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ABSTRACT 
Porous materials are ubiquitous in various engineering and geological 
applications, where their permeability plays a critical role in viscous fluid flow 
and transport phenomena. Understanding and characterizing the microscale 
properties, the effective hydraulic parameters, and the anisotropy of porous 
materials are essential for the accurate modeling and predicting of fluid flow 
behavior. This study pursues the Digital Rock Physics approach to retrieve 
intrinsic permeability and its evolution in anisotropic configurations of 
porous media, which are subjected to pore space alterations. Therefore, we 
discuss the development and implementation of a computational framework 
based on the finite difference method to solve the pseudo-unsteady Stokes 
equations for fluid flow on the pore scale. We present an efficient and highly 
parallelized implementation of this numerical method for large voxel-based 
data sets originating from different image-based experimental setups. A 
comprehensive variety of benchmarks has been conducted to assess and 
evaluate the performance of the proposed solver. The solver’s compatibility 
with huge domain sizes generated by state-of-the-art imaging techniques is 
demonstrated. We investigate an open-cell foam undergoing deformation, 
observing that contrary to initial expectations, no anisotropy emerges. 
Further, we examine a microfluidic cell experiencing precipitation within its 
pore space, resulting in clear anisotropic development during the clogging 
process. 
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1. INTRODUCTION 
Experimental investigations and numerical simulations of fluid flow through porous materials with a large 
variety of hydro-mechanical properties are of interest in many fields such as hydrosystems modeling, 
groundwater flow and contaminant transport (7, 24), oil reservoir exploitation (4, 14), and industrial 
applications such as membranes for water desalination (54). The majority of all investigations operate at 
the macro, i.e., Darcy scale, and use a coarse-grained continuum theory, which means that individual 
pore geometries are not physically resolved. Furthermore, the correlation between viscous fluid flow and 
corresponding driving force is assumed to be linear. Porosity 𝜙𝜙 and the intrinsic permeability tensor 
𝐤𝐤 =  𝑘𝑘𝑖𝑖𝑖𝑖𝐞𝐞𝑖𝑖 ⊗ 𝐞𝐞𝑗𝑗 serve as input parameters for these models. Flow regimes where the components of the 
permeability tensor 𝑘𝑘𝑖𝑖𝑖𝑖 do not linearly depend on the driving force are denoted as non-Darcian and are 
beyond the scope of this contribution. In general, 𝜙𝜙 and effective hydraulic properties like 𝐤𝐤 of the 
porous material are highly sensitive to the distinct porous microstructure. This work primarily centers on 
the assessment and determination of the intrinsic permeability tensor 𝐤𝐤.  

1.1. State of the Art 
There are numerous experimental, semi-analytical and numerical methodologies for permeability 
determination documented in the literature. Given the expense and complexity of flow experiments and 
their limitations, as well as the limited applicability of semi-analytical models, it is preferable to assess 
these parameters with computer simulations. Advances in three-dimensional (3D) imaging techniques, 
such as micro X-Ray Computed Tomography (µXRCT), along with the widespread availability of suitable 
devices (45, 62, 63, 64) enable the full resolution of 3D pore geometries. This development allows the 
flow problem to be directly solved at the pore scale for various porous materials (11). Moreover, two-
dimensional (2D) data, e.g., generated from images of microfluidic experiments acquired by optical 
microscopy, extended in the third spatial direction, can provide further input data (27, 60). Deformation 
of the pore space or precipitation and a corresponding decrease in porosity have a direct influence on 
the hydro-mechanical properties of a material. Certainly, the process of experimentally determining 
anisotropic permeability during an experiment is inherently intricate. Acquiring the complete 
permeability tensor 𝐤𝐤 is mostly impossible. Nonetheless, this investigation is particularly significant due 
to the non-trivial implications of deformation or precipitation on the principal directions of hydraulic 
properties or the material’s anisotropic characteristics. In the literature, numerical solvers are applied to 
porous materials undergoing changes in pore space, cf. for geochemical alteration like calcite 
precipitation (40), carbonate precipitation for carbon capture and storage applications (30) or external 
strain causing deformation (5, 25). Another field of interest is the benchmark of specially designed 
materials whereby the permeability can be controlled via the manufacturing parameters on Al-Cu alloys 
(9). Due to the limitations of experimentally viable boundary conditions, e.g. undrained boundary 
conditions along the cylinder of the sample in conventional triaxial cells, a priori assumption must be 
made for the orientation of principal directions of 𝐤𝐤. The utilization of the aforementioned imaging 
techniques combined with computer simulations provides a way for achieving pore-scale resolved 
computation of all coefficients of the permeability tensor in a systematic way while circumventing any 
priori assumption. However, to determine changes in anisotropy or computing porosity-permeability 
relationships, for example, many data points and correspondingly many individual simulations are 
required. While various numerical methods like Finite Element Method (FEM) (12, 16), Finite Volume 
Method (FVM) (16, 35) and Lattice-Boltzmann Methods (LBM) (12, 36), Smoothed Particle 
Hydrodynamics (SPH) (41, 53,  26) or Pore Network Modeling (PNM) (10, 20, 43) have been employed to 
simulate pore-scale fluid flow, each method comes with its own set of limitations and advantages. In this 
work, we present an efficient and reliable solver for the Stokes equations by implementing a Finite 
Difference Method (FDM) based algorithm. In terms of numerical efficiency, the solver is tuned for voxel-
based Cartesian grids as directly obtained from image-based characterization methods like µXRCT or 
microfluidics. It stands out as a versatile and well-established choice due to its straightforward 
implementation and suitability for complex geometries (1, 8, 21, 34, 42). In addition, FDM is a simple 
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approach in terms of the algorithm, has advantages when using regular grids, and can be effectively 
parallelized due to its local nature. 

1.2. Objective 
We aim to develop a resilient and modular open-source tool that advances our comprehension of fluid 
flow at the pore scale and addresses the issue of evolving anisotropies in porous media under varying 
conditions. The software tool should be able to handle state-of-the-art data sets from µXRCT scans (up 
to 20003 voxels) on various computing architectures and should allow for further extensions. Besides 
research codes that do not allow for further extensions (only executable of the software available (21)) 
or commercial solvers such as GeoDict (38), there are common open-source packages such as 
OpenFoam, e.g. used in Icardi, Boccardo, Marchisio, Tosco, and Sethi (29); Guibert, Horgue, Debenest, 
and Quintard (22), which are extremely flexible, however these are not tuned for the mentioned 
demands. Others, such as the tool from the National Institute for Standards and Technology (8), which 
is written in Fortran, are not multi-node parallelized. The rationale behind developing a new solver, 
despite the existence of current solutions, is multilayered. We present a fully open-source, platform-
independent FDM solver that relies exclusively on the Message Passing Interface (MPI). This solver 
operates directly on binarized datasets, making it an essential tool for porous media research. Moreover, 
its full integration into existing experimental setups streamlines the research process, promoting a more 
cohesive and comprehensive approach to investigating complex phenomena. Since large domains 
(state-of-the-art µXRCT data sets comprise up to 109–1010 voxels) must be simulated, in combination 
with several snapshots for time-resolved investigations, the efficiency and performance as well as the 
simplicity of the presented FDM solver, is the main focus. The code is written in procedural, functional 
C++ and is parallelized with the MPI to run on multi-node, multi-core CPU systems. 

