

EXPLORING CHANCES AND LIMITATIONS OF HIGH RESOLUTION 3D-PRINTING FOR GUIDED WATER PERCOLATION IN GAS DIFFUSION LAYERS OF POLYMER ELECTROLYTE FUEL CELLS

Tim Dörenkamp¹ (¹), Felix N. Büchi¹ (¹), Thomas J. Schmidt^{1,2} (¹), and Jens Eller¹ (¹)

¹Center for Energy and Environmental Science, Paul Scherrer Institut (PSI), Villigen PSI, Switzerland; ²Institute of Molecular Physical Science, ETH Zürich, Zürich, Switzerland

1. CONTACT ANGLE MEASUREMENT

Figure S1: Contact angle of the coating measured on a glass substrate via sessile droplet method.

2. DESIGN OF CAPILLARY PATHWAYS FOR "PSI" SAMPLE

The design principle of the structure introduced in **Figure 5** (main text) is shown in **Figure S2**. The 3-layered lattice structure is printed onto a platform with an integrated pool for liquid injection, as depicted in **Figure S2a**. The pathways for water injection are designed with a throat size of 120 μ m, whereas constrictions have throats of 50 μ m (see also **Figure S2c** and **Figure S2b**, respectively). The full design of each layer is depicted in **Figure S2d** showing the 3rd, 2nd, and 1st layer, respectively. The full lattice structure is shown in transparent in each image. The isolated guiding layers are shown in **Figure S2e**.

Figure S2: a) Cross section (top) and top view (bottom) of the inlet for the injection experiment. **b)** Unit cell design without water passage. **c)** unit cell design with water passage. **d)** Top (P), middle (S) and bottom (I) layer of the full design shown with remaining structure shown in transparent. **e)** Isolated top (P), middle (S) and bottom layer (I).