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1. APPENDIX A: EFFECTIVE POROSITY 
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, with 𝐾𝐾𝑒𝑒  as the effective bulk modulus of the fluids (pore pressure in 

response to pore volume change). If only the single phase fluid is present, the formulation is identical to 
the one in Coussy (1). 

2. APPENDIX B: CONSTANT CEMENT MODEL 

Phase 1: 𝜙𝜙𝑐𝑐 → 𝜙𝜙𝑏𝑏 

𝐾𝐾 =
𝑛𝑛(1 − 𝜙𝜙𝑐𝑐)𝑀𝑀𝑐𝑐𝑆𝑆𝑛𝑛

6
 (B2) 

𝐺𝐺=
3𝐾𝐾dry

5
+

3𝑛𝑛(1 − 𝜙𝜙𝑐𝑐)𝐺𝐺𝑐𝑐𝑆𝑆𝜏𝜏
20

 (B3) 

Here the coefficients 𝑆𝑆𝑛𝑛 and 𝑆𝑆𝜏𝜏 are determined by specific equations that take into account the elastic 
moduli of the grain material and cement material, critical porosity, as well as various statistical 
parameters. 
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𝑆𝑆𝑛𝑛 = 𝐴𝐴𝑛𝑛(Λ𝑛𝑛)𝛼𝛼2 + 𝐵𝐵𝑛𝑛(Λ𝑛𝑛)𝛼𝛼 + 𝐶𝐶𝑛𝑛(Λ𝑛𝑛) (B4) 
𝐴𝐴𝑛𝑛(Λ𝑛𝑛) = −0.024153Λ𝑛𝑛−1.3646 (B5) 

𝐵𝐵𝑛𝑛(Λ𝑛𝑛) = 0.20405Λ𝑛𝑛−0.89008 (B6) 

𝐶𝐶𝑛𝑛(Λ𝑛𝑛) = 0.00024649Λ𝑛𝑛−1.9864 (B7) 

𝑆𝑆𝜏𝜏 = 𝐴𝐴𝜏𝜏(Λ𝜏𝜏 , 𝜈𝜈𝑠𝑠)𝛼𝛼2 + 𝐵𝐵𝜏𝜏(Λ𝜏𝜏 , 𝜈𝜈𝑠𝑠)𝛼𝛼 + 𝐶𝐶𝜏𝜏(Λ𝜏𝜏 , 𝜈𝜈𝑠𝑠) (B8) 

𝐴𝐴𝜏𝜏(Λ𝜏𝜏 , 𝜈𝜈𝑠𝑠) = −10−2(2.26𝜈𝜈𝑠𝑠2 + 2.07𝜈𝜈𝑠𝑠 + 2.3)Λ𝜏𝜏
0.079𝜈𝜈𝑠𝑠2+0.1754𝜈𝜈𝑠𝑠−1.342 (B9) 

𝐵𝐵𝜏𝜏(Λ𝜏𝜏 , 𝜈𝜈𝑠𝑠) = (0.0573𝜈𝜈𝑠𝑠2 + 0.0937𝜈𝜈𝑠𝑠 + 0.202)Λ𝜏𝜏
0.0274𝜈𝜈𝑠𝑠2+0.0529𝜈𝜈𝑠𝑠−0.8765 (B10) 

𝐶𝐶𝜏𝜏(Λ𝜏𝜏 , 𝜈𝜈𝑠𝑠) = 10−4(9.654𝜈𝜈𝑠𝑠2 + 4.945𝜈𝜈𝑠𝑠 + 3.1)Λ𝜏𝜏
0.01867𝜈𝜈𝑠𝑠2+0.4011𝜈𝜈𝑠𝑠−1.8186 (B11) 

Λ𝑛𝑛 =
2𝐺𝐺𝑐𝑐(1 − 𝜈𝜈𝑠𝑠)(1 − 𝜈𝜈𝑐𝑐)
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Phase 2: 𝜙𝜙𝑏𝑏 → 0 𝐾𝐾𝑏𝑏 and 𝐺𝐺𝑏𝑏 are bulk modulus and shear modulus calculated after pre-listed equations. 
Bulk and shear moduli are then interpolated using HS lower bound. 
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with 
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𝐺𝐺𝑏𝑏
6
�

9𝐾𝐾𝑏𝑏 + 8𝜇𝜇𝑏𝑏
𝐾𝐾𝑏𝑏 + 2𝜇𝜇𝑏𝑏

� (B19) 

 

3. APPENDIX C: COMPARISON WITH COLUMN EXPERIMENT 

In this section, we describe our approach to completing the simulation and comparing the results with 
experimental data. 

