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A. NOMENCLATURE

The nomenclature table (Table S1) covers the essential quantities, indices, and suffix conventions used
in this paper. Scalar quantities are given in regular font weight while vectors and tensors are written in
boldface.

B. NONDIMENSIONAL BALANCE EQUATIONS

Nondimensional quantities and operators: We introduce the dimensionless length 1*, velocity v*, and
time t* by the ratio of physical property divided by characteristic property (£, V,T = £/V) (Eq. S1).
.V t t*L
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The nondimensional differential operators grad(:) and div(:) and time derivative (*) are given as follows:
(Eq. S2):

(S1)

grad(-) = £ grad(-) — grad(:) = %grﬁd(-) (52)

div(") = £ div(") = div() = %dﬁ‘/(-)
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This allows for the selection of the pressure and density scale (Eq. S3) where p, is the rest density of the
fluid (Eq. S3).

=L S p=pp  and p' =t s p=pp? (S3)
po 0 Povz

Nondimensional governing equations: For the mutual dependence of pressure p and density p we
employ the constitutive equation and its derivative (Eq. S4):

P (S4)

p=po|r+1|=p=porr
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Table S1: Nomenclature

Index and suffix convention

i,jk Indices as subscripts

) Time derivative of quantity (+)

! Dimensionless quantities and operators
Quantities displayed in the principal axis system

0k Components of vector or coefficient matrix of tensor
Symbol Unit Description

A A [m?] Total/effective cross-sectional area
0B -] Surface of domain

c [ms™] Speed of sound

e; [-] Cartesian basis of orthonormal vectors
h=—p; [Pam™] Hydraulic gradient

1=5,(e,®¢) = e,®e; -1 Second order identity tensor

kp, ki, kg [m?] Principal permeabilities of k

k [m?] Second order permeability tensor

KF [Pa] Bulk modulus of the fluid

L [m] Characteristic length of scale

p [Pa] Pressure of the pore fluid

q [ms™ Darcy velocity

Q [m3s™]  Volumetric flow rate

Re [-] Reynolds number

T [s] Characteristic time scale

v [ms™] Velocity vector of the fluid

1% [ms™] Characteristic velocity

a [°] Presupposed angle

£ [-] Convergence criterion

& -] Second order strain tensor

A Eigenvalues

u [Pa s] Dynamic viscosity of the fluid

Do. P [kg m™] Restdensity, density of the fluid

o [Pa] Second order stress tensor

0] [°] Angle indicating the inclination of principal directions
[0) -] Porosity

Artificial compressibility for pseudo-unsteady Stokes equations is introduced by considering the
linearized balance of mass (Eq. 5 in main text) for a compressible fluid (Eq. S5) where for steady state
0 — 0 holds.

p+podive=0 (S5)

The Stokes equations (Eq. 4 in the main text) are analogously extended (Eq. S6) where pv — 0 holds for
steady state.

pv = pdiv(grad v) — grad p (S6)

We apply the dimensionless divergence operator, dimensionless velocity and density to Equation S5
and receive Equation S7:

120 . CN g

= (Pop) + % div(v V) =0 - (p°)div(v’) =0 (57)

Using the speed of sound for a compression-type wave ¢ = /I;—F with its dimensionless form ¢ = ¢*V
0

the constitutive equation for the pressure (Eq. S4) is transformed in the same way, yielding (Eq. S8):
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s m o =2 LY *)-_V(p*psvz)'_) ( '*)-_(13*)' (S8)
p _pOKF p - CZ L pop - LC*ZVZ p - c*

Plugging Equation S8 into Equation S7, the non-dimensional balance of mass is obtained (Eq. S9):
(p*) = —c2div(v*) (S9)
The nondimensional form of the pseudo-unsteady Stokes problem (Eq. S6) yields Equation S10:

pop”V
L

(510)

* % . # o * " 1 * * P 1 ok * * * «
(v 17) = ﬁdlv grad(v*V) — zgrad(p pOVZ) -p (v ) = ﬁdlv grad(v*) — grad(p™)

C. DISCRETE EQUATIONS AND FLUID-SOLID BOUNDARY CONDITIONS

Discrete updates: We will briefly present the discrete equations without further details. This is
elaborated on in depth in Gerke et al. (2). For velocity and pressure updates one receives (Eq. S11, Eq.
S12):

ap 1 [[/0%y; 0%v; 0%v; (S11)
t+1 _ ot _r _ i i i
o =t + el () + () (5

dv, Ov, 0dv, (S12)
t+1 — ot _ L2271 772
p p=c (6x1 * dx, ax3) at

For the sake of improved readability, we have omitted explicitly indicating that all quantities are
dimensionless. Central difference stencils were used, and we refer to the section below for the second
order terms.