1.3. Structure 
For these reasons, in addition to the permeability determination derivation (Sec. 2), the mathematical 
basics (Sec. 3), and the numerical principles (Sec. 4), it is particularly important for us to address the 
implementation and technical aspects (Sec. 5) as well as to provide a detailed validation against various 
benchmark cases (Sec. 6). In Section 7, we demonstrate the developed solver’s ability to investigate two 
distinct materials characterized by alterations in their pore space. These alterations are anticipated to 
result in changes not only in the magnitude of the permeability but also in the permeability anisotropy 
ratio. Specifically, our study focuses on an open-cell foam, which defies expectations by not exhibiting 
anisotropy as it undergoes deformation. Additionally, we investigate a porous microstructure exposed 
to mineral precipitation and subsequently clogging, revealing a development of anisotropy that is 
notably influenced by the boundary conditions of the underlying experiment. 

2. PERMEABILITY TENSOR AND PRINCIPAL PERMEABILITIES 
Permeability is defined as a proportionality factor between the pressure gradient across the examined 
sample and fluid fluxes (grad 𝑝𝑝 ∝  𝐪𝐪). For homogeneous materials that are known to have isotropic 
material behavior, a scalar value is used for the hydraulic permeability. Intrinsic permeability quantifies 
viscous losses in continuum-based Darcy-type models. In the generic case, the effective permeability 𝐤𝐤 
is a second order tensor (Eq. 1): 

𝐤𝐤 = 𝑘𝑘𝑖𝑖𝑖𝑖  𝐞𝐞𝑖𝑖 ⊗ 𝐞𝐞𝑗𝑗 = �
𝑘𝑘11 𝑘𝑘12 𝑘𝑘13
𝑘𝑘21 𝑘𝑘22 𝑘𝑘23
𝑘𝑘31 𝑘𝑘32 𝑘𝑘33

� 𝐞𝐞𝑖𝑖 ⊗ 𝐞𝐞𝑗𝑗 
(1) 

Here 𝑘𝑘𝑖𝑖𝑖𝑖  are the components of the coefficient matrix and the Cartesian basis vectors 𝐞𝐞𝑖𝑖  build the 
tensorial basis through its dyadic product. Boldface is employed to represent tensors and vectors, with 
the implicit assumption that equations in index notation abide by Einstein’s summation convention. The 
coefficient matrix is symmetric and positive definite (7, 50). In contrast to the experimental determination 
of permeability, the numerical approach is capable of computing secondary diagonal elements of 𝑘𝑘𝑖𝑖𝑖𝑖 , 
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which is required for a complete hydraulic characterization. Solving the characteristic polynomial  
det(𝐤𝐤 − 𝜆𝜆𝐈𝐈) = 0 for the eigenvalues λ𝑖𝑖 (also referred to principal permeabilities 𝑘𝑘𝐼𝐼 , 𝑘𝑘𝐼𝐼𝐼𝐼 , 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼) we obtain the 
permeability tensor in its spectral form (Eq. 2) expressed in a basis system with the principle axes 𝐞𝐞�𝑖𝑖 , that 
are computed by solving (𝐤𝐤 − 𝜆𝜆𝑖𝑖𝐈𝐈) ⋅ 𝐞𝐞�𝑖𝑖 = 𝟎𝟎. 𝐈𝐈 is the second order identity tensor.  

𝐤𝐤 = �λ𝑖𝑖  
3

𝑖𝑖=1

𝐞𝐞�𝑖𝑖 ⊗ 𝐞𝐞�𝑖𝑖 
(2) 

The orientation of the principal axes with respect to the basis system 𝐞𝐞𝑖𝑖 is computed via the rotation 
tensor 𝐑𝐑 = 𝑅𝑅𝑖𝑖𝑖𝑖(𝐞𝐞𝑖𝑖 ⊗ 𝐞𝐞𝑘𝑘)  whereby 𝐞𝐞�𝑖𝑖 = 𝐑𝐑 ⋅ 𝐞𝐞𝑖𝑖  and 𝑅𝑅𝑘𝑘𝑘𝑘 = cos∢(𝐞𝐞𝑘𝑘 , 𝐞𝐞�𝑖𝑖)  hold. Determining the principal 
permeabilities enables categorization of the material into one of the following classes: 

1. Isotropy: 𝑘𝑘𝐼𝐼 = 𝑘𝑘𝐼𝐼𝐼𝐼 = 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 
 
Same hydraulic properties in all three principal directions. 
 

2. Orthotropy: 𝑘𝑘𝐼𝐼 ≠ 𝑘𝑘𝐼𝐼𝐼𝐼  ⋀  𝑘𝑘𝐼𝐼 ≠ 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼  ⋀  𝑘𝑘𝐼𝐼𝐼𝐼 ≠ 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 
 
Unique and independent hydraulic properties in three mutually perpendicular directions. 
 

3. Transverse anisotropy: 𝑘𝑘𝐼𝐼 ≠ 𝑘𝑘𝐼𝐼𝐼𝐼 = 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼  ⋁  𝑘𝑘𝐼𝐼 = 𝑘𝑘𝐼𝐼𝐼𝐼 ≠ 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼  ⋁  𝑘𝑘𝐼𝐼 = 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 ≠ 𝑘𝑘𝐼𝐼𝐼𝐼   

Same hydraulic properties in one plane. Thus, there are two independent constants in the 
permeability tensor. Typical examples of this material are wood, unidirectional fiber composites or 
sedimentary sandstones. 

3. GOVERNING EQUATIONS ON THE PORE SCALE 
Pore scale refers to the length scale at which individual pores and their geometrical features, such as 
pore size and shape, are significant. At this scale, the fluid flow pattern is strongly influenced by the 
morphology of the pores, as well as the viscous momentum interactions between the fluid phase and 
the solid skeleton. Pore-scale simulations are used to study fundamental aspects of porous media flow 
as well as the determination of properties used in coarse-grained Darcy scale methods. We are interested 
in calculating the intrinsic effective permeability, and therefore consider solving for fluid flow under 
stationary creeping flow conditions. Accordingly, the following applies for the Reynolds number (Eq. 3) 
and the fundamental equations to be solved are the Stokes equations consisting of the balance of linear 
momentum for an incompressible Newtonian fluid (42) (Eq. 4) and the balance of mass (Eq. 5) where 𝜌𝜌, 
𝜌𝜌0, 𝐯𝐯, µ, 𝑝𝑝, 𝒱𝒱, ℒ are the fluid density, the rest density of the fluid, fluid velocity vector, (constant) dynamic 
viscosity of the fluid, pore fluid pressure and the characteristic velocity and length, respectively. 

