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ABSTRACT 
Rock heterogeneity has a significant effect on immiscible displacement. This 
is especially true when the mobility ratio of the two fluids is unfavorable, 
favoring unstable displacement. However, this is not taken into account in 
the numerical analysis of classical core flooding experiments to quantify two-
phase flow properties using Special Core Analysis (SCAL). Our approach 
combines the modern interpretation of SCAL data with experimental data 
measured on rock samples for which the homogeneity assumption—a 
prerequisite for SCAL experiments—can no longer apply due to their size and 
heterogeneity. In contrast to other studies that take heterogeneities into 
account, we focus on simple-to-perform unsteady-state experiments. We 
analyze these experiments by numerical interpretation using homogeneous 
and heterogeneous simulation domains and by introducing porosity-based 
heterogeneity and permeability as well as capillary scaling. In the current 
study, we first question the applicability of standard relative permeability 
measurements to heterogeneous rocks and fluids with an excessively high 
mobility ratio, such as for CO2-brine displacement in heterogeneous rocks. 
However, we show that they describe two-phase flow very well when 
porosity-based heterogeneity is taken into account, which is equivalent to 
downscaling. The study thus shows a way to fall back on established standard 
measurements if it should be possible to account for subgrid heterogeneities 
in SCAL workflows. To this end, we propose an approach based on steady-
state experiments and appropriate sample selection. 
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1. INTRODUCTION 
Among the many applications that require accurate predictions of two-phase fluid displacements are 
hydrocarbon recovery and geologic CO2 storage. However, the unexpected migration of carbon dioxide 
during CO2 injection highlights the need to better understand the underlying mechanisms, especially in 
heterogeneous reservoirs (2, 15, 29, 33). It is well known that rock formations are heterogeneous at 
various scales. However, experiments to measure flow properties require samples in which the rock 
properties are well represented and are not dependent on the specific sample volume, i.e., a volume 
larger than the representative elementary volume (REV) (4). As a result, the design and interpretation of 
multiphase flow property measurements is challenging because the definition of an REV depends on 
both the scales of heterogeneity and the nature of the property being measured (13, 16, 45, 50). Due to 
the dependence of capillary forces on heterogeneity, local variations in saturation states during 
immiscible displacements are known as 'capillary heterogeneity'. This effect can be conceptualized in 
terms of the spatial variability of capillary pressure saturation functions (11). This phenomenon has 
practical implications since the measurement of multiphase flow parameters is affected by the scale of 
investigation (17, 23, 44). Submeter-scale rock heterogeneity, such as laminations and bedding, can 
significantly affect fluid flow properties and should be considered when modeling or predicting fluid 
flow at larger scales (5, 17, 49). This effect is particularly pronounced in multi-scale heterogeneous 
carbonates and for strong fluid-viscosity contrasts, such as CO2-brine displacement.  

In conventional reservoir simulation workflows, small-scale heterogeneity is not explicitly captured due 
to the typically large grid block sizes to which multiphase flow properties are assigned (12, 18, 42). A key 
input function in immiscible displacement is the relative permeability, which controls displacement and 
sweep efficiency. Typically, laboratory and special core analysis (SCAL) measurements are performed on 
homogeneous samples that do not accurately represent the average property at the discretization size 
of a reservoir model. This poses a significant challenge to the characterization or measurement of relative 
permeability. To illustrate this point, we can compare the size of a SCAL plug, which is in the order of 
centimeters, to a typical grid block in a reservoir simulation, which can be orders of magnitude larger. 
Our understanding of the process of upscaling homogeneous rock/fluid properties (SCAL) to the next 
larger scale is limited because of the typically limited information available from the subsurface about 
mesoscale heterogeneity, but also because of our inability to describe rock heterogeneity well enough. 
Several approaches have been developed to characterize capillary heterogeneity in rock cores (5, 19, 20, 
21, 22, 24, 32, 38, 39, 43). However, uncertainties remain in the characterization and description of more 
complex rocks, especially for multiphase flow along fractional flow curves and for different flow rates (6, 
7). 

There are workflows from the pore scale to the meter scale that provide new opportunities to 
systematically upscale multiphase flow for reservoir applications (25). These workflows combine 
laboratory measurements, such as core flooding, with in situ imaging methods at various scales and 
digital rock physics with upscaling schemes that incorporate capillary pressure heterogeneity into the 
analysis. With rigorous upscaling, small-scale effects can be incorporated into continuum-scale models 
by interpreting them through numerical modeling using an optimization routine; effective petrophysical 
parameters and relative permeability saturation functions are calculated, and their uncertainties are 
included (3, 10, 16, 25, 38, 46). In practice, however, the implementation of sample heterogeneity for 
relative permeability interpretation refers to downscaling rather than upscaling, unless the heterogeneity 
is represented in a reservoir grid block. 

In addition to the core-scale workflows mentioned above, there is a well-established body of work on 
deriving relative permeability and capillary pressure directly from pore-scale simulations. Pore-network 
models, for instance, describe the pore space as interconnected pores and throats, making it possible to 
simulate multiphase flow under various wettability conditions (7, 8, 27, 34, 41, 47). Similarly, lattice 
Boltzmann methods and similar direct numerical simulations capture interfacial dynamics in micro-CT 
images of rocks (1). Although these approaches provide valuable insights into pore-scale physics, they 
often require detailed digital rock imaging and can be computationally demanding. They also raise issues 
of upscaling, as relative permeability and capillary pressure relationships must be integrated over 
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potentially complex heterogeneities. The present study therefore focuses on unsteady-state experiments 
on larger, more heterogeneous rock samples, bridging the gap to scales where heterogeneity plays a 
dominant role. 

The Estaillades limestone is a candidate rock sample with a high degree of heterogeneity. It has been 
shown that traditionally measured relative permeability saturation functions are insufficient to represent 
a rock volume that is an order of magnitude larger (37). In a follow-up investigation, we developed a 
rigorous and fully stochastic SCAL analysis workflow and applied it to steady-state and centrifuge 
experimental data on decane-brine primary drainage in Estaillades. The analysis provided confidence 
intervals for the combined measurements and sample-to-sample variation (3). The present study 
compares these results to larger scale unsteady state (USS) core flooding experiments using 1D 
homogeneous simulation domains. By assuming homogeneity, which is traditionally the case for SCAL 
data interpretation (31), the analysis of the USS experiment directly provides the upscaled 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤), 
including the confidence interval, which is representative for the specific sample size. In a second step, 
we implement the X-ray computed tomography (CT) porosity profile and the resulting capillary 
heterogeneity and permeability profiles. By history matching the USS experiment to the 3D 
heterogeneous domain, we can determine the true 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and the effects of heterogeneity on the scales 
studied. 

Using decane-brine and CO2-brine transient experiments, we investigate the effect of heterogeneity on 
the relative permeability. Using the water-wet reference case, previous steady-state measurements are 
directly compared to the system under study. In this step-by-step approach, heterogeneity is introduced 
by first considering a 1D homogeneous simulation domain, then a 1D heterogeneous simulation domain, 
and finally a 3D heterogeneous domain. As a result, we perform a full stochastic analysis for 
homogeneous 1D cases. Using simple history matching, we derive the base case 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) for the 1D 
heterogeneous domain, which is also used for 3D simulations. As the fluid pairs and simulation domains 
become more complex, we ensure that the method is robust and able to handle a wider range of 
heterogeneities. Using this methodology, we can gain valuable insights into the validity and limitations 
of the current SCAL procedures and develop alternative methods and upscaling workflows for the 
calculation of saturation functions. The developed numerical workflow can be extended to other highly 
heterogeneous and demanding rock-fluid systems. 