Fluid-solid boundary treatment: The Taylor expansion around the point x, is generally given by the
following series (Eq. S13):

(513)

n

I C))
Flx) = z f (!xo) (x—x)" = fO + FO(x — x) + %f(z)(x —xg)? 4

As briefly described in Section 4 for case 2 depicted in Figure 1 in the main text, for the other given
cases, the following system of equations can be derived. By solving the given sets of equation systems,

2
the corresponding second-order derivatives (aa;"
flow velocity direction for i,j, k = (1,2,3), (2,3,1), (3,1,2) can be determined (Eq. S14, Eq. S15, Eq. S16,

Eq. S17, Eq. S18, Eq. S19).

) in the perpendicular directions to the considered

Case 1: ey L0k 10w 13w _ (514)
o™ e 9 9x, T8 0x? 48 9x? 0%v;,
2 3 Vo5 = 8y,
10v, 10%v, 1 0°vy 0x;
Vg, =V =

+o—+= +— =
s %2 T 20x; 8 ax? | 48 0x]

Case 2: o~ _1%+lazvk_i63vk=0 (S15)
o " T 29x; T 8 0x? 48 ax?
ov, 10%v, 103y, 0%v, 8 16
vk3zvk2+a—xi+zaxi2 +E(’)_xf va—xizzgvh—?vkz

39v, 90%v 9 93y
k2 2k+_ 3k _
8 dx; 16 0x;

Vs = Ve ¥ 20,
L
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Case3: 30w 90%w 9 0%v _ (516)
a7 s 2 9x, T 8 0x? 16 ax?
ov, 10%v, 103y, 0%y, 8 16
Ve ¥V T 5 Y 29k T6ox [ oxz 37k 3 Ul

10y, 10%v, 1 3%y,
R, tss - tos 7t 533 =
4 3 20x; 80x{ 48 0x;

Case4: _l%+lazvk_ia3”k_ (817)
o™ e 9 9x, T8 0x? 48 9x?
ov, 10%v, 103y, 0%y,
Vs XV Y g Y002 Te g [ Vo - 2k Tk "5k
ov, _0%v, 403y,
~ v, +2—+ ——
Vi ¥ Vi ¥ 2 T 2537 T35

Case 5: S _2%+ ﬂ_fﬂ (S18)
1 20 ox? 3 0x}?
Ve, = Uy _%+162vk_163vk vﬁ:ka — =V, — 5V
2V T ox, T2 0x7 6 0%} ox? 27 5k T ks
10v, 10%v, 1 03y,
Vs Ve ¥ 5 T8 o2 T8 x|
Case 6: o a0V 10%v 10%w (S19)
™ ke 9x; T2 9xF 6 0x} 0%vy
ov, 10%v, 103y, v (’)_xl2 = Vi = 20, F Vi
Viy = Uy, +a—xi+§ axiz +g axi?,

D. PERMEABILITY COMPUTATION

For Re < 1.0 the entries of the permeability tensor can be computed using Darcy's law (1), where

h; = —% = —p; is the hydraulic gradient (Eq. S20).

1 1 1 ; 1 T
q= ;k ‘h— ge; = ;kij(ei ®e)) - heey, = ;kikhkei with —q; = A_if63 vidd; (520)

The numerical experiments must be performed to determine the nine entries in the coefficient matrix of
the second order permeability tensor. Thereby, the following pressure gradients are applied for the (Eq.
S$21) different cases, and we measure three fluxes q; for each case.

b) h2 * 0 /\ hl = h3 = 0

C‘) h3 * 0 /\ hl = h2 = 0
By comparing the coefficients for the three equations for the flow g; (Eq. S20, right) we receive (Eq. S22):
0

(522)

1 1
q; = —;kikhk - q1 = —;[k11h1 + ki2hy + kishs]

i) 1
q; = _;[k21h1 + kyyhy + ky3hs)

1
qz = _;[k31h1 + k3zhy + k3shs]
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The following nine equations (Eq. S23) arise from the constraints (a—c) provided in Equation S21:

q1 u 111 q> u 211
b) 1 1
=——ksh =——k,h
q1 u 1212 q> u 2212
1 1
C,
) q1 =_;k13h3 q2 =_;k23h3

a3 = _1k31h1 (523)
U

qs = _1k32h2
U

qs = _lk33h3
U

This results in nine equations for nine unknown entries of the coeffiecient matrix of the second order
permeability tensor. Numerically determined, one obtains slightly different values for two corresponding
secondary diagonal elements. These are therefore averaged ki, = kyy = %(k12 + k,,). The same

procedure is adopted for k3, k3, and ks, ks,.
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