Re =
𝜌𝜌0𝒱𝒱ℒ
𝜇𝜇

< 1   [−] (3) 

𝟎𝟎 = 𝜇𝜇 div(grad 𝐯𝐯) − grad 𝑝𝑝 (4) 

div 𝐯𝐯 = 0 (5) 

No body force is used. In addition to characteristic properties, indicated by notation in script typestyle, 
to scale for physical quantities we denote dimensionless variables and operators by (∙)∗. It is well known  
that solving for Equation 4 and Equation 5 causes problems due to the special role of pressure. 
Therefore, this set of governing equations is extended with an artificial time derivative and a so-called 
pseudo-unsteady method (42). In this manner, for the numerical implementation, we do not fulfill the 
incompressibility condition as an algebraic constraint. Instead, an artificial compressibility formulation 
will be considered with an equation of state for the fluid pressure 𝑝𝑝(𝜌𝜌) . Hence, we obtain for the 
nondimensional equations to be solved (Eq. 6), where 𝑐𝑐∗  is the dimensionless speed of sound, also 
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referred to as the artificial compressibility parameter, and dimensionless time derivatives are indicated 
by (∙ ⃰)∙. 

 (6) 

This numerical approach solves the steady-state Stokes equations by transforming them into a pseudo-
time dependent problem which is feasible when dealing with low Reynolds number fluid flows in porous 
media. It provides a computationally efficient alternative to directly solving the steady-state equations 
and it can be shown that the solution converges for 𝑡𝑡 → ∞ to the steady-state solution of the original 
problem (17, 21, 42). The detailed non-dimensionalization with introduction of all quantities, 
dimensionless differential operators, and the constitutive equations can be found in Appendix B 
(Available online). 

4. FINITE DIFFERENCE SCHEME FOR STOKES EQUATIONS 
4.1. Simulation parametrization 
We introduce the reference length ℒ = 1 vx (voxel) and the reference velocity 𝒱𝒱 = 1vx

s
. As the driving 

force, a constant pressure gradient across the domain is employed with the initial condition gra ⃰d(𝑝𝑝∗) =
1
vx

. Furthermore, there is no body force present (𝐛𝐛 = 𝟎𝟎 ). We require a small Reynolds number and fix 

Re = 0.01 and 𝑐𝑐∗2 = 1.5 × 106 as in Bentz and Martys (8). Note that the dimension 𝑐𝑐∗2 ≈ 106 fits well to 
the physical ratio of the speed of sound in water to the assumed characteristic velocity of creeping flow 
conditions. 

4.2. Grid 
Space is discretized with a central difference stencil on a regular staggered Marker-And-Cell (MAC) grid 
(23), where fluid velocities are stored on the faces of the cells, while the pressure values are stored at the 
cell centers. Storing different quantities on different locations within each cell allows for an efficient and 
accurate computation of the pressure gradients as well as for the exact modeling of no-penetration 
conditions at the fluid-solid interfaces. 

4.3. Boundaries in the numerically considered domain and second order 
derivatives 

For the domain boundaries, we apply periodic boundary conditions to simulate a periodic or repeating 
behavior of the physical system in a unit cell. Periodic boundary conditions allow for transverse flow 
which is required for anisotropy investigations. However, it is possible to set no-slip conditions on 
domain boundaries at lateral surfaces if needed, e.g. to replicate a permeameter experiment. The domain 
boundary in the direction of the pressure gradient is always periodic for the flow. Fluid-solid boundaries 
correspond to the pixel boundaries of the binary 3D image, and we use no-slip no-penetration boundary 
conditions on the interfaces, cf. Figure 1. Second-order derivatives perpendicular to the local flow 
direction are analytically determined based on Taylor series approximations. This ensures that the no-

 

Figure 1: Different cases for the identification of the voxel neighborhood to calculate the second-order 

derivatives �∂
2𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖

2 � in the perpendicular directions to the considered flow velocity direction for 

 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = (1, 2, 3), (2, 3, 1), (3, 1, 2). 
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slip condition is fulfilled on the fluid-solid voxel surfaces. We distinguish six basis cases as in Bentz and 
Martys (8) and Gerke et al. (21). In Figure 1 the six distinguished cases are exemplary illustrated for the 
flow direction 𝐞𝐞𝑘𝑘 and the perpendicular direction 𝐞𝐞𝑖𝑖 .  

Based on the velocity definitions in Figure 1, the second-order derivatives for the different cases can be 
computed by solving a resulting system of equations. For instance, for case 2, we have a set of three 

equations to compute ∂
2𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖

2  as follows (Eq. 7): 

𝑣𝑣𝑘𝑘1 ≈ 𝑣𝑣𝑘𝑘2 −
1
2
∂𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖

+
1
8
∂2𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖2

−
1

48
∂3𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖3

= 0

𝑣𝑣𝑘𝑘3 ≈ 𝑣𝑣𝑘𝑘2 +
∂𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖

+
1
2
∂2𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖2

+
1
6
∂3𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖3

              

𝑣𝑣𝑘𝑘4 ≈ 𝑣𝑣𝑘𝑘2 +
3
2
∂𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖

+
9
8
∂2𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖2

+
9

16
∂3𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖3

= 0
⎭
⎪⎪
⎬

⎪⎪
⎫

 ↝
∂2𝑣𝑣𝑘𝑘
∂𝑥𝑥𝑖𝑖2

=
8
3
𝑣𝑣𝑘𝑘3 −

16
3
𝑣𝑣𝑘𝑘2 

(7) 

All considered neighborhood cases can be found in the Appendix C (Supplementary Material available 
online). 

4.4. Permeability computation 
In the so-called creeping flow regime, characterized by low Reynolds numbers, Re <  1.0, it is valid to 
employ Darcy’s law (18) (Eq. 8) to compute the entries of the second order permeability tensor where 

ℎ𝑖𝑖 = − ∂𝑝𝑝
∂𝑥𝑥𝑖𝑖

= −𝑝𝑝,𝑖𝑖 is the pressure gradient and 𝐴𝐴𝑖𝑖 , 𝐴̅𝐴𝑖𝑖 are the total and the effective cross-sectional areas 

with the normal vectors 𝐧𝐧𝑖𝑖  ∥  𝐞𝐞𝑖𝑖 .  