2. EXPERIMENTAL AND NUMERICAL METHODS 
In this work, the experimental results are based on those published in Ott et al (37). The experiments 
were performed on Estaillades limestone samples with a length of 15 cm and a diameter of 7.5 cm. The 
average porosity and the average permeability of the rock sample were measured to be 𝜙𝜙 = 0.297 and 
𝐾𝐾 = 260 mD, respectively. 

The experiments were performed at a pressure of 100 bar and a temperature of 50°C, which corresponds 
to a reservoir depth of about 1000 m at which the injected CO2 is in a supercritical (sc) state. At this 
thermodynamic condition, the CO2, decane, and brine phases have densities of 𝜌𝜌𝐶𝐶𝐶𝐶2 = 384.67 kg/m3, 
𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 707.3 kg/m3, and 𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1001.2 kg/m3, and viscosities of 𝜇𝜇𝐶𝐶𝐶𝐶2 = 0.0309 cP, 𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
 0.619 cP, and 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.576 cP, respectively. To investigate the primary displacement process of brine 
by CO2, a sample was first saturated to 𝑆𝑆𝑤𝑤 = 1 and then flooded with scCO2. A reference measurement 
was performed on the same sample using decane as the injection phase. Since the SCAL measurements 
(37) were performed with the same fluid pair and on the same rock type from the same block of the 
Estaillades outcrop, the decane-brine experiments serve as a reference and are directly comparable to 
the previous SCAL interpretation (3). The flooding experiments were conducted in USS using constant 
injection rates of 0.25 ml/min for decane injection and 0.44 ml/min for CO2 injection. These flow rates 
correspond to a capillary number of 𝐶𝐶𝐶𝐶 ~ 5 ×10-8 for decane-brine and 𝐶𝐶𝐶𝐶 ~ 6 ×10-9 for CO2-brine. 
During the experiments, the pressure drop was measured, and the up-front 3D porosity profiles as well 
as the 3D saturation profiles were obtained using differential imaging conducted during medical CT 
scanning. Production curves were determined by monitoring CT saturation. In Figure 1, the saturation 
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profiles for the displacements of decane-brine (top row) and CO2-brine (bottom row) are shown in 
orange and the initial rock-fluid system is semitransparent in the background. Both experiments were 
performed in a sequence on the same rock sample. The experimental details can be found in Ott et al 
(37).  

The simulations performed in this study use the MATLAB Reservoir Simulation Toolbox (MRST). The 
experiments are simulated as displacement of immiscible, incompressible fluids, and consequently the 
material balance for incompressible two-phase flow and two-phase Darcy's equation (momentum 
balance) are solved. The input parameters are the measured sample porosity and permeability, the CT-
based 1D and 3D porosity profiles, and the fluid phase densities and viscosities as given above. The 
simulation results are then subjected to history matching, which matches and optimizes the simulation 
results to the experimental measurements. MATLAB's global optimization module was used to 
accomplish this task. Based on genetic or active-set algorithms, this module performs a constrained 
nonlinear optimization to introduce essential inequalities consistent with the saturation function 
parameters in the study. After achieving the best fit, we examine the response surface around the optimal 
solution and determine the sensitivity of the optimal solution using Markov Chain Monte Carlo (MCMC), 
specifically the Delayed-Rejection Adaptive-Metropolis (DRAM) algorithm. As a result of the DRAM 
approach, the MCMC sampler becomes more efficient and can handle high-dimensional problems 
resulting from the large number of parameters inherent in saturation functions. An optimal solution to 
the complex task of history matching and uncertainty analysis is provided by the combination of 
numerical techniques and simulation methods. Amrollahinasab et al (3) discusses the methodology and 
how it is applied to transient experiments in the current study. The analysis and numerical treatment of 
the rock heterogeneity is part of the results and is embedded in the following chapter. 

3. EXPERIMENTAL AND NUMERICAL METHODS 
3.1. Data Interpretation Assuming Homogeneity 
In the classical SCAL interpretation, it is assumed that the samples are homogeneous and can be 
described with a homogeneous 1D simulation domain. To fulfill this assumption, the samples must be 
carefully selected and must correspond to a representative elementary volume (REV). As a result, the 
samples are quite small with diameters of 1 or 1.5 inches and a length of a few centimeters. The 
evaluation of the experimental data usually provides a single set of relative permeability 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 
capillary pressure 𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤) saturation functions, which in themselves require no further interpretation. In 
reservoir simulations, these saturation functions are then assigned to rock types, with heterogeneity 
accounted for by a Leverett-J scaling of 𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤) (26). An individual grid block is then assigned to a single 

 
Figure 1: Computed tomography images taken during decane-brine (top) and CO2-brine (bottom) 
primary drainage experiments. Both experiments were performed in sequence on the same rock 
sample. The data were recorded in differential imaging to highlight the saturation distributions for the 
invading decan and CO2. The initial rock-fluid system is shown as a semitransparent background. Note 
that the saturation thresholds are comparable but arbitrarily chosen to highlight the heterogeneity in 
the saturation distributions. The absolute saturation values are shown in Figure 2 c,f and Figure 4 c,f 
for 1D saturation profiles and in Figure 6 a,e for 3D volumes. 
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set of 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤)  and 𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤)  saturation functions, meaning that the grid block is described as 
homogeneous in all respects. 

In contrast to small-scale SCAL experiments, core flooding at larger scales is typically influenced by 
sample size and heterogeneity, leading to sweep effects (5, 37). To interpret the data numerically, there 
are two possibilities: a) including rock heterogeneity explicitly in the simulation model to obtain "true" 
saturation functions, which effectively refers to a down-scaling, and b) ignoring rock heterogeneity, i.e. 
assuming a homogeneous and representative rock volume. We can assume that in the latter case we will 
not find the same relative permeability as for case (a), but an effective 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) that is representative of 
the investigated volume. We refer to this as the upscaled 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤), which may still be scale dependent. 

Using a 1D homogeneous simulation domain (case (b)), we first derive the relative permeability from the 
larger scale USS experiments. Using the SCAL-derived 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤) (3), we first forward-simulate 
the displacement to check the validity of the SCAL input. In a second step we try to match the 
experimental data to determine 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤)  using MICP-derived 𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤) , data typically available from 
routine core analysis. The MICP curve is scaled according to the interfacial tension (IFT) for the primary 
drainage (Eq. 1): 

𝑃𝑃𝑐𝑐(𝜎𝜎) = 𝜎𝜎 cos𝜃𝜃
𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 cos𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟

 𝑝𝑝𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟, (1) 

where 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟  is the mercury-air IFT (480 mN/m), 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟  is the corresponding contact angle, which is 

assumed to be the same for both non-wetting fluids (𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜃𝜃). 𝜎𝜎 is the IFT of the decane- or CO2-brine 

systems, which are assigned 45 mN/m and 40 mN/m, respectively (14). The closure correction is also 
applied to the MICP using the methodology presented in McPhee et al (31). The pressure drop and data 
were then fitted by varying 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤). The comparison of the MICP-scaled decane-brine 𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤) with that 
derived from SCAL measurements, including the uncertainty range, is reported in a previous study (3) 

 
Figure 2: The experimental responses (symbols) of the decane-brine (top row) and CO2-brine (bottom 
row) displacement experiments in Figure 1 and their numerical interpretation. From left to right: 
Pressure difference and brine production curve as a function of time, and the decane and CO2 
saturation profiles at two consecutive time steps, as indicated in the legend. The lines correspond to 
forward simulations using SCAL data (petrol, SCAL 1D homo/hetero) and to numerical 1D history-
matching results using 1D homogeneous and heterogeneous simulation domains (blue, Corey and red, 
LET (28)) computed from the CT density profile (light blue). Detailed descriptions of the relative 
permeability representations and uncertainty intervals are given in the text and in the legend. 
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and is shown in Figure 3 c,f for decane-brine and CO2-brine; the scaled MICP curve is well within the 
uncertainty range of the SCAL data, except for the inlet pressure. 

