighborhood;
Whiledivv > ¢ do
Compute velocity field v; ; x;
Compute pressure field p; j x;
If i mod CommFrequency = 0then
|  Communicate halos;
end
Compute specific discharge q, see Equation 8;
Evaluate permeability tensor entries ki,j, see Equation 8;

Alqzl,

Compute convergence criterion € = E
3

Write log file;
end
Write pressure and velocity fields;

5.2. Implementation

The solver is completely implemented in C++ and parallelized with OpenMPI (version 4.1.5) (39) to
employ it on distributed memory architectures. Special emphasis is put on keeping the code as simple
as possible. For the domain decomposition, we use a communicator on a Cartesian topology which is
particularly well-suited for regular meshes and 3D geometries. The file IO is fully parallelized and
communication between the ranks is executed by blocking send-receive operations. We work directly
with binary data which is RAM-efficient and allows for a concise implementation. The source code of
POREMAPS is published in Krach, Ruf, and Steeb (32) (Algorithm 1).
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The inherent domain decomposition of MPI optimizes communication by embedding the virtual
topology onto the physical machine as efficiently as possible, but is not necessarily suitable for domains
with high aspect ratios (see Sec. 7.3). Therefore, it is possible to include the desired number of ranks in
each direction directly in the input file.

5.3. Scaling

The scalability of FDM codes has been studied extensively in the literature. Several factors contribute to
weak scalability, including the communication overhead, memory requirements, and load balancing. For
the scaling test we use a 50° voxel regular sphere packing per core and the hardware of the experimental
compute cluster "ehlers” of the EXC 2075 “SimTech” Cluster of Excellence (University of Stuttgart). The
CPU partition is comprised of 8 nodes with 128 cores (2 x 64 cores, AMD EPYC 7702) each and 200 Gb/s
Infiniband interconnect and 2 TB of RAM.

The algorithm is very communication heavy. The influence of increasing core-to-core (Fig. 3, left) or
node-to-node communication (Fig. 3, right) causes a decrease in performance. However, as soon as
communication in all three spatial directions is required (>8 cores), the computed time steps per second
(TPS) are almost constant. Accordingly, the results are satisfactory for the problems at hand. Considering
targeted domain sizes, tests beyond 1024 cores are not significant for our applications and therefore not
considered here.

o0 YWeak Scaling on one node -0 Weak Scaling on multiple nodes
>
70 o5
fam
60 e
o 20
—50 —_—
L s
o 40 wn 15
= = o
301@45 o 5 Lo -
20 o O 0 o o O
5,
10
O T T O T
0 25 50 75 100 125 0 2 4 6 8
number of cores number of nodes
Figure 3: Weak scaling on one node using 1, 2, 4, 8, 16, 32, 64, 128 cores (left) and 1-8 nodes with 128 cores
each (right).

6. BENCHMARKS

The code has been designed to facilitate the study of complex, heterogeneous porous materials. To
justify the application of the solver to diverse domains, a multi-layered benchmark and validation
program is performed with increasing complexity.

1) We validate the code against analytical solutions such as Poiseuille flow and channel flow.

2) Regular sphere packings with different porosities are considered, for which empirical
relationships exist, such as the Kozeny-Carman equation.

3) The procedure for determining the anisotropy and the secondary diagonal elements of the
permeability tensor is validated.
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4) We compare our code with other solvers such as LBM, FEM or mathematical homogenization
for different types of porous materials.

6.1. Hagen-Poiseuille Equation

The laminar creeping flow of a Newtonian fluid through a pipe is a standard benchmark for CFD codes.
The tube is per definition periodic in direction of the pressure gradient. We compare results for different
resolutions and the analytical Hagen-Poiseuille equation presented in Batchelor (6) (Eq. 10) with the
radial coordinate r. The length and radius of the tube are L = 0.01 m and R = 0.001 m. The no-slip
condition on the fluid-solid interface results in v;(r = R) = 0.

vy(r) = él-ATIL (R? —1?) (10)

We compare simulation results obtained for different resolutions (L/dx = {5,10,20,50,100}) and
present the velocity profiles through the center of the tube, see Figure 4, left. All resolutions provide
very similar solutions and are in agreement with the analytical solution (Eq. 10). Figure 4, right, gives
the cross-section through the tube visualizing the radially symmetric velocity pattern.