𝐪𝐪 =
1
𝜇𝜇
𝐤𝐤 ⋅ 𝐡𝐡 →  𝑞𝑞𝑖𝑖𝐞𝐞𝑖𝑖 =

1
𝜇𝜇
𝑘𝑘𝑖𝑖𝑖𝑖�𝐞𝐞𝑖𝑖 ⊗ 𝐞𝐞𝑗𝑗� ⋅ ℎ𝑘𝑘𝐞𝐞𝑘𝑘 =

1
𝜇𝜇
𝑘𝑘𝑖𝑖𝑖𝑖ℎ𝑘𝑘𝐞𝐞𝑖𝑖  with 𝑞𝑞𝑖𝑖 =

1
𝐴𝐴𝑖𝑖
� 𝑣𝑣𝑖𝑖d𝐴̅𝐴𝑖𝑖
∂𝓑𝓑

 (8) 

 

Figure 2: Illustration of the components of Darcy’s law with the given boundary values for the 
pressure 𝑝𝑝in and  𝑝𝑝out used to compute the gradient  ℎ3. Volumetric fluxes 𝑞𝑞2, 𝑞𝑞3 are evaluated 
over the respective boundaries (total and effective cross-sectional areas 𝐴𝐴𝑖𝑖, 𝐴̅𝐴𝑖𝑖). In 𝐞𝐞1-direction, 
the volumetric flux is not shown here, but is handled analogously. With given pressure gradients 
ℎ3 ≠  0 and ℎ1 = ℎ2 = 0, this represents case c) in Equation 9. 
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In order to determine the nine entries in the coefficient matrix of the permeability tensor, three numerical 
simulations must be performed. The following pressure gradients ℎ𝑖𝑖  are specified for the different 
simulations (Eq. 9), and we measure three fluxes 𝑞𝑞𝑖𝑖 for each case.  

𝐚𝐚) ℎ1 ≠ 0⋀ℎ2 = ℎ3 = 0 ;    𝐛𝐛) ℎ2 ≠ 0⋀ℎ1 = ℎ3 = 0 ;   𝐜𝐜) ℎ3 ≠ 0 ⋀ ℎ1 = ℎ2 = 0 (9) 

For case c), all properties are illustrated in Figure 2. By comparing the coefficients (Eq. 8, right), nine 
equations are obtained for nine entries of the coefficient matrix of the permeability tensor. A detailed 
list of the equations for determining the complete permeability tensor 𝐤𝐤 can be found in Appendix D 
(Supplementary Material available online). 

5. COMPUTATIONAL ASPECTS 
5.1. Processing Input Data 
Binarized 3D image data (8-bit file format) distinguishing between solid phase and pore space are 
employed as input for the solver. Commonly performed image pre-processing steps, such as denoising 
and segmentation, depend on the specific imaging technique and are well-documented in the literature 
(e.g., Andrä et al. (2, 3); Burger and Burge (13); Iassonov, Gebrenegus, and Tuller (28); Russ and Neal (48); 
Schlüter, Sheppard, Brown, and Wildenschild (51); Tuller, Kulkarni, and Fink (55)). These steps will not be 
further elaborated upon here. Depending on the boundary conditions and material, a few pre-processing 
steps need to be conducted, such as mirroring for symmetric periodicity, domain cropping, or the 
elimination of disconnected pore spaces. This depends upon the specific problem at hand, a topic that 
will be delved into within the dedicated application sections. The solver operates under the assumption 
that the percolation condition is met, meaning that at least one flow path through the material is 
available. 

Algorithm 1: Program Flow Stokes Solver 
 Data: Binarized 3D image data 
 Initialize MPI; 
 Domain decomposition, read partial domains, add halos; 
 Impose initial pressure gradient; 
 Evaluate neighborhood; 
 While div 𝐯𝐯 > 𝜀𝜀 𝐝𝐝𝐝𝐝 
  Compute velocity field  𝐯𝐯𝑖𝑖,𝑗𝑗,𝑘𝑘; 
 Compute pressure field  𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘; 
 If 𝑖𝑖 mod 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≡ 0 then 
  Communicate halos; 
 end 
 Compute specific discharge 𝐪𝐪, see Equation 8; 
 Evaluate permeability tensor entries 𝑘𝑘𝑖𝑖,𝑗𝑗, see Equation 8; 
 Compute convergence criterion 𝜀𝜀 = ∆|𝑞𝑞3|

|𝑞𝑞3|
; 

 Write log file; 
 end 
 Write pressure and velocity fields; 

5.2. Implementation 
The solver is completely implemented in C++ and parallelized with OpenMPI (version 4.1.5) (39) to 
employ it on distributed memory architectures. Special emphasis is put on keeping the code as simple 
as possible. For the domain decomposition, we use a communicator on a Cartesian topology which is 
particularly well-suited for regular meshes and 3D geometries. The file IO is fully parallelized and 
communication between the ranks is executed by blocking send-receive operations. We work directly 
with binary data which is RAM-efficient and allows for a concise implementation. The source code of 
POREMAPS is published in Krach, Ruf, and Steeb (32) (Algorithm 1). 
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The inherent domain decomposition of MPI optimizes communication by embedding the virtual 
topology onto the physical machine as efficiently as possible, but is not necessarily suitable for domains 
with high aspect ratios (see Sec. 7.3). Therefore, it is possible to include the desired number of ranks in 
each direction directly in the input file. 

5.3. Scaling 
The scalability of FDM codes has been studied extensively in the literature. Several factors contribute to 
weak scalability, including the communication overhead, memory requirements, and load balancing. For 
the scaling test we use a 503 voxel regular sphere packing per core and the hardware of the experimental 
compute cluster “ehlers” of the EXC 2075 “SimTech” Cluster of Excellence (University of Stuttgart). The 
CPU partition is comprised of 8 nodes with 128 cores (2 × 64 cores, AMD EPYC 7702) each and 200 Gb/s 
Infiniband interconnect and 2 TB of RAM. 

The algorithm is very communication heavy. The influence of increasing core-to-core (Fig. 3, left) or 
node-to-node communication (Fig. 3, right) causes a decrease in performance. However, as soon as 
communication in all three spatial directions is required (>8 cores), the computed time steps per second 
(TPS) are almost constant. Accordingly, the results are satisfactory for the problems at hand. Considering 
targeted domain sizes, tests beyond 1024 cores are not significant for our applications and therefore not 
considered here. 

 

 
 

 

 

Figure 3: Weak scaling on one node using 1, 2, 4, 8, 16, 32, 64, 128 cores (left) and 1–8 nodes with 128 cores 
each (right). 

6. BENCHMARKS 
The code has been designed to facilitate the study of complex, heterogeneous porous materials. To 
justify the application of the solver to diverse domains, a multi-layered benchmark and validation 
program is performed with increasing complexity.  