Due to the common rock-fluid system (decane-brine), the SCAL-interpreted 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤) from  
our previous study (3) can now be directly compared with the decane-brine USS flooding experiment. 
Forward simulations of the USS process using the SCAL-derived saturation functions showed large 
deviation between the predicted and experimentally observed results; the pressure drop and the brine 
production curve are strongly underestimated, as shown in Figure 2 a,b – the SCAL data obtained from 
small samples are not directly applicable, not even to the next larger scale investigated. 

A good match is achieved by history matching the experimental data using the two commonly used 
parameterizations of 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤), Corey (9) and LET (28). The Corey parameterization was used and the 
residual decane saturation and the corresponding endpoints were fixed at 𝑆𝑆𝑤𝑤 = 1 and 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤 = 1) =
1 , corresponding to a primary drainage process, but all other parameters were free and could be 
matched. Figure 2 shows the matched experimental pressure drop, production curve, and saturation 
profiles. The results show that the cumulative brine production and the pressure difference generally 
agree well, with some deviations in the transient part and especially at the breakthrough point, although 
the saturation profiles simulated on a homogeneous domain cannot reflect the experimental profiles in 
most cases. 

An alternative method for matching experimental measurements using 1D homogeneous models is the 
LET parameterization, which offers more flexibility but also requires more fitting parameters. Markov 
Chain Monte Carlo simulations were used for the uncertainty analysis, similar to the SCAL results (3). It 
is important to note that in the present case, 𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤) remains constant with respect to the scaled MICP 
discussed earlier. 

Figure 3 a,b show the history match results and quantified uncertainty ranges along with the best fits 
from the SCAL interpretation. Even if the experimental responses are perfectly described with the LET 
model, the relative permeability curves deviate significantly with the state-of-the-art SCAL 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤). On a 
larger scale, the fluid phases show significantly lower mobility and are in fact well outside the confidence 

 
Figure 3: Relative permeability saturation functions resulting from history matching on 1D 
homogeneous and 1D heterogeneous simulation domains. The capillary pressure functions on the right 
are used as input (see text). The top row panels (a) to (c) show the HM results of the decane-brine, and 
the bottom row panels (d) to (f) show the results of the CO2-brine displacement experiments. From left 
to right: 𝒌𝒌𝒓𝒓 on a linear and logarithmic scale, and 𝑷𝑷𝒄𝒄 on a logarithmic scale. The squares correspond to 
the SCAL results measured on a smaller scale and considered homogeneous. 
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intervals given for both the SCAL data (3) and the USS LET data. As expected, the simulated saturation 
profiles in Figure 2 show poor agreement with the experimental; in particular, a homogeneous 
simulation domain cannot represent a saturation state in heterogeneous rock sample, but the overall 
material balance as represented by the brine production curve is accurate. 

The same procedure was applied to the CO2-brine displacement experiment, with the results shown in 
the bottom row of Figure 2. A similar picture can be drawn as that  for the decane-brine experiment. A 
history fit using homogeneous rock properties, a LET representation of 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and the MICP derived 
𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤) shows a good fit to the experimental responses in Figure 2 d,e; the MCMC confidence interval 
(P10 to P90) covers the experimental data points well. Figure 2f shows the saturation profiles for two 
consecutive time steps. Again, the complexity of the experimental saturation profile cannot be matched, 
but the material balance can be. The resulting 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) values are shown in Figure 3 d,e. A similar 
tendency is observed for the CO2-brine system as for the decane-brine system discussed above, with 
𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) showing a distinctly different behavior than that derived by SCAL.   

Using a 1D homogeneous model match data from homogeneous rock samples, we conclude the 
following: a) History matching complex experimental data with assumed homogeneous rock properties 
allows an accurate description of the experimental Δ𝑃𝑃 and the brine production curve. b) Due to the 
homogeneity assumption, the simulated saturation profiles 𝑆𝑆𝑤𝑤(𝑥𝑥)  cannot match the complex 
experimental profiles, but are in agreement with the material balance. c) For the investigated sample 
volume, 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤)  can therefore be considered as upscaled and representative by the homogeneity 
assumption, however it differs significantly from the SCAL-derived 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤)  and may still be scale-
dependent. 

3.2. Introducing Heterogeneity 
To capture the diverse saturation profiles shown in Figure 2 c,f, we use the approach developed by 
Hosseinzadeh Hejazi et al (16). In this method, core heterogeneity is addressed by adjusting the capillary 
pressure within each grid block. Our implementation divides the 1D simulation domain into 2 mm slices, 
which allows for a detailed representation of the sample heterogeneity. Each slice, denoted as 𝑗𝑗 , is 

uniquely defined by its capillary pressure 𝑃𝑃𝑐𝑐
𝑗𝑗(𝑆𝑆), porosity 𝜙𝜙𝑗𝑗 , and absolute permeability 𝐾𝐾𝑗𝑗 . This method 

allows for the evaluation of small-scale fluid saturation variations due to capillary heterogeneity by 
analyzing changes in the capillary entry pressure of each grid (16). According to the Brooks-Corey model 
(9), the entry pressure, 𝑃𝑃𝑑𝑑 , is a critical parameter, leading to the scaling relation (Eq. 2): 

𝑃𝑃𝑐𝑐
𝑗𝑗(𝑆𝑆) =

1
𝑓𝑓𝑗𝑗
𝑃𝑃𝑐𝑐(𝑆𝑆) =

𝑃𝑃𝑑𝑑𝑑𝑑
𝑃𝑃𝑑𝑑

𝑃𝑃𝑐𝑐(𝑆𝑆)                           𝑗𝑗 = 1, … ,𝑁𝑁, (2) 

where 𝑓𝑓𝑗𝑗 is the scaling factor for each grid 𝑗𝑗, 𝑁𝑁 is the total number of elements, and 𝑃𝑃𝑑𝑑𝑑𝑑 is the entry 

pressure for the jth element. The reference capillary pressure curve, 𝑃𝑃𝑐𝑐(𝑆𝑆) , is determined by SCAL 
experiments. Using Brooks-Corey parameters for this reference curve allows one  to accurately model 
system capillary pressures. Porosity and permeability spatial variations are evaluated using the Leverett-
J function, 𝐽𝐽(𝑆𝑆), which is defined as (Eq. 3): 

𝐽𝐽(𝑆𝑆) =  �
𝐾𝐾
𝜙𝜙
𝑃𝑃𝑐𝑐(𝑆𝑆)
𝛾𝛾

. (3) 

This is used to formulate the scaling factor, which corresponds to a Leverett-J scaling (Eq. 4): 