—-10
10 0 .
67 [
5
5 5% 7
= +— n
‘m § 4OE
24 <40 -
L _ | =
L/dx=5 3.
23 o o
‘G o] L/dX =10 =60 ;
g2 L/dx =20 v -
> X o
O L/dx=50 S $
g % [ /dx =100 4 &0 1
o] & e analytical 3 .
0.0000 0.0002 0.0604 0.0006 0.0|008 0.0010 0 20 40 60 80
Xy — positionin tube [m] voxelsin e; — direction

Figure 4: Resolution dependent velocity profiles through a tube compared to the analytical solution (left) and
velocity pattern in one cross-section (right).

1.0 0
_ - 25_
108 210 0
— <> g Q.OOE
05:0-6’ 520 ;

[ 15
=04 - =
o c 1.0 o
< £ 0z
| 0.2 7240 _g
< s} 05T
0.0 SO ~ 50 >

0.0

0 20 40 60 80 100 0 20 40 60 80 100
voxelsine; — direction

voxel number on channel height [—]

Figure 5: Deviation of the volumetric flux Q from its analytical solution Q,,, according to White and Majdalani
(61) through rectangular cross section channel for different resolutions (left) and corresponding velocity

pattern (right).

6.2. Channel Flow - Rectangular Cross Section

To benchmark slightly more complex structures, we analyze the flow through a rectangular channel
(Fig. 5). It has an advantage over the tube in Section 6.1, since it can be discretized on a cubic lattice
without introducing a discretization error. The benchmark provides information about the resolution at
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which we can expect valid results from the solver. That is of particular interest for the study of microfluidic
experiments in order to resolve the channels sufficiently.

Presented are simulation results for different resolutions (h/dx = {3,5,10,25,50,100}) for the channel
height h. The width of the channel equals b = 2h. Already with a resolution of the channel cross-section
bigger than 5 x 10 voxels, the volumetric flow rate Q = gA corresponds with results for higher
resolutions (errors of 67 %, 1.5 % for rectangular channels with 5 x 3 and 10 x 5 voxels respectively and
below 0.1 % for all higher resolutions). Although the solution depends on the discretization, it converges
already for low resolutions which is essential for the computation of microfluidic domains.

6.3. Regular Sphere Packings

Due to the periodicity of regular sphere packings, the simulation of flow can be reduced to a cubic unit
cell of side-length L. It is therefore possible to simulate representative porous structures without pushing
the domain size too far, and to compare results with semi-analytical estimates. Therefore, we investigate
differently arranged sphere packings (Simple Cubic (SC), Body-Centered Cubic (BCC), Face-Centered
Cubic (FCQ)) for a sweep over a wide range for the porosity ¢ = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. In
addition, all simulations are run at three different resolutions L/dx = {60,100,200}. The results are
compared with permeability estimates kX by the semi-analytical, semi-empirical Kozeny-Carman
equation (15, 31) (Eq. 11) where D, ck. are the sphere diameter and the Kozeny-Carman constant for
which the value cgxc = 180 is set. In addition, the Stokes solution is further compared with results from a
SPH solver that performs simulations based on weakly compressible Navier-Stokes equations (41)

(Fig. 6).

ke _D? ¢° (11)
! cxe (1 — @)?

The results from the two solvers, as well as their comparison with the semi-analytical solution, show an
almost perfect match. It can be concluded that the solver is capable for a wide range of porosities. A
single simulation for a resolution of L/dx = 100 takes an average of 40 minutes on a desktop PC using
4 cores (11t Gen Intel(R) Core(TM) i7-11700KF @ 3.60GHz).

Body — Centered Cubic Face — Centered Cubic Simple Cubic
100 — K€ 100 — K€
O SPH O SPH
10-! O FD60 101 O FD60
0 FD100 ¢ FD100
02| A FD200 10-2| A FD200
T T
‘1073 ‘1073
> >
x x
1074 1074
107° 107°
1076 1076
02 04 06 08 02 04 06 08 02 04 06 08
¢[-] ¢1-] ¢ (-]

Figure 6: Comparison of Stokes solver results of normalized permeabilities with Karman-Cozeny equation
and SPH solver.