1) We validate the code against analytical solutions such as Poiseuille flow and channel flow.  
2) Regular sphere packings with different porosities are considered, for which empirical 

relationships exist, such as the Kozeny-Carman equation.  
3) The procedure for determining the anisotropy and the secondary diagonal elements of the 

permeability tensor is validated.  

https://doi.org/10.69631/ipj.v2i1nr39
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4) We compare our code with other solvers such as LBM, FEM or mathematical homogenization 
for different types of porous materials. 

6.1. Hagen-Poiseuille Equation 
The laminar creeping flow of a Newtonian fluid through a pipe is a standard benchmark for CFD codes.  
The tube is per definition periodic in direction of the pressure gradient. We compare results for different 
resolutions and the analytical Hagen-Poiseuille equation presented in Batchelor (6) (Eq. 10) with the 
radial coordinate 𝑟𝑟. The length and radius of the tube are 𝐿𝐿 =  0.01 m and 𝑅𝑅 =  0.001 m. The no-slip 
condition on the fluid-solid interface results in 𝑣𝑣3(𝑟𝑟 =  𝑅𝑅)  =  0. 

𝑣𝑣3(𝑟𝑟) =
Δ𝑝𝑝

4𝐿𝐿𝐿𝐿
(𝑅𝑅2 − 𝑟𝑟2) (10) 

We compare simulation results obtained for different resolutions (𝐿𝐿/𝑑𝑑𝑑𝑑 =  {5, 10, 20, 50, 100})  and 
present the velocity profiles through the center of the tube, see Figure 4, left. All resolutions provide 
very similar solutions and are in agreement with the analytical solution (Eq. 10). Figure 4, right, gives 
the cross-section through the tube visualizing the radially symmetric velocity pattern. 

 

 

Figure 4: Resolution dependent velocity profiles through a tube compared to the analytical solution (left) and 
velocity pattern in one cross-section (right).  
 

 

Figure 5: Deviation of the volumetric flux 𝑄𝑄 from its analytical solution 𝑄𝑄𝑎𝑎𝑎𝑎  according to White and Majdalani 
(61) through rectangular cross section channel for different resolutions (left) and corresponding velocity 
pattern (right). 

 

6.2. Channel Flow – Rectangular Cross Section 
To benchmark slightly more complex structures, we analyze the flow through a rectangular channel  
(Fig. 5). It has an advantage over the tube in Section 6.1, since it can be discretized on a cubic lattice 
without introducing a discretization error. The benchmark provides information about the resolution at 
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which we can expect valid results from the solver. That is of particular interest for the study of microfluidic 
experiments in order to resolve the channels sufficiently. 

Presented are simulation results for different resolutions (ℎ/𝑑𝑑𝑑𝑑 =  {3, 5, 10, 25, 50, 100}) for the channel 
height ℎ. The width of the channel equals 𝑏𝑏 =  2ℎ. Already with a resolution of the channel cross-section 
bigger than 5 × 10 voxels, the volumetric flow rate 𝑄𝑄 =  𝑞𝑞𝑞𝑞 corresponds with results for higher 
resolutions (errors of 67 %, 1.5 % for rectangular channels with 5 × 3 and 10 × 5 voxels respectively and 
below 0.1 % for all higher resolutions). Although the solution depends on the discretization, it converges 
already for low resolutions which is essential for the computation of microfluidic domains. 

6.3. Regular Sphere Packings 
Due to the periodicity of regular sphere packings, the simulation of flow can be reduced to a cubic unit 
cell of side-length 𝐿𝐿. It is therefore possible to simulate representative porous structures without pushing 
the domain size too far, and to compare results with semi-analytical estimates. Therefore, we investigate 
differently arranged sphere packings (Simple Cubic (SC), Body-Centered Cubic (BCC), Face-Centered 
Cubic (FCC)) for a sweep over a wide range for the porosity 𝜙𝜙 =  {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. In 
addition, all simulations are run at three different resolutions 𝐿𝐿/𝑑𝑑𝑑𝑑 =  {60, 100, 200}. The results are 
compared with permeability estimates 𝑘𝑘1𝐾𝐾𝐾𝐾  by the semi-analytical, semi-empirical Kozeny-Carman 
equation (15, 31) (Eq. 11) where 𝐷𝐷, 𝑐𝑐𝐾𝐾𝐾𝐾  are the sphere diameter and the Kozeny-Carman constant for 
which the value 𝑐𝑐𝐾𝐾𝐾𝐾 = 180 is set. In addition, the Stokes solution is further compared with results from a 
SPH solver that performs simulations based on weakly compressible Navier-Stokes equations (41)  
(Fig. 6). 

𝑘𝑘1𝐾𝐾𝐾𝐾 =
𝐷𝐷2

𝑐𝑐𝐾𝐾𝐾𝐾
𝜙𝜙3

(1 − 𝜙𝜙)2 
(11) 

The results from the two solvers, as well as their comparison with the semi-analytical solution, show an 
almost perfect match. It can be concluded that the solver is capable for a wide range of porosities. A 
single simulation for a resolution of 𝐿𝐿/𝑑𝑑𝑑𝑑 =  100 takes an average of 40 minutes on a desktop PC using 
4 cores (11th Gen Intel(R) Core(TM) i7-11700KF @ 3.60GHz).  

6.4. Permeability Tensor and Principal Permeabilities 
To compute the anisotropic permeability behavior of various materials, we must not only consider 
standard benchmarks as well as those for simple porous materials, but also include benchmarks with 
known or adjustable principal directions. For this purpose, we create a cube with 1003 voxels 
corresponding to 1 mm3 and place an ellipsoid in the center. It has the following semi-axes in Cartesian 
coordinates 𝒆𝒆𝑖𝑖 each given in absolute voxel numbers: 𝒆𝒆1 : 𝑎𝑎 =  35; 𝒆𝒆2 : 𝑏𝑏 =  10; 𝒆𝒆3 : 𝑐𝑐 =  35. By using 

 

Figure 6: Comparison of Stokes solver results of normalized permeabilities with Karman-Cozeny equation 
and SPH solver. 
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this per se periodic structure, one does not have to consider the difficulties that would arise from 
symmetrical or translational periodization (22). We rotate the single ellipsoid around 𝒆𝒆1-axis in 5° steps 
for 0° ≤  𝛼𝛼 ≤  90°  and compute fluid flow and permeability, whereby the consideration of the 
permeability in 𝒆𝒆1-direction does not play a role in our evaluation for the time being. As a result, 
computing the permeability tensor in Equation 1 is simplified to a two-dimensional problem, where the 
eigenvalues and principal directions can be represented by an ellipse. Each simulation of a domain 
described above allows us to determine one column of the coefficient matrix 𝑘𝑘𝑖𝑖𝑖𝑖 of the permeability 
tensor, or in our simplified case two entries. The other two entries are obtained from the simulation for 
which the direction of the imposed pressure gradient relative to the ellipsoid is rotated by 90°. Since the 
pressure gradient is always applied by the solver in the 𝒆𝒆3-direction, the geometry has to be rotated 
accordingly, which leads to the exact same result. For instance, considering a rotation of 𝛼𝛼1 = 20° and 
consequently 𝛼𝛼2 = −70° , as shown in Figure 7, results in the following coefficient matrix for the 
permeability tensor (Eq. 12): 