𝑓𝑓𝑗𝑗 =
𝑃𝑃𝑑𝑑
𝑃𝑃𝑑𝑑𝑑𝑑

= �
𝐾𝐾𝑗𝑗/𝜙𝜙𝑗𝑗
𝐾𝐾m/𝜙𝜙m

, (4) 
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where 𝐾𝐾𝑗𝑗  and 𝜙𝜙𝑗𝑗  are the permeability and porosity for each grid, and 𝐾𝐾𝑚𝑚 and 𝜙𝜙𝑚𝑚 are the respective 

measured average values. For heterogeneous models, the saturation profile is then derived close to 
steady state from (Eq. 5): 

d𝑆𝑆
d𝑥𝑥D

= �
𝑞𝑞𝜇𝜇nw𝐼𝐼
𝐴𝐴𝐾𝐾𝑗𝑗

��
1

𝑘𝑘r,nw(𝑆𝑆)��
𝑓𝑓𝑗𝑗

d𝑃𝑃c(𝑆𝑆)/d𝑆𝑆�
. (5) 

To analyze the individual elements, the saturation and capillary pressure of each grid cell are adjusted 
by the scaling factor 𝑓𝑓𝑗𝑗 in our MRST-based simulator. To determine the optimal values for these scaling 

factors, we use an objective function that aims to minimize the discrepancy between the experimental 
and simulated capillary pressure profiles. This objective function is given by (Eq. 6): 

𝐸𝐸�𝑥𝑥𝑗𝑗� = � 

𝑁𝑁q

𝑘𝑘=1

�
𝑃𝑃c �𝑆𝑆exp�𝑥𝑥𝑗𝑗�� − 𝑓𝑓𝑗𝑗𝑃𝑃c �𝑆𝑆H�𝑥𝑥𝑗𝑗��

𝑃𝑃c �𝑆𝑆exp�𝑥𝑥𝑗𝑗��
�

2

, 𝑗𝑗 = 1, … ,𝑁𝑁, (6) 

where 𝑃𝑃c is the reference capillary pressure curve, 𝑓𝑓𝑗𝑗 is the scaling factor, 𝑆𝑆exp�𝑥𝑥𝑗𝑗� is the slice-averaged 

experimental water saturation and 𝑆𝑆H�𝑥𝑥𝑗𝑗�  is the saturation profile derived from homogeneous 

simulations. This methodology accounts for the fact that capillary pressure reference curve is largely 
unaffected by small-scale heterogeneities and thus justifies our approach (16). 

After determining the scaling factors using Equation 6, we proceed to calculate the properties of the 
heterogeneous model. In particular, we calculate the 𝐾𝐾ℎ𝑚𝑚 using Equation 4 and the porosity profile 
shown in Figure 2 c. For the purpose of heterogeneous modeling, each grid cell is characterized by three 
different properties: the porosity 𝜙𝜙, the absolute permeability 𝐾𝐾 calculated from Equation 4, and the 
capillary scaling factor 𝑓𝑓 derived from Equation 6. 

To validate our model, we perform a comparison of numerical responses such as pressure difference 
(Δ𝑃𝑃), brine production (𝑄𝑄), and saturation profiles (𝑆𝑆(𝑥𝑥)) with experimental measurements. This process 
involves a multiobjective optimization approach that uses a genetic algorithm from the MATLAB 
optimization toolbox to minimize a three-part composite error function (Eq. 7) 

𝐼𝐼 =
1
𝑁𝑁
�  
𝑁𝑁

𝑗𝑗=1

�
∆𝑃𝑃sim�𝑥𝑥𝑗𝑗� − ∆𝑃𝑃exp�𝑥𝑥𝑗𝑗�

∆𝑃𝑃exp�𝑥𝑥𝑗𝑗�
�
2

, 

𝐽𝐽 =  
1
𝑁𝑁
�  
𝑁𝑁

𝑗𝑗=1

�
𝑄𝑄sim�𝑥𝑥𝑗𝑗� − 𝑄𝑄exp�𝑥𝑥𝑗𝑗�

𝑄𝑄exp�𝑥𝑥𝑗𝑗�
�
2

, 

𝐾𝐾 =  
1
𝑁𝑁
�  
𝑁𝑁

𝑗𝑗=1

�
𝑆𝑆sim�𝑥𝑥𝑗𝑗� − 𝑆𝑆exp�𝑥𝑥𝑗𝑗�

𝑆𝑆exp�𝑥𝑥𝑗𝑗�
�
2

. 

(7) 

This rigorous approach allows us to fine-tune our model to ensure that it accurately reflects the 
experimental data, thereby confirming its accuracy. In addition, the methodology incorporates a new 
perspective by analyzing scaling factors derived from single-rate drainage experiments. This includes the 
evaluation of saturation profiles under both transient and steady-state conditions towards the end of 
the injection period. Such analysis enriches our understanding by incorporating dynamic saturation 
changes into the modeling process and provides a more comprehensive view of fluid behavior in the 
reservoir. 
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3.3. Data Interpretation Considering the 1D Porosity Profile 
In the next step, we include porosity, permeability, and capillary heterogeneity according to the above 
model in a 1D simulation domain. The inclusion of heterogeneity based on the exact porosity profile 
allows a more complete description of the experimental data with minimal additional parameters, such 
as the scaling factor. The agreement obtained with the experimental responses is shown in Figure 4 for 
both systems, decane-brine and CO2-brine. While the saturation profiles and brine production curves 
are accurately described, discrepancies in the differential pressure ∆𝑃𝑃  are observed in the transient 
behavior around the breakthrough time. 

Figure 5 shows the Corey and LET 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤)  and Brooks-Corey 𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤)  together with the SCAL 
interpretations, and illustrates that the inclusion of heterogeneity in the simulations significantly reduces 
the gap between the model predictions and the uncertainty range of the SCAL interpretation. In 
particular, the decane 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) is well described on both the linear and logarithmic scales, and the brine 
𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) is well described on the linear scale, i.e. for large water mobility. It should be noted that the 
uncertainty range from our previous work (3) describes the uncertainty of the measurement, but not the 
sample-to-sample variation, i.e. the heterogeneity. The good agreement of the simulation with the 
experimental data therefore shows that conventionally measured relative permeabilities describe 
heterogeneous systems well, provided that heterogeneity has been explicitly introduced into the model 
calculation as described above. It is also noteworthy that the decane 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) falls well within this 
uncertainty interval, while the CO2 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤)  deviates significantly from the SCAL predictions. This 
difference is probably due to different wetting properties in the decane-brine system compared to the 
CO2-brine system. 

The study highlights the importance of interpreting measurement data in the context of the phenomena 
under investigation and confirms the effectiveness of the methodology developed for steady-state 
experiments by Hosseinzadeh Hejazi et al (16) for USS drainage experiments. Moreover, the analysis of 
the scaling factors and Pareto fronts resulting from the optimization method used shows a linear 
relationship between production errors and errors in the saturation profile. This observation corrects the 

 
Figure 4: The experimental responses (symbols) of the decane-brine (top row) and CO2-brine (bottom 
row) displacement experiments and their numerical interpretation as in Figure 2. From left to right: 
Pressure difference and brine production curves as a function of time, and the decane, CO2 saturation 
profiles at two consecutive time steps, as indicated in the legend. The lines correspond to the numerical 
history matching results using a 1D heterogeneous domain computed from the CT density profile and 
the full 3D heterogeneous volume. The relative permeability representations used are indicated in the 
legend and described in the text. 
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inconsistencies found in homogeneous simulations and highlights the need for heterogeneity in 
simulations to achieve a more accurate and comprehensive understanding of the system under study.  

3.4. Modeling the 3D Heterogeneous Volume 

3.4.1. Transforming Medical CT Data into 3D Porosity and Saturation Maps 
This section explains the process of converting medical CT scans into 3D porosity and fluid-saturation 
maps. The individual scans are represented on a gray scale in Hounsfield Units (HU), an absolute scale 
for medical applications. Prior to further processing, the scans were subjected to median filtering and 
3D Gaussian blurring to reduce noise and better determine the porosity profile and saturation state. 