6.4. Permeability Tensor and Principal Permeabilities

To compute the anisotropic permeability behavior of various materials, we must not only consider
standard benchmarks as well as those for simple porous materials, but also include benchmarks with
known or adjustable principal directions. For this purpose, we create a cube with 100° voxels
corresponding to 1 mm?3 and place an ellipsoid in the center. It has the following semi-axes in Cartesian
coordinates e; each given in absolute voxel numbers: e; :a = 35;e,:b = 10; e;: ¢ = 35. By using
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this per se periodic structure, one does not have to consider the difficulties that would arise from
symmetrical or translational periodization (22). We rotate the single ellipsoid around e;-axis in 5° steps
for 0° < @ < 90° and compute fluid flow and permeability, whereby the consideration of the
permeability in e, -direction does not play a role in our evaluation for the time being. As a result,
computing the permeability tensor in Equation 1 is simplified to a two-dimensional problem, where the
eigenvalues and principal directions can be represented by an ellipse. Each simulation of a domain
described above allows us to determine one column of the coefficient matrix k;; of the permeability
tensor, or in our simplified case two entries. The other two entries are obtained from the simulation for
which the direction of the imposed pressure gradient relative to the ellipsoid is rotated by 90°. Since the
pressure gradient is always applied by the solver in the e;-direction, the geometry has to be rotated
accordingly, which leads to the exact same result. For instance, considering a rotation of a® = 20° and
consequently a? = —70°, as shown in Figure 7, results in the following coefficient matrix for the

permeability tensor (Eq. 12):

(118 0228 118 0233 . 7 (12)
k”_[0.238 1.76 0.233 1.76] 107 m

And finally, we receive the coefficient matrix for the principal axes system (Eq. 13):

p 110 07 19-7m2 (13)
kij [0 1.84] 107" m

]-107m? ~ |

1.0

20 08
c 3
o
s =
£ 40 0.6
| =y
& 3
c (0]
560 04>
) N
5 N
= [gv]
£
80| 025
ey

0.0

20 40 60 80 0 20 40 60 80
voxels in ez — direction voxels in ez — direction

Figure 7: Normalized magnitude of velocity around an ellipsoid with 20° (left) and 70° inclination (right). The
same pressure gradient in e;-direction is applied, which explains differences in the maximum velocities.
Both figures show a cross-section (e, — e; plane) in the center of the domain.

Numerical calculations yield slightly different values for the two corresponding diagonal elements,
necessitating a symmetrization in a subsequent step (k12 =k, = i(k12 + k21)). In this reduced case,

the angle ¢ between the axes in the original basis system and the principal directions is computed by
Equation 14, which matches very well to what was being specified. The listing of all values can be found
in Table 1 and a selection is visualized in Figure 8.

1, _1( 2kys ) - 2-233-10%m? 100 (14)
PN e+ kas/ 2 0 \176-107m2 + 1.18-107m2) ~ -
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Figure 8: Plots of the coefficient matrices of the permeability tensors for rotationsa = {0°, 10°, 40°}

We observe a clearly recognizable trend for an increase of the permeability k,, and decrease of k35 with
increasing rotation a. Performing the transformation, we obtain the same eigenvalues for the
permeability, except for minimal differences, which can be explained by the numerical aspects and issues
related to discretization. The calculated angles exhibit only small deviations (< 0.5°) from the
geometrically prescribed angles for all inclinations of the ellipsoid. In Table 1 all values are listed in an
organized manner. For this comparably straightforward benchmark geometry, we can demonstrate the
overall effectiveness of the workflow.

Table 1: Permeabilities, principal permeabilities and principal directions for all simulations.

a [°] 0 5 10 15 20 25 30 35 40 45
ks [[107"m?] 1.85 1.85 1.83 1.80 1.76 1.72 1.66 1.6 1.54 1.47
k,, [[1077m?] 1.09 1.10 1.12 1.14 1.18 1.23 1.29 1.35 1.41 1.47
k,; [ 1077m?] 0.00 0.06 0.12 0.18 0.23 0.28 0.32 0.34 0.36 0.37
ky;  [11077m?] 1.85 1.85 1.85 1.85 1.84 1.84 1.84 1.84 1.84 1.84
ki, [[1077m?] 1.09 1.10 1.10 1.10 1.10 1.1 1.1 1.1 1.1 1.1

] [°] 0.06 4.73 9.53 14.5 19.5 24.6 29.6 34.7 39.9 45.0

6.5. Testing Against Other Codes

6.5.1. Regular thin, porous media (2D microfluidic devices)

In Section 7.3 we investigate structures that have a small thickness compared to their lateral dimensions.
The dimensions of such thin (“2D") porous materials, which are often used in microfluidic characterization
of porous media flow, pose problems for numerical methods in terms of efficiency and convergence. To
ensure the applicability of the solver for such requirements, we compare it with benchmarks for regular
2D porous materials described in (56). The dimension of the simulated unit cell is T mm x 0.091 mm x
1 mm and is discretized by 250 x 27 x 250 voxels, with a solid frame of two thick voxels each, included
in the e,-direction. All results align with the solutions provided in the benchmark paper (Table 2).