𝑘𝑘𝑖𝑖𝑖𝑖 = � 1.18 0.228
0.238 1.76 � ⋅ 10−7m2 ≈ � 1.18 0.233

0.233 1.76 � ⋅ 10−7m2 (12) 

And finally, we receive the coefficient matrix for the principal axes system (Eq. 13): 

𝑘𝑘�𝑖𝑖𝑖𝑖 = �1.10 0
0 1.84� ⋅ 10−7m2 (13) 

Numerical calculations yield slightly different values for the two corresponding diagonal elements, 

necessitating a symmetrization in a subsequent step �𝑘𝑘12 ≔ 𝑘𝑘21 = 1
2

(𝑘𝑘12 + 𝑘𝑘21)�. In this reduced case, 

the angle 𝜑𝜑 between the axes in the original basis system and the principal directions is computed by 
Equation 14, which matches very well to what was being specified. The listing of all values can be found 
in Table 1 and a selection is visualized in Figure 8.  

φ =
1
2
 tan-1 �

2𝑘𝑘23
𝑘𝑘22 + 𝑘𝑘33

� =
1
2
 tan-1 �

2 ⋅ 2.33 ⋅ 10−8m2

1.76 ⋅ 10−7m2 + 1.18 ⋅ 10−7m2� = 19.5° (14) 

 

 

Figure 7: Normalized magnitude of velocity around an ellipsoid with 20° (left) and 70° inclination (right). The 
same pressure gradient in 𝐞𝐞3-direction is applied, which explains differences in the maximum velocities. 
Both figures show a cross-section (𝐞𝐞2 − 𝐞𝐞3 plane) in the center of the domain. 
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We observe a clearly recognizable trend for an increase of the permeability 𝑘𝑘22 and decrease of 𝑘𝑘33 with 
increasing rotation 𝛼𝛼 . Performing the transformation, we obtain the same eigenvalues for the 
permeability, except for minimal differences, which can be explained by the numerical aspects and issues 
related to discretization. The calculated angles exhibit only small deviations ( < 0.5° ) from the 
geometrically prescribed angles for all inclinations of the ellipsoid. In Table 1 all values are listed in an 
organized manner. For this comparably straightforward benchmark geometry, we can demonstrate the 
overall effectiveness of the workflow. 

Table 1: Permeabilities, principal permeabilities and principal directions for all simulations. 
𝜶𝜶 [°] 0 5 10 15 20 25 30 35 40 45 
𝒌𝒌𝟑𝟑𝟑𝟑 [⋅ 10−7m2] 1.85 1.85 1.83 1.80 1.76 1.72 1.66 1.6 1.54 1.47 
𝒌𝒌𝟐𝟐𝟐𝟐 [⋅ 10−7m2] 1.09 1.10 1.12 1.14 1.18 1.23 1.29 1.35 1.41 1.47 
𝒌𝒌𝟐𝟐𝟐𝟐 [⋅ 10−7m2] 0.00 0.06 0.12 0.18 0.23 0.28 0.32 0.34 0.36 0.37 
𝒌𝒌𝑰𝑰𝑰𝑰𝑰𝑰 [⋅ 10−7m2] 1.85 1.85 1.85 1.85 1.84 1.84 1.84 1.84 1.84 1.84 
𝒌𝒌𝑰𝑰𝑰𝑰 [⋅ 10−7m2] 1.09 1.10 1.10 1.10 1.10 1.11 1.11 1.11 1.11 1.11 
𝝋𝝋 [°] 0.06 4.73 9.53 14.5 19.5 24.6 29.6 34.7 39.9 45.0 

6.5. Testing Against Other Codes 
6.5.1. Regular thin, porous media (2D microfluidic devices) 
In Section 7.3 we investigate structures that have a small thickness compared to their lateral dimensions. 
The dimensions of such thin (”2D”) porous materials, which are often used in microfluidic characterization 
of porous media flow, pose problems for numerical methods in terms of efficiency and convergence. To 
ensure the applicability of the solver for such requirements, we compare it with benchmarks for regular 
2D porous materials described in (56). The dimension of the simulated unit cell is 1 mm × 0.091 mm × 
1 mm and is discretized by 250 × 27 × 250 voxels, with a solid frame of two thick voxels each, included 
in the 𝐞𝐞2-direction. All results align with the solutions provided in the benchmark paper (Table 2). 

To illustrate the per-
formance of the solver, the 
SPH solver used in Wagner 
et al. (56) needs approx-
imately 17 hours on a 4-
core CPU, whereas the 
presented Stokes solver at 
the same resolution and on 
same hardware takes 
approximately 10 minutes 
(Table 3). 

Table 2: Comparison with different types of pore-scale solvers (SPH, 
FEM, LBM from Wagner et al. (56)) for thin porous media samples and 
comparison of computed permeabilities. 
Radius 𝝓𝝓 𝒌𝒌𝟏𝟏𝟏𝟏 range (56) 𝒌𝒌𝟏𝟏𝟏𝟏 (POREMAPS) 
0.35 mm 0.62 22.9 − 26.7 ⋅ 10−10m2 26.1 ⋅ 10−10m2 
0.40 mm 0.50 16.4 − 17.7 ⋅ 10−10m2 17.5 ⋅ 10−10m2 
0.45 mm 0.36 7.54 − 8.59 ⋅ 10−10m2 8.08 ⋅ 10−10m2 
0.47 mm 0.31 3.62 − 5.35 ⋅ 10−10m2 3.83 ⋅ 10−10m2 
0.49 mm 0.25 0.46 − 0.54 ⋅ 10−10m2 0.39 ⋅ 10−10m2 

 

 

Figure 8:  Plots of the coefficient matrices of the permeability tensors for rotations 𝛼𝛼 = {0°, 10°, 40°}   
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Table 3: Properties for different types of 3D benchmarks (range of LBM results from Saxena et al. (49)) and 
comparison of computed permeabilities. 
Sample 𝝓𝝓 Voxel size Domain size 𝒌𝒌𝟏𝟏𝟏𝟏 (49) 𝒌𝒌𝟏𝟏𝟏𝟏 (POREMAPS) 
Sphere 
packing 

0.34 7.0 μm 788 × 791 × 793 2.438 − 2.903 ⋅ 10−10m2 2.512 ⋅ 10−10m2 

Berea 0.18 2.114 μm 1024 × 1024 × 1024 4.569 − 6.889 ⋅ 10−13m2 5.772 ⋅ 10−13m2 
Fontainebleau 0.09 2.072 μm 1024 × 1024 × 1024 0.642 − 1.411 ⋅ 10−13m2 9.200 ⋅ 10−14m2 

 

6.5.2. Irregular sphere packings and porous rock 
There are several benchmark papers providing suitable geometries (2, 3, 49). The solver is compared with 
different 3D benchmarks where permeabilities are computed with, among others, different LBM solvers 
(49). We computed the sphere packing, one Berea sandstone (Rock1 ), and one Fontainebleau sandstone 
(Rock3 ) sample. The characteristics of the geometries and a comparison of the computed permeabilities 
𝑘𝑘11 are summarized in Table 3. The results for 𝑘𝑘11 are in accordance with the solutions determined by 
LBM and thus we consider the benchmarking to be successful and completed. 