The 3D porosity map was obtained using differential imaging. This approach calculates the difference 
between brine saturated and dry scans as recommended by various studies (35, 36, 48). The voxel-by-
voxel porosity profile is derived using Equation 8: 

𝜙𝜙(𝑥⃗𝑥) =
𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥⃗𝑥) −𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑(𝑥⃗𝑥)

𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
= 𝛼𝛼 ∙ �𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥⃗𝑥) − 𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑(𝑥⃗𝑥)�, (8) 

where 𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥⃗𝑥) is the HU value for the voxel in the brine-saturated scan, 𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑(𝑥⃗𝑥) is for the dry 

scan, and 𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎 are the HU values for brine and air, respectively. The difference is then 
scaled by a factor α to match the measured sample porosity. 

Subsequently, the 3D fluid saturation maps were determined for the time lapse CT scans (𝐻𝐻𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒(𝑥⃗𝑥, 𝑡𝑡)) 

by Equation 9: 

 
Figure 5: Relative permeability and capillary pressure saturation functions resulting from experiments 
and history matching on the 1D and 3D heterogeneous simulation domains. The top row (a, b, c) shows 
the HM results for the decane-brine experiments, and the bottom row (d, e, f) shows the results of the 
CO2-brine displacement experiments. From left to right: 𝒌𝒌𝒓𝒓 on a linear and a logarithmic scale, and 𝑷𝑷𝒄𝒄 
on a logarithmic scale. The squares correspond to the SCAL results measured on a smaller scale,  and 
are considered homogeneous. 
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𝑆𝑆𝐶𝐶𝐶𝐶2(𝑥⃗𝑥, 𝑡𝑡) =
𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥⃗𝑥, 𝑡𝑡0) − 𝐻𝐻𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒(𝑥⃗𝑥, 𝑡𝑡)
𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥⃗𝑥) − 𝐻𝐻𝐻𝐻𝐶𝐶𝐶𝐶2

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥⃗𝑥) , (9) 

where 𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥⃗𝑥, 𝑡𝑡0)  and 𝐻𝐻𝐻𝐻𝐶𝐶𝐶𝐶2
𝑠𝑠𝑠𝑠𝑠𝑠(𝑥⃗𝑥)  correspond to the calibration scans at 𝑆𝑆𝑤𝑤 = 1  and 𝑆𝑆𝑤𝑤 = 0 , 

respectively, and 𝐻𝐻𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒(𝑥⃗𝑥, 𝑡𝑡) are scans at individual time steps. Resulting 3D saturation maps are shown 

in Figure 6 a,e. 

The original resolution of these CT images (voxel size) was 0.18×0.18×0.5 mm³. To increase the efficiency 
of the computations, the data were binned by combining 24×24×8 voxels into blocks of approximately 
4 mm³. The impact of this voxel binning on simulation accuracy was evaluated by comparing it to a finer 
binning of 12×12×4 voxels, specifically for the decane-brine scenario. This comparison showed 
negligible differences in the results, so that the simulations were carried out on the coarser grid for 
reasons of computing time.  

3.4.2. 3D Heterogeneous Modeling 
The capillary pressure scaling described above was extended to the 3D simulation domain. The same 
principle used to determine the scaling factors in 1D was applied to the 3D grid. However, instead of 
attempting to fit the model to the experimental data in 3D, due to the available computational power, 
the study performed forward simulations using the best fit of the 1D modeling (LET 1D heterogeneous). 
The agreement between the simulated and experimental fluid saturation distributions was then 
statistically analyzed for evaluation.  

The comparison between observed and predicted saturation values, detailed in Figure 6 for both decan 
brine and CO2-brine displacement, uses 1D saturation profile projections (Fig. 4) in addition to the 
experimental data to provide a more effective assessment. Despite the simple forward simulation, the 
agreement between 3D simulations, 1D projections and experimental data is found to be satisfactory. 
The study shows that both the differential pressure (∆𝑃𝑃) and the cumulative brine production in the 3D 

 
Figure 6: a) Measured 3D water saturation profiles after 9.8 h of decane flooding. Flow direction is from 
left to right. b) Corresponding simulation output. c) Comparative experimental and simulated water 
saturation histograms and d) correlation between simulated and experimentally measured saturations. 
The black line shows the slope of unity with zero intercept. The red line shows a linear regression on the 
data. Parts (e) through (h) show the same data after 8.9 h of CO2 flooding. 
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simulations agree well with those of the heterogeneous 1D modeling, although with similar limitations 
in terms of the data on the respective breakthrough times. This limitation suggests potential challenges 
associated with the capillary pressure scaling approach, particularly the assumption of a steady-state 
system, as discussed in previous research (16, 40). 

In addition, a detailed statistical analysis of the 3D saturation profiles is presented in Figure 6 c-h, 
comparing the experimentally measured saturations with those simulated for the decane-brine and CO2-
brine scenarios at specific time points. The histograms (Fig. 6 c,g) show excellent agreement over a wide 
range of saturations, an agreement that is further supported by the correlation plots (Fig. 6 d,h), which 
show correlation coefficients above 0.99 and 0.98 for the decane and CO2 scenarios, respectively. The 
discrepancies between experimental and simulated data occur mainly at higher brine saturation levels, 
indicating known experimental errors in the saturation measurements, but are not considered significant 
for the current study. 

4. SUMMARY AND CONCLUSIONS 
This study provides important insights into multiphase flow in heterogeneous rock formations with 
heterogeneities on the order of millimeters to tens of centimeters, which can be studied in laboratory 
experiments but must be averaged in reservoir simulations. The present study questions the direct 
applicability of relative permeability derived from special core analysis (SCAL) in such cases. This question 
is particularly relevant in view of the growing importance of carbon capture and storage as a 
countermeasure to climate change and its associated risks. Accurately predicting the migration of CO2 
plumes in underground reservoirs is crucial for assessing the risks associated with CO2 storage and is the 
subject of the present study. The study was conducted with a very heterogeneous rock type and with 
CO2-brine, a fluid pair that tends to amplify the effect of heterogeneity on two-phase fluid displacement. 
However, the developed numerical workflow can be extended to other highly 
heterogeneous/demanding rock-fluid systems. 

In this paper, we first show that the direct application of SCAL data to describe CO2-brine displacement 
on a larger experimental scale cannot be satisfactorily described if the rock is heterogeneous. This is to 
be expected, since the underlying assumption that the sample is representative and homogeneous in all 
rock properties is not justified, which must also apply to the description of two-phase flow in a grid block 
at the reservoir scale. However, history matching of the experimental data with a homogeneous model 
provides good agreement with the experimental responses. The resulting relative permeability can be 
considered upscaled and representative for the volume under study but differs significantly from the 
𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) derived from SCAL and may still be scale dependent. However, to be able to use standardized 
SCAL experiments, the heterogeneity of the rock must be taken into account in one way or another at 
the sub-grid scale. 