The sand column was simulated for the state after mineralization process, with an assumption of axial 
symmetric porosity throughout. Since the Unconfined Compressive Strength (UCS) test was conducted 
under dry conditions, fluid effects were neglected, simplifying the simulation to purely elastic behavior. 
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Given the axial symmetry of the column, we reduced the simulation to a 2D domain. This 2D domain has 
dimensions of 25 mm radius by 100 mm height along the axis. 

To calculate the momentum balance, we employed the following balance equation expressed in 
cylindrical coordinates: 

1
𝑟𝑟
∂𝑟𝑟𝜎𝜎𝑟𝑟
∂𝑟𝑟

+
∂𝜏𝜏𝑧𝑧𝑟𝑟
∂𝑧𝑧

−
1
𝑟𝑟
𝜎𝜎𝜃𝜃 = 0

1
𝑟𝑟
∂𝑟𝑟𝜏𝜏𝑧𝑧𝑟𝑟
∂𝑟𝑟

+
∂𝜎𝜎𝑧𝑧
∂𝑧𝑧

= 0,
 

(C20) 

where 𝜎𝜎𝑟𝑟 ,𝜎𝜎𝑧𝑧  are the normal stress along radius and axis and 𝜏𝜏𝑧𝑧𝑟𝑟  for the shear stress. 
The stress-strain relationship can be determined using Hooke’s Law, where the elastic moduli 𝐸𝐸, 𝜈𝜈 are 
determined by cementation model 
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with strain given by 
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(C22) 

The boundary condition is set as follows, with a given loading velocity. 

 

Table C1: Boundary Conditions for 𝐮𝐮𝐫𝐫 and 𝐮𝐮𝐳𝐳 

Boundary 𝑢𝑢𝑟𝑟 𝑢𝑢𝑧𝑧 
Top no stress -0.045 * t 
Bottom no stress 0 
Inner 0 no stress 
Outer no stress no stress 

 
We calculate the average normal stress in the top cells at each time step to determine the loading 
pressure, allowing us to generate the stress-strain diagram shown in Figure 6 in the main text. 

4. Appendix D: Additional results of the showcase 

Figure D1 illustrates the evolution of pore pressure in the injection area, clearly divided into two distinct 
phases separated by the cessation of injection. The first phase corresponds to the injection period, 
characterized by a continuous increase in pore pressure. In the second phase, pore pressure gradually 
decreases as a result of pressure diffusion driven by fluid migration. Concurrently, gas saturation declines 
very slowly due to capillary effects. 

Figure D2 illustrates the pore pressure distribution along the reservoir at a depth of 1550 m for three 
studied cases. Two clear discontinuities in the pressure profiles highlight the influence of fault zones. The 
left fault, characterized by lower permeability (sealed fault), restricts fluid movement, resulting in a 
moderate pressure drop across this fault. Furthermore, the permeability of the fault significantly affects 
the rate at which pore pressure rises during injection. In contrast, beyond the second fault (on the right), 
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the effect of injection diminishes considerably, owing to its higher permeability and proximity to a 
pressure boundary that enables rapid fluid drainage. The central region of each plot demonstrates a 
delayed pore-pressure response following injection cessation, where the pore pressure continues to rise  

briefly after injection ends before gradually decreasing due to pressure diffusion processes. Additionally, 
the slope direction observed in this central area reflects the coupled hydro-mechanical behavior: the 
stresses induced by injection are partially equilibrated by changes in pore pressure governed by reservoir 
boundary conditions. 

The evolution of the safety margin along both fault zones is presented in Figure D3 and Figure D4. The 
sealing (closure) condition of the left fault zone produces a distinctly different evolution pattern 
compared to the right fault. Both figures clearly demonstrate areas approaching shear failure, as 
indicated by the safety margin decreasing towards zero. Notably, regions characterized by stiffer rock 
properties are more prone to reaching failure conditions, underscoring the critical role of mechanical 
heterogeneity in controlling fault stability. Additionally, Figure D5 illustrates the variation in shear stress 
induced by injection for Case B, highlighting that increased shear stress predominantly develops along 
fault and rock zones, coinciding precisely with areas exhibiting significant mechanical heterogeneity. 

 

 

 

 

 

 

Figure D1: Time evolution of pore pressure and gas saturation in the injection zone for the three cases. 
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Figure D2: Pore pressure distribution at a depth of 1550 m for the three cases.  
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Figure D3: Time evolution of the safety margin in the left fault zone for the three cases. 

 

Figure D4: Time evolution of the safety margin in the right fault zone for the three cases. 

 

Figure D5: Time evolution of the shear stress change in the domain for the three cases. 
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