7. APPLICATIONS 
In this section, three different application scenarios are shown to demonstrate the capabilities of 
POREMAPS. We discuss the range of the solver in terms of (1) the maximum size of the individual 
simulations and the possibility of (2) investigations into transient effects using simulation campaigns. 
The solver is applied in areas where the complete permeability tensor cannot be determined 
experimentally and where the computational effort is substantial. The corresponding domain sizes and 
computational times are summarized in Table 4. 

 

 

7.1. Characterization of Large 3D Images 
The solver is primarily designed to analyze large, high-resolved 3D images of porous materials typically 
acquired by 3D imaging methods such as µXRCT  (45, 52, 64) (Fig. 9). This allows the digital 
characterization of porous materials with regard to hydraulic permeability and can be integrated into 
the imaging workflow as a subsequent standard procedure. In µXRCT  imaging, the resolution of REVs is 
often represented by 3D images with more than 10003 voxels. High-resolution X-ray flat panel detectors 
with approximately 3000 × 3000 pixels and more are no longer uncommon. This means that, in terms of 
the reconstructed 3D images, they can contain approximately 30003 voxels. With appropriate hardware 
(large memory), the presented code is capable of handling such large 3D images. 

To demonstrate this, we use the 3D image of Berea sandstone (1024 ×1024×1024 voxel) and the sphere 
packing (788 × 791 × 793 voxel) from Saxena et al. (49), both of which were previously used in the 
benchmark tests, cf. Table 3. Both data sets are mirrored in all three spatial directions resulting in 2048 
× 2048 × 2048 voxels and 1576 × 1582 × 1586 voxels. The corresponding computation times are given 

in Table 4 for a convergence criterion of ε = Δ|𝑞𝑞3|
|𝑞𝑞3|

< 10−6. The latter data set is mirrored a second time 

Table 4: Overview of computation times of considered application examples. 
Domain size Hardware and resources Computation time 

Example 1 “Berea” and “Sphere packing” (Sect. 6.5 and Sect. 7.1) 
2048 × 2048 × 2048 SimTech Cluster 2, Nodes 36 hrs. 
1576 × 1582 × 1586 SimTech Cluster 2, Nodes 24 hrs. 
3152 × 3164 × 3172 SimTech Cluster 4, Nodes ≈ 80 hrs. 

Example 2 “Open-cell foam (𝜺𝜺𝟑𝟑𝟑𝟑 = 𝟎𝟎.𝟎𝟎 and 𝜺𝜺𝟑𝟑𝟑𝟑 = −𝟎𝟎.𝟓𝟓)” (Sect. 7.2) 
800 × 800 × 1186 SimTech Cluster 4, Nodes 8 hrs. 
800 × 800 × 526 SimTech Cluster 4, Nodes 3 hrs. 

Example 3 “Calcite precipitation” (Sect. 7.3) 
12 × 1200 × 1200 SimTech Cluster 1, Node 0.5−2 hrs. 
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in each direction resulting in 3152 × 3164 × 
3172 voxels (equals 64 times the original 
geometry), cf. Figure 9. Due to parallelized IO 
routines, this can be implemented using 4 
nodes, with a total of 512 cores, requiring a 
total of ≈  1.5 TB RAM. This encompasses 
µXRCT data produced by state-of-the-art high 
resolution detectors and enables processing 
without information loss through binning, 
using a manageable amount of resources. 

7.2. Deformation-dependent 
Permeability and Permeability 
Anisotropy—Uniaxial 
Compression of an Open-Cell 
Foam 
The deformation-dependent permeability of 
open-cell foams has been studied 
experimentally by several researchers. Various 
theoretical models have been proposed for 
predicting the effect of strain on permeability, 
cf. Dawson, Germaine, and Gibson (19); 
Markert (37) and therein cited literature. In 

experimental studies, uniaxial compression loading is often imposed on a foam sample and the 
deformation-dependent permeability is measured in one direction, often in the same direction as the 
imposed load. Measuring the permeability in different directions is technically challenging. Using non-
destructive µXRCT imaging is a potential approach to overcome this problem, provided the fluid-solid 
interaction is negligible and the foam can be considered rigid at a given deformation state. In this case, 
the foam structure is imaged under different loading conditions in 3D. The time-series of 3D images, 
followed by subsequent post-processing, provides the opportunity to conduct virtual experiments and 
characterize the structure and deformation-dependency in more detail. 

This is exemplary shown for an open-cell Polyurethane (PUR) cylindrical foam sample with 10 PPI 
subjected to uniaxial compressive loading and imaged at discrete loading states (engineering 
compressive strain 𝜀𝜀33  =  −{0.0, 0.1, 0.2, 0.3, 0.4, 0.5} ), see Figure 10a. For the imaging, the system 
presented in Ruf and Steeb (45) along with that from Ruf, Lee, and Steeb (44) was employed. For the 
series of 3D images, the permeability tensor is determined using cubic sub volumes of size 800 × 800× 
526–1186 voxel with a uniform voxel size of 74.8 µm. The permeability tensor (three simulations) for each 
loading condition is determined in ≈ 3-8 hrs. The permeability in axial direction (𝐞𝐞3) and radial directions 
(𝐞𝐞1, 𝐞𝐞2) and the principal values are shown in Figure 10b over the applied strain (left) and the foam 
porosity (right). At all deformation states, the radial permeabilities 𝑘𝑘11 and 𝑘𝑘22 are quite similar and differ 
slightly from the axial permeability 𝑘𝑘33  of the cylindrical sample. In general, it can be said that the 
permeability anisotropy does not correlate in a systematic way, neither with the strain nor with the 
porosity, which contradicts the expectation. 