The inclusion of the 1D porosity profile together with permeability and capillary scaling represents a first 
attempt to account for the effects of heterogeneity on two-phase flow. For this, we are applying a 
concept developed for steady-state experiments to USS experiments that are easier and faster to 
perform. The results show that the experimental data can be described quite well, especially the 
saturation profiles and the brine production curve for both systems, decane-brine and CO2-brine. There 
are discrepancies in the transient behavior in the region of the breakthrough point, where the differential 
pressure is underestimated. A comparison of the resulting relative permeabilities for the decane-brine 
case shows that they are well within the uncertainty interval of the classical SCAL data. This suggests that 
SCAL data measured on homogeneous and small-scale samples do indeed provide a good description 
of two-phase displacements, provided that capillary heterogeneity is taken into account. The deviation 
of the obtained CO2-brine relative permeabilities from the SCAL data indicates different wettabilities and 
interfacial tensions, since the SCAL data were measured with decane and brine as fluids.  

https://doi.org/10.69631/ipj.v2i2nr44


 
Amrollahinasab et al  Page 13 of 16 
 

 
InterPore Journal, Vol. 2, Issue 2, 2025       https://doi.org/10.69631/ipj.v2i2nr44  

An extension of the developed method to include heterogeneity in the two-phase modeling to a 3D grid 
for application to the 3D experimental domain shows comparable results. For this purpose, the calculated 
LED parameters of the best fit of the 1D heterogeneous simulation were used for the forward simulation 
in 3D. The exact statistics of the saturation distributions show a very good agreement between the 3D 
experimental and simulation data, which gives confidence in the developed methodology.   

The main messages of this study are twofold:  

a. An upscaled relative permeability can be perfectly derived from larger scale experiments using only 
the homogeneity assumption for numerical interpretation. This relative permeability may be 
different from a standard relative permeability and may still be scale dependent.  

b. By introducing porosity-based heterogeneity and permeability and capillary scaling, standard 
relative permeability saturation functions well describe two-phase displacements even in a 
heterogeneous rock. However, the introduction of the explicit porosity map is more of a downscaling 
since it cannot be done at the reservoir scale.  

To be able to use standard laboratory SCAL programs for CCS field development, (a) and (b) need to be 
bridged.  

The authors propose to develop a method that upscales standard SCAL data, such as steady-state 
relative permeability (𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤)) and porosity maps from CT scans to a larger scale. However, there is a 
challenge: having a porosity map is not enough to capture all the heterogeneities in the rock; one would 
also need a water saturation map, as mentioned in Equation 6, to calculate the scaling factors (𝑓𝑓). This 
requires a large core flooding experiment, which is beyond the scope of standard SCAL methods. 
However, by using X-rays to measure saturation changes during steady-state SCAL tests, it's possible to 
obtain both a gray-scale porosity map and a corresponding water saturation map from the same 
experiments. By carefully selecting rock samples that are very similar ("twin" samples) and using the 
steady-state 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) along with the porosity and water saturation (𝑆𝑆𝑤𝑤 ) maps as inputs, it becomes 
possible to accurately predict flow in large-scale core floods using only the porosity information 
available. 

In terms of finding "twin" samples and how many small samples are needed to accurately represent 
larger scale experiments, the strategy is inspired by a process described in Maas et al (30). Essentially, 
the process starts with one sample and checks whether its heterogeneity cut-off falls below a given 
threshold for heterogeneity. If it exceeds this threshold, then two samples are tested together, then 
three, and so on, until the combined variability of the samples is within acceptable limits. This step-by-
step approach helps determine the right number of samples to use for accurate large-scale modeling, 
but without such detailed analysis, it's hard to give an exact number. 

STATEMENTS AND DECLARATIONS 
Author Contributions 
Omidreza Amrollahinasab:  Methodology, Investigation, Formal analysis, Writing – original draft. Boris 
Jammernegg: Investigation, Writing – review & editing. Siroos Azizmohammadi: Methodology, Writing 
– review & editing. Holger Ott: Conceptualization, Methodology, Supervision, Writing – original draft 

Conflicts of Interest 
There are no conflicts of interest to declare. 

Data, Code & Protocol Availability 
The code used to perform the analysis in this paper is open source at:  https://github.com/omidreza-
amrollahi/ad-scal-heterogeneous.  

https://doi.org/10.69631/ipj.v2i2nr44
https://github.com/omidreza-amrollahi/ad-scal-heterogeneous
https://github.com/omidreza-amrollahi/ad-scal-heterogeneous


 
Amrollahinasab et al  Page 14 of 16 
 

 
InterPore Journal, Vol. 2, Issue 2, 2025       https://doi.org/10.69631/ipj.v2i2nr44  

ORCID IDs 
Omidreda Amrollahinasab    https://orcid.org/0000-0002-6539-6304  
Boris Jammernegg     https://orcid.org/0009-0003-8653-6964  
Siroos Azizmohammadi     https://orcid.org/0000-0003-2258-111X  
Holger Ott      https://orcid.org/0000-0002-7297-9380  

REFERENCES 

1. Alpak, F. O., Zacharoudiou, I., Berg, S., Dietderich, J., & Saxena, N. (2019). Direct simulation of pore-scale two-
phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method. 
Computational Geosciences, 23, 849–880. https://doi.org/10.1007/s10596-019-9818-0 

2. Aminu, M. D., Nabavi, S. A., Rochelle, C. A., & Manovic, V. (2017). A review of developments in carbon dioxide 
storage. Applied Energy, 208, 1389–1419. https://doi.org/10.1016/j.apenergy.2017.09.015 

3. Amrollahinasab, O., Azizmohammadi, S., & Ott, H. (2023). Simultaneous interpretation of SCAL data with 
different degrees of freedom and uncertainty analysis. Computers and Geotechnics, 105074. 
https://doi.org/10.1016/j.compgeo.2022.105074 

4. Bear, J. (2013). Dynamics of fluids in porous media. Courier Corporation. 
5. Berg, S., Oedai, S., & Ott, H. (2013). Displacement and mass transfer between saturated and unsaturated CO2–

brine systems in sandstone. International Journal of Greenhouse Gas Control, 12, 478–492. 
https://doi.org/10.1016/j.ijggc.2011.04.005 

6. Berg, S., Unsal, E., & Dijk, H. (2021a). Non-uniqueness and uncertainty quantification of relative permeability 
measurements by inverse modelling. Computers and Geotechnics, 132, 103964. 
https://doi.org/10.1016/j.compgeo.2020.103964 

7. Berg, S., Unsal, E., & Dijk, H. (2021b). Sensitivity and uncertainty analysis for parameterization of multiphase 
flow models. Transport in Porous Media, 140, 27–57. https://doi.org/10.1007/s11242-021-01576-4 

8. Blunt, M. J. (1997). Pore level modeling of the effects of wettability. SPE Journal, 2(4), 494–510. 
https://doi.org/10.2118/38435-PAB 

9. Brooks, R. H., Corey, A. T. (1964). Hydraulic properties of porous media and their relation to drainage design. 
Transactions of the ASAE, 7(1), 0026–0028. https://doi.org/10.13031/2013.40684  

10. Burmester, G., Zekiri, F., Jurcic, H., Arnold, P., & Ott, H. (2022). Integration and Upscaling of Multi-Phase Fluid 
Flow Properties in Clastic Reservoirs. 83rd EAGE Annual Conference & Exhibition, 1–5. 
https://doi.org/10.3997/2214-4609.202210939 

11. Chang, J., & Yortsos, Y. C. (1992). Effect of Capillary Heterogeneity on Buckley-Leverett Displacement. SPE 
Reservoir Engineering, 7, 285–293. https://doi.org/10.2118/18798-PA 

12. Egermann, P., & Lenormand, R. (2005). A new methodology to evaluate the impact of localized heterogeneity 
on petrophysical parameters (kr, Pc) applied to carbonate rocks. Petrophysics, 46. SPWLA-2005-v46n5a2 