To illustrate the per-
formance of the solver, the
SPH solver used in Wagner
et al. (56) needs approx-

Table 2: Comparison with different types of pore-scale solvers (SPH,
FEM, LBM from Wagner et al. (56)) for thin porous media samples and
comparison of computed permeabilities.

) Radius ()] k4, range (56) k1, (POREMAPS)
imately 17 hours on a 4- g35mm 062 229 —26.7-10°m? 26.1-10"1°m?
core CPU, whereas the  g40mm 050 164 —17.7-10"°m? 17.5-10"°m
presented Stokes solver at  g45mm 036 7.54 —8.59-10~1m? 8.08-10"°m
the same resolutionandon  047mm 031 3.62 —5.35-10"'°m? 3.83-107°m
same  hardware takes 0.49 mm 0.25 0.46 —0.54-1071%m?2 0.39-1071%m
approximately 10 minutes

(Table 3).

2
2
2
2
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Table 3: Properties for different types of 3D benchmarks (range of LBM results from Saxena et al. (49)) and
comparison of computed permeabilities.

Sample ¢ Voxelsize Domain size k44 (49) k1, (POREMAPS)
Sphere 0.34 7.0um 788 x 791 x 793 2438 —2.903-1071m? 2.512-10"1°m?
packing

Berea 0.18 2.114um  1024x1024x1024 4.569 — 6.889-10713m? 5.772-10"3m?

Fontainebleau 0.09 2.072pum 1024 x1024x1024 0.642 —1.411-10"3m?  9.200- 10~ **m?

6.5.2. Irregular sphere packings and porous rock

There are several benchmark papers providing suitable geometries (2, 3, 49). The solver is compared with
different 3D benchmarks where permeabilities are computed with, among others, different LBM solvers
(49). We computed the sphere packing, one Berea sandstone (Rock7), and one Fontainebleau sandstone
(Rock3) sample. The characteristics of the geometries and a comparison of the computed permeabilities
kq, are summarized in Table 3. The results for k,; are in accordance with the solutions determined by
LBM and thus we consider the benchmarking to be successful and completed.

7. APPLICATIONS

In this section, three different application scenarios are shown to demonstrate the capabilities of
POREMAPS. We discuss the range of the solver in terms of (1) the maximum size of the individual
simulations and the possibility of (2) investigations into transient effects using simulation campaigns.
The solver is applied in areas where the complete permeability tensor cannot be determined
experimentally and where the computational effort is substantial. The corresponding domain sizes and
computational times are summarized in Table 4.

Table 4: Overview of computation times of considered application examples.

Domain size Hardware and resources Computation time
Example 1 “Berea” and “Sphere packing” (Sect. 6.5 and Sect. 7.1)
2048 x 2048 x 2048 SimTech Cluster 2, Nodes 36 hrs.
1576 x 1582 x 1586 SimTech Cluster 2, Nodes 24 hrs.
3152 x 3164 x 3172 SimTech Cluster 4, Nodes ~80 hrs.
Example 2 “Open-cell foam (€33 = 0.0 and £33 = —0.5)” (Sect. 7.2)
800 x 800 x 1186 SimTech Cluster 4, Nodes 8 hrs.
800 x 800 x 526 SimTech Cluster 4, Nodes 3 hrs.
Example 3 “Calcite precipitation” (Sect. 7.3)
12 %1200 x 1200 SimTech Cluster 1, Node 0.5-2 hrs.

7.1. Characterization of Large 3D Images

The solver is primarily designed to analyze large, high-resolved 3D images of porous materials typically
acquired by 3D imaging methods such as pXRCT (45, 52, 64) (Fig. 9). This allows the digital
characterization of porous materials with regard to hydraulic permeability and can be integrated into
the imaging workflow as a subsequent standard procedure. In uXRCT imaging, the resolution of REVs is
often represented by 3D images with more than 10003 voxels. High-resolution X-ray flat panel detectors
with approximately 3000 x 3000 pixels and more are no longer uncommon. This means that, in terms of
the reconstructed 3D images, they can contain approximately 30003 voxels. With appropriate hardware
(large memory), the presented code is capable of handling such large 3D images.