7.3. Anisotropy development during calcite precipitation 
Predicting pore-scale clogging phenomena in heterogeneous porous materials presents a significant 
challenge. These processes can occur inadvertently, and if they cannot be prevented, there is a need to 
manage them, such as in the case of clogged filters. Conversely, these processes might also be 
intentional, such as in the case of blocking subsurface cracks. We focus our investigation on a specific 

 

Figure 9: Illustration of the large sized computable 
domains using the example of a double-mirrored 3D 
image of a sphere packing (blue) with originally 788 × 
791 × 793 voxel (yellow). The original 3D image (yellow) 
is taken from Saxena et al. (49).  
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scenario where pore spaces gradually become obstructed due to a chemically induced precipitation 
process. The experimental data set (60) serves as the basis for our study, and the details of data 
acquisition and the experimental arrangement are elaborated upon in Weinhardt et al. (58); Weinhardt 
(57); Weinhardt, Deng, Hommel, et al. (59). We have already described this procedure of investigation to 
a smaller extent as a proof of concept in Krach and Steeb (33). 

Unlike the experimental procedure, we can determine the permeability 𝑘𝑘33 in the 𝐞𝐞3-direction (aligned 
with the pressure gradient in the experiment) and the permeability 𝑘𝑘22 in the 𝐞𝐞2-direction (perpendicular 
to the pressure gradient) at various time steps during the experiment. This investigation includes 137 
individual simulations, where for 57 time steps the domain is percolating in both directions, resulting in 
2 simulations per time step. In the 𝐞𝐞3-direction, a flow path remains unblocked for a longer time and 80 
time steps are investigated. A simulation (12 × 1200 × 1200 voxel) typically runs for an average of 2 
hours on a node using 121 CPU-cores. We explicitly fix the domain decomposition to 1 × 11 × 11 ranks. 

Two-dimensional image data is used as basis and replicated in the third spatial direction to simulate the 
original dimensions of the microfluidic experiment in 3D. We are particularly interested in a preferential 
flow path that forms in the upper region of the domain and stays almost free during the experiment. 
Accordingly, a subdomain is extracted. In the course of the experiment, more and more precipitate is 
accumulated in the domain, thus increasing the solid fraction and decreasing porosity and permeability. 
Figure 11 shows the geometries (black = solid body, gray = precipitate) and the velocity patterns. Note 
that we simulate the same domain twice with pressure gradient from left to right (𝐞𝐞3-direction: Fig. 11, 
center column) and pressure gradient from top to bottom (𝐞𝐞2-direction: Fig. 11, right column). The 
simulations include all the time steps of the experiment up to the point where there is no flow path 
through the porous material at all. The material clogs first in the 𝐞𝐞2 -direction, at a porosity of  
𝜙𝜙 = 27.7 %, while a flow path remains open in the 𝐞𝐞3-direction at this point. 

  

 

Figure 10: Deformation-dependent permeability and anisotropy of an open-cell PUR foam sample (10 PPI) 
based on µXRCT images (46, 47). a) Segmented µXRCT images for different uniaxial compression loading 
states. b) Determined permeabilities in  𝐞𝐞1-,  𝐞𝐞2-,  𝐞𝐞3-direction and principle permeabilities.  
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Figure 11: Geometry and flow patterns at different times (increasing from top to bottom) during the experiment. 
The left column represents the input domain (black - solid columns, gray - precipitate). For the simulations, the 
precipitates are attributed to the solid. Columns 2 and 3 show the normalized absolute velocities based on 
pressure gradients in  𝐞𝐞3- and  𝐞𝐞2-direction.  

 

https://doi.org/10.69631/ipj.v2i1nr39


 
Krach, et al  Page 17 of 21 
 
 

 
InterPore Journal, Vol. 2, Issue 1, 2025                                https://doi.org/10.69631/ipj.v2i1nr39            

The focus of the analysis lies in the development of the degree of anisotropy in the course of the 
experiment. For this purpose, the eigenvalues of the 2 × 2 permeability tensor are determined.  
Figure 12 shows the eigenvalues 𝑘𝑘𝐼𝐼𝐼𝐼 and 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 plotted against the porosity 𝜙𝜙. The principal permeability 
𝑘𝑘𝐼𝐼𝐼𝐼  decreases significantly faster than 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 . The degree of anisotropy, represented by the ratio of the 
eigenvalues 𝑘𝑘𝐼𝐼𝐼𝐼

𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼
 (Fig. 12, right), increases in a stepwise linear fashion during the experiment, reaching a 

ratio of 6. Thus, this analysis provides an additional benefit that experiments cannot provide.  

8. DISCUSSION AND CONCLUSION 
The present study introduces POREMAPS, an FDM solver designed for solving steady-state 
incompressible Stokes equations using the artificial compressibility method. This solver was developed 
specifically to compute the permeability tensor 𝐤𝐤 of arbitrary porous materials. Through a series of 
benchmarks with increasing complexity, we have demonstrated the solver’s robustness and efficiency in 
handling a wide range of porosities 0.1 <  𝜙𝜙 <  0.9, showcasing its ability to efficiently and reliably 
process different material types. 

Three applications were investigated to further illustrate the solver’s versatility and performance. The 
first application involves large-scale simulations, with voxel numbers reaching >  30003 (see Sect. 7.1). 
This highlights the solver’s capacity to manage computationally intensive problems. Additionally, we 
conducted two extensive simulation campaigns (Sect. 7.2 and 7.3). The first campaign focused on the 
permeability of open-cell foams under mechanical deformation. Our results indicate that no significant 
anisotropy in permeability develops even under substantial strain ε33 = −0.5, although we observe a 
reduction in permeability by approximately one order of magnitude. This finding is noteworthy, as we 
originally expected anisotropy to arise under such conditions. The second campaign studied porous 
materials prone to clogging, where we quantified the resulting anisotropy ratio 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 /𝑘𝑘𝐼𝐼𝐼𝐼 . In this context, 
POREMAPS provided insights that would be difficult to achieve experimentally, highlighting one of its 
key advantages: offering a computational framework to investigate material behavior free from 
experimental limitations. 

Despite the computational and hardware demands associated with large-scale simulations, the solver 
remains relatively efficient. Furthermore, its ease of use, coupled with seamless integration with 

 

Figure 12: Normalized eigenvalues of the permeability tensor (𝑘𝑘𝐼𝐼𝐼𝐼  , 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼  ) over the course of a decreasing 
porosity (left) and the relation of both (𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼/𝑘𝑘𝐼𝐼𝐼𝐼 ) illustrating a clear development of anisotropic hydraulic 
properties (right). 
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experimental imaging data, positions it as a valuable tool for a wide range of applications in material 
science and fluid dynamics. We believe that the solver holds significant potential for future research, 
particularly in areas where experimental approaches may be impractical or limited by scale, which is 
often the case with anisotropy studies. 

STATEMENTS AND DECLARATIONS 
Supplementary Material 
Information on the Nomenclature, Nondimensional balance equations, Discrete equations and fluid-
solid boundary conditions, and the Permeability computation for this paper can be found in the 
Supplementary Material, which is available online.  
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