13. Georgiadis, A., Berg, S., Makurat, A., Maitland, G., & Ott, H. (2013). Pore-scale micro-computed-tomography 
imaging: Nonwetting-phase cluster-size distribution during drainage and imbibition. Physical Review E, 88, 
033002. https://doi.org/10.1103/PhysRevE.88.033002 

14. Georgiadis, A., Maitland, G., Trusler, J. P. M., & Bismarck, A. (2010). Interfacial tension measurements of the 
(H2O + CO2) system at elevated pressures and temperatures. Journal of Chemical & Engineering Data, 55(10), 
4168–4175. https://doi.org/10.1021/je100198g 

15. Hosseini, S. A., Lashgari, H., Choi, J. W., Nicot, J.-P., Lu, J., & Hovorka, S. D. (2013). Static and dynamic reservoir 
modeling for geological CO2 sequestration at Cranfield, Mississippi, U.S.A. International Journal of 
Greenhouse Gas Control, 18, 449–462. https://doi.org/10.1016/j.ijggc.2012.11.009 

16. Hosseinzadeh Hejazi, S. A., Shah, S., & Pini, R. (2019). Dynamic measurements of drainage capillary pressure 
curves in carbonate rocks. Chemical Engineering Science, 200, 268–284. 
https://doi.org/10.1016/j.ces.2019.02.002 

17. Jackson, S. J., Agada, S., Reynolds, C. A., & Krevor, S. (2018). Characterizing Drainage Multiphase Flow in 
Heterogeneous Sandstones. Water Resources Research, 54, 3139–3161. 
https://doi.org/10.1029/2017WR022282 

18. Jackson, S. J., & Krevor, S. (2020). Small‐Scale Capillary Heterogeneity Linked to Rapid Plume Migration During 
CO2 Storage. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL088616 

19. Kong, X., Delshad, M., & Wheeler, M. F. (2015). History matching heterogeneous coreflood of CO2/brine by 
use of compositional reservoir simulator and geostatistical approach. SPE Journal, 20, 267–276. 
https://doi.org/10.2118/163625-PA 

https://doi.org/10.69631/ipj.v2i2nr44
https://orcid.org/0000-0002-6539-6304
https://orcid.org/0009-0003-8653-6964
https://orcid.org/0000-0003-2258-111X
https://orcid.org/0000-0002-7297-9380
https://doi.org/10.1007/s10596-019-9818-0
https://doi.org/10.1016/j.apenergy.2017.09.015
https://doi.org/10.1016/j.compgeo.2022.105074
https://doi.org/10.1016/j.ijggc.2011.04.005
https://doi.org/10.1016/j.compgeo.2020.103964
https://doi.org/10.1007/s11242-021-01576-4
https://doi.org/10.2118/38435-PA
https://doi.org/10.13031/2013.40684
https://doi.org/10.3997/2214-4609.202210939
https://doi.org/10.2118/18798-PA
https://doi.org/10.1103/PhysRevE.88.033002
https://doi.org/10.1021/je100198g
https://doi.org/10.1016/j.ijggc.2012.11.009
https://doi.org/10.1016/j.ces.2019.02.002
https://doi.org/10.1029/2017WR022282
https://doi.org/10.1029/2020GL088616
https://doi.org/10.2118/163625-PA


 
Amrollahinasab et al  Page 15 of 16 
 

 
InterPore Journal, Vol. 2, Issue 2, 2025       https://doi.org/10.69631/ipj.v2i2nr44  

20. Krause, M., Krevor, S., & Benson, S. M. (2013). A procedure for the accurate determination of sub-core scale 
permeability distributions with error quantification. Transport in Porous Media, 98, 565–588. 
https://doi.org/10.1007/s11242-013-0161-y 

21. Krause, M., Perrin, J.-C., & Benson, S. M. (2011). Modeling permeability distributions in a sandstone core for 
history matching coreflood experiments. SPE Journal, 16, 768–777. https://doi.org/10.2118/126340-PA 

22. Krause, M. H., & Benson, S. M. (2015). Accurate determination of characteristic relative permeability curves. 
Advances in Water Resources, 83, 376–388. https://doi.org/10.1016/j.advwatres.2015.07.009 

23. Kuo, C.-W., & Benson, S. M. (2015). Numerical and analytical study of effects of small scale heterogeneity on 
CO2/brine multiphase flow system in horizontal corefloods. Advances in Water Resources, 79, 1–17. 
https://doi.org/10.1016/j.advwatres.2015.01.012 

24. Kuo, C.-W., Perrin, J.-C., & Benson, S. M. (2011). Simulation studies of effect of flow rate and small scale 
heterogeneity on multiphase flow of CO2 and brine. Energy Procedia, 4, 4516–4523. 
https://doi.org/10.1016/j.egypro.2011.02.408 

25. Kurotori, T., & Pini, R. (2021). A general capillary equilibrium model to describe drainage experiments in 
heterogeneous laboratory rock cores. Advances in Water Resources, 152, 103938. 
https://doi.org/10.1016/j.advwatres.2021.103938 

26. Leverett, M. C. (1941). Capillary behavior in porous solids. Transactions of the AIME, 142, 152–169. 
https://doi.org/10.2118/941152-G 

27. Liu, Y., Gong, W., Zhao, Y., Jin, X., & Wang, M. (2022). A pore‐throat segmentation method based on local 
hydraulic resistance equivalence for pore‐network modeling. Water Resources Research, 58. 
https://doi.org/10.1029/2022WR033142 

28. Lomeland, F., Ebeltoft, E., & Thomas, W. H. (2005). A new versatile relative permeability correlation. In 
International Symposium of the Society of Core Analysts, Toronto, Canada. 

29. Lu, J., Kordi, M., Hovorka, S. D., Meckel, T. A., & Christopher, C. A. (2013). Reservoir characterization and 
complications for trapping mechanisms at Cranfield CO2 injection site. International Journal of Greenhouse 
Gas Control, 18, 361–374. https://doi.org/10.1016/j.ijggc.2012.10.007 

30. Maas, J. G., Springer, N., & Hebing, A. (2019). Defining a sample heterogeneity cut-off value to obtain 
representative Special Core Analysis (SCAL) measurements. In International Symposium of the Society of Core 
Analysts, Pau, France, 26–30 August. 

31. McPhee, C., Reed, J., & Zubizarreta, I. (2015). Core analysis: A best practice guide. Elsevier. 
32. Ni, H., Boon, M., Garing, C., & Benson, S. M. (2019). Predicting CO2 residual trapping ability based on 

experimental petrophysical properties for different sandstone types. International Journal of Greenhouse Gas 
Control, 86, 158–176. https://doi.org/10.1016/j.ijggc.2019.04.024 

33. Onoja, M. U., & Shariatipour, S. M. (2019). Assessing the impact of relative permeability and capillary 
heterogeneity on Darcy flow modelling of CO2 storage in Utsira Formation. Greenhouse Gases: Science and 
Technology, 9, 1221–1246. https://doi.org/10.1002/ghg.1932 

34. Øren, P.-E., Bakke, S., & Arntzen, O. J. (1998). Extending predictive capabilities to network models. SPE Journal, 
3(4), 324–336. https://doi.org/10.2118/52052-PA 

35. Ott, H. (2015). CO2-brine primary displacement in saline aquifers: Experiments, simulations and concepts 
(Habilitationsschrift). RWTH Aachen. 