To demonstrate this, we use the 3D image of Berea sandstone (1024 x1024x 1024 voxel) and the sphere

packing (788 x 791 x 793 voxel) from Saxena et al. (49), both of which were previously used in the

benchmark tests, cf. Table 3. Both data sets are mirrored in all three spatial directions resulting in 2048

x 2048 x 2048 voxels and 1576 x 1582 x 1586 voxels. The corresponding computation times are given
Algs|

in Table 4 for a convergence criterion of € = Tl < 107°. The latter data set is mirrored a second time
3
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in each direction resulting in 3152 x 3164 x
3172 voxels (equals 64 times the original
geometry), cf. Figure 9. Due to parallelized IO
routines, this can be implemented using 4
nodes, with a total of 512 cores, requiring a
total of ® 1.5 TB RAM. This encompasses
uXRCT data produced by state-of-the-art high
resolution detectors and enables processing
without information loss through binning,
using a manageable amount of resources.

3172 vx

7.2. Deformation-dependent
Permeability and Permeability
Anisotropy—Uniaxial
Compression of an Open-Cell
Foam

The deformation-dependent permeability of
open-cell foams has been studied
experimentally by several researchers. Various
theoretical models have been proposed for
predicting the effect of strain on permeability,
cf. Dawson, Germaine, and Gibson (19);
Markert (37) and therein cited literature. In
experimental studies, uniaxial compression loading is often imposed on a foam sample and the
deformation-dependent permeability is measured in one direction, often in the same direction as the
imposed load. Measuring the permeability in different directions is technically challenging. Using non-
destructive pXRCT imaging is a potential approach to overcome this problem, provided the fluid-solid
interaction is negligible and the foam can be considered rigid at a given deformation state. In this case,
the foam structure is imaged under different loading conditions in 3D. The time-series of 3D images,
followed by subsequent post-processing, provides the opportunity to conduct virtual experiments and
characterize the structure and deformation-dependency in more detail.

3152 vx 3164 vx

Figure 9: Illustration of the large sized computable
domains using the example of a double-mirrored 3D
image of a sphere packing (blue) with originally 788 x
791 x 793 voxel (yellow). The original 3D image (yellow)
is taken from Saxena et al. (49).

This is exemplary shown for an open-cell Polyurethane (PUR) cylindrical foam sample with 10 PPI
subjected to uniaxial compressive loading and imaged at discrete loading states (engineering
compressive strain &35 = —{0.0,0.1,0.2,0.3,0.4,0.5}), see Figure 10a. For the imaging, the system
presented in Ruf and Steeb (45) along with that from Ruf, Lee, and Steeb (44) was employed. For the
series of 3D images, the permeability tensor is determined using cubic sub volumes of size 800 x 800x
526-1186 voxel with a uniform voxel size of 74.8 um. The permeability tensor (three simulations) for each
loading condition is determined in = 3-8 hrs. The permeability in axial direction (e;) and radial directions
(eq, ;) and the principal values are shown in Figure 10b over the applied strain (left) and the foam
porosity (right). At all deformation states, the radial permeabilities k,, and k,, are quite similar and differ
slightly from the axial permeability k55 of the cylindrical sample. In general, it can be said that the
permeability anisotropy does not correlate in a systematic way, neither with the strain nor with the
porosity, which contradicts the expectation.

7.3. Anisotropy development during calcite precipitation

Predicting pore-scale clogging phenomena in heterogeneous porous materials presents a significant
challenge. These processes can occur inadvertently, and if they cannot be prevented, there is a need to
manage them, such as in the case of clogged filters. Conversely, these processes might also be
intentional, such as in the case of blocking subsurface cracks. We focus our investigation on a specific
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Figure 10: Deformation-dependent permeability and anisotropy of an open-cell PUR foam sample (10 PPI)
based on pXRCT images (46, 47). a) Segmented pXRCT images for different uniaxial compression loading
states. b) Determined permeabilitiesin e, -, e,-, es-direction and principle permeabilities.

scenario where pore spaces gradually become obstructed due to a chemically induced precipitation
process. The experimental data set (60) serves as the basis for our study, and the details of data
acquisition and the experimental arrangement are elaborated upon in Weinhardt et al. (58); Weinhardt
(57); Weinhardt, Deng, Hommel, et al. (59). We have already described this procedure of investigation to
a smaller extent as a proof of concept in Krach and Steeb (33).