36. Ott, H., de Kloe, K., van Bakel, M., Vos, F., van Pelt, A., Legerstee, P., Bauer, A., Eide, K., van der Linden, A., Berg, 
S., & Makurat, A. (2012). Core-flood experiment for transport of reactive fluids in rocks. Review of Scientific 
Instruments, 83, 084501. https://doi.org/10.1063/1.4746997 

37. Ott, H., Pentland, C. H., & Oedai, S. (2015). CO2–brine displacement in heterogeneous carbonates. 
International Journal of Greenhouse Gas Control, 33, 135–144. https://doi.org/10.1016/j.ijggc.2014.12.004 

38. Pini, R., & Benson, S. M. (2013a). Simultaneous determination of capillary pressure and relative permeability 
curves from core-flooding experiments with various fluid pairs. Water Resources Research, 49, 3516–3530. 
https://doi.org/10.1002/wrcr.20274 

39. Pini, R., & Benson, S. M. (2013b). Characterization and scaling of mesoscale heterogeneities in sandstones. 
Geophysical Research Letters, 40, 3903–3908. https://doi.org/10.1002/grl.50756 

40. Pini, R., Krevor, S. C. M., & Benson, S. M. (2012). Capillary pressure and heterogeneity for the CO2/water 
system in sandstone rocks at reservoir conditions. Advances in Water Resources, 38, 48–59. 
https://doi.org/10.1016/j.advwatres.2011.12.007 

41. Raoof, A., & Hassanizadeh, S. M. (2012). A new formulation for pore‐network modeling of two‐phase flow. 
Water Resources Research, 48. https://doi.org/10.1029/2010WR010180 

42. Renard, P., & de Marsily, G. (1997). Calculating equivalent permeability: a review. Advances in Water 
Resources, 20, 253–278. https://doi.org/10.1016/S0309-1708(96)00050-4 

https://doi.org/10.69631/ipj.v2i2nr44
https://doi.org/10.1007/s11242-013-0161-y
https://doi.org/10.2118/126340-PA
https://doi.org/10.1016/j.advwatres.2015.07.009
https://doi.org/10.1016/j.advwatres.2015.01.012
https://doi.org/10.1016/j.egypro.2011.02.408
https://doi.org/10.1016/j.advwatres.2021.103938
https://doi.org/10.2118/941152-G
https://doi.org/10.1029/2022WR033142
https://doi.org/10.1016/j.ijggc.2012.10.007
https://doi.org/10.1016/j.ijggc.2019.04.024
https://doi.org/10.1002/ghg.1932
https://doi.org/10.2118/52052-PA
https://doi.org/10.1063/1.4746997
https://doi.org/10.1016/j.ijggc.2014.12.004
https://doi.org/10.1002/wrcr.20274
https://doi.org/10.1002/grl.50756
https://doi.org/10.1016/j.advwatres.2011.12.007
https://doi.org/10.1029/2010WR010180
https://doi.org/10.1016/S0309-1708(96)00050-4


 
Amrollahinasab et al  Page 16 of 16 
 

 
InterPore Journal, Vol. 2, Issue 2, 2025       https://doi.org/10.69631/ipj.v2i2nr44  

43. Reynolds, C. A., Blunt, M. J., & Krevor, S. (2018). Multiphase flow characteristics of heterogeneous rocks from 
CO2 storage reservoirs in the United Kingdom. Water Resources Research, 54, 729–745. 
https://doi.org/10.1002/2017WR021651 

44. Reynolds, C. A., & Krevor, S. (2015). Characterizing flow behavior for gas injection: Relative permeability of 
CO2-brine and N2-water in heterogeneous rocks. Water Resources Research, 51, 9464–9489. 
https://doi.org/10.1002/2015WR018046 

45. Ringrose, P. S., Sorbie, K. S., Corbett, P. W. M., & Jensen, J. L. (1993). Immiscible flow behaviour in laminated 
and cross-bedded sandstones. Journal of Petroleum Science and Engineering, 9, 103–124. 
https://doi.org/10.1016/0920-4105(93)90071-L 

46. Ruspini, L. C., Øren, P. E., Berg, S., Masalmeh, S., Bultreys, T., et al. (2021). Multiscale digital rock analysis for 
complex rocks. Transport in Porous Media, 139, 301–325. https://doi.org/10.1007/s11242-021-01667-2 

47. Valvatne, P. H., & Blunt, M. J. (2004). Predictive pore‐scale modeling of two‐phase flow in mixed wet media. 
Water Resources Research, 40. https://doi.org/10.1029/2003WR002627 

48. Wellington, S. L., & Vinegar, H. J. (1987). X-ray computerized tomography. Journal of Petroleum Technology, 
39(8). https://doi.org/10.2118/16983-PA 

49. Wenck, N., Jackson, S. J., Manoorkar, S., Muggeridge, A., & Krevor, S. (2021). Simulating Core Floods in 
Heterogeneous Sandstone and Carbonate Rocks. Water Resources Research, 57. 
https://doi.org/10.1029/2021WR030581 

50. Zhang, D., Zhang, R., Chen, S., & Soll, W. E. (2000). Pore scale study of flow in porous media: Scale 
dependency, REV, and statistical REV. Geophysical Research Letters, 27, 1195–1198. 
https://doi.org/10.1029/1999GL011101 

https://doi.org/10.69631/ipj.v2i2nr44
https://doi.org/10.1002/2017WR021651
https://doi.org/10.1002/2015WR018046
https://doi.org/10.1016/0920-4105(93)90071-L
https://doi.org/10.1007/s11242-021-01667-2
https://doi.org/10.1029/2003WR002627
https://doi.org/10.2118/16983-PA
https://doi.org/10.1029/2021WR030581
https://doi.org/10.1029/1999GL011101

	1. Introduction
	2. Experimental and Numerical Methods
	3. Experimental and Numerical Methods
	3.1. Data Interpretation Assuming Homogeneity
	3.2. Introducing Heterogeneity
	3.3. Data Interpretation Considering the 1D Porosity Profile
	3.4. Modeling the 3D Heterogeneous Volume
	3.4.1. Transforming Medical CT Data into 3D Porosity and Saturation Maps
	3.4.2. 3D Heterogeneous Modeling

	𝐼=1𝑁𝑗=1𝑁 ∆𝑃sim𝑥𝑗−∆𝑃exp𝑥𝑗∆𝑃exp𝑥𝑗2,
	𝐽= 1𝑁𝑗=1𝑁 𝑄sim𝑥𝑗−𝑄exp𝑥𝑗𝑄exp𝑥𝑗2,
	𝐾= 1𝑁𝑗=1𝑁 𝑆sim𝑥𝑗−𝑆exp𝑥𝑗𝑆exp𝑥𝑗2.
	𝜙𝑥=𝐻𝑈𝑏𝑟𝑖𝑛𝑒𝑠𝑎𝑡𝑥−𝐻𝑈𝑑𝑟𝑦𝑥𝐻𝑈𝑏𝑟𝑖𝑛𝑒−𝐻𝑈𝑎𝑖𝑟=𝛼∙𝐻𝑈𝑏𝑟𝑖𝑛𝑒𝑠𝑎𝑡𝑥−𝐻𝑈𝑑𝑟𝑦𝑥,
	𝑆𝐶𝑂2𝑥,𝑡=𝐻𝑈𝑏𝑟𝑖𝑛𝑒𝑠𝑎𝑡𝑥,𝑡0−𝐻𝑈𝑒𝑥𝑝𝑥,𝑡𝐻𝑈𝑏𝑟𝑖𝑛𝑒𝑠𝑎𝑡𝑥−𝐻𝑈𝐶𝑂2𝑠𝑎𝑡𝑥,
	4. Summary and Conclusions
	Statements and Declarations
	Author Contributions
	Conflicts of Interest
	Data, Code & Protocol Availability
	ORCID IDs

	References