Unlike the experimental procedure, we can determine the permeability k55 in the e;-direction (aligned
with the pressure gradient in the experiment) and the permeability k,, in the e,-direction (perpendicular
to the pressure gradient) at various time steps during the experiment. This investigation includes 137
individual simulations, where for 57 time steps the domain is percolating in both directions, resulting in
2 simulations per time step. In the e;-direction, a flow path remains unblocked for a longer time and 80
time steps are investigated. A simulation (12 x 1200 x 1200 voxel) typically runs for an average of 2
hours on a node using 121 CPU-cores. We explicitly fix the domain decompositionto 1 x 11 x 11 ranks.

Two-dimensional image data is used as basis and replicated in the third spatial direction to simulate the
original dimensions of the microfluidic experiment in 3D. We are particularly interested in a preferential
flow path that forms in the upper region of the domain and stays almost free during the experiment.
Accordingly, a subdomain is extracted. In the course of the experiment, more and more precipitate is
accumulated in the domain, thus increasing the solid fraction and decreasing porosity and permeability.
Figure 11 shows the geometries (black = solid body, gray = precipitate) and the velocity patterns. Note
that we simulate the same domain twice with pressure gradient from left to right (e;-direction: Fig. 11,
center column) and pressure gradient from top to bottom (e,-direction: Fig. 11, right column). The
simulations include all the time steps of the experiment up to the point where there is no flow path
through the porous material at all. The material clogs first in the e, -direction, at a porosity of
¢ = 27.7 %, while a flow path remains open in the e;-direction at this point.
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Figure 11: Geometry and flow patterns at different times (increasing from top to bottom) during the experiment.
The left column represents the input domain (black - solid columns, gray - precipitate). For the simulations, the
precipitates are attributed to the solid. Columns 2 and 3 show the normalized absolute velocities based on
pressure gradientsin e3-and e,-direction.
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Figure 12: Normalized eigenvalues of the permeability tensor (ky; , k;;; ) over the course of a decreasing
porosity (left) and the relation of both (k;;; /k;; ) illustrating a clear development of anisotropic hydraulic
properties (right).

The focus of the analysis lies in the development of the degree of anisotropy in the course of the
experiment. For this purpose, the eigenvalues of the 2 x 2 permeability tensor are determined.
Figure 12 shows the eigenvalues k;; and k;;; plotted against the porosity ¢. The principal permeability
k;; decreases significantly faster than k;;;. The degree of anisotropy, represented by the ratio of the

eigenvalues :i (Fig. 12, right), increases in a stepwise linear fashion during the experiment, reaching a
111

ratio of 6. Thus, this analysis provides an additional benefit that experiments cannot provide.

8. DISCUSSION AND CONCLUSION

The present study introduces POREMAPS, an FDM solver designed for solving steady-state
incompressible Stokes equations using the artificial compressibility method. This solver was developed
specifically to compute the permeability tensor k of arbitrary porous materials. Through a series of
benchmarks with increasing complexity, we have demonstrated the solver’s robustness and efficiency in
handling a wide range of porosities 0.1 < ¢ < 0.9, showcasing its ability to efficiently and reliably
process different material types.

Three applications were investigated to further illustrate the solver’s versatility and performance. The
first application involves large-scale simulations, with voxel numbers reaching > 30003 (see Sect. 7.1).
This highlights the solver's capacity to manage computationally intensive problems. Additionally, we
conducted two extensive simulation campaigns (Sect. 7.2 and 7.3). The first campaign focused on the
permeability of open-cell foams under mechanical deformation. Our results indicate that no significant
anisotropy in permeability develops even under substantial strain €55 = —0.5, although we observe a
reduction in permeability by approximately one order of magnitude. This finding is noteworthy, as we
originally expected anisotropy to arise under such conditions. The second campaign studied porous
materials prone to clogging, where we quantified the resulting anisotropy ratio k;;; /k;; . In this context,
POREMAPS provided insights that would be difficult to achieve experimentally, highlighting one of its
key advantages: offering a computational framework to investigate material behavior free from
experimental limitations.

Despite the computational and hardware demands associated with large-scale simulations, the solver
remains relatively efficient. Furthermore, its ease of use, coupled with seamless integration with
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experimental imaging data, positions it as a valuable tool for a wide range of applications in material
science and fluid dynamics. We believe that the solver holds significant potential for future research,
particularly in areas where experimental approaches may be impractical or limited by scale, which is
often the case with anisotropy studies.

STATEMENTS AND DECLARATIONS

Supplementary Material

Information on the Nomenclature, Nondimensional balance equations, Discrete equations and fluid-
solid boundary conditions, and the Permeability computation for this paper can be found in the
Supplementary Material, which is available online.
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