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ABSTRACT 
The permeability of porous media is often calculated using correlations or 
computationally expensive simulations. Several methods have been 
developed which use neural networks to predict porous media properties, 
but little work has been done on the development of a model that can handle 
porous media at the representative elementary volume (REV) scale. This 
work describes the framework for developing a graph neural network (GNN) 
to predict the permeability of porous media based on representative pore 
networks extracted from the structures, rather than representative structure 
volumes. This allows for consistent input sizes for the neural network, 
irrespective of the average pore size, which is more difficult when the entire 
voxelized structure is the model input. A GNN was trained to predict the 
permeability of porous media based on lattice Boltzmann method (LBM) 
simulations of the flow through the structures. The GNN showed a good 
agreement with the LBM simulations over samples with permeabilities 
spanning several orders of magnitude. The GNN was able to outperform the 
Carman-Kozeny equation with a mean squared error (MSE) for the unseen 
testing dataset of 0.00190 and a mean absolute error (MAE) of 0.0302 
compared to an MSE of 1.125 and an MAE of 0.783 for the Carman-Kozeny 
equation, when comparing against the LBM ground truth. The inference time 
of the GNN alone was several orders of magnitude faster than the LBM 
simulations, and nearly 10 times faster when including the pore network 
extraction time needed for the GNN. This work demonstrates the potential 
of using GNNs to predict the permeability of representative porous media, 
and the benefits of using model architectures that take pore networks as the 
inputs. 
 
KEYWORDS 
Porous media, Lattice Boltzmann method, Machine learning, Graph neural 
networks 
 

 
@2025 The Authors  

This is an open access article published by InterPore under the terms of the Creative 
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 
4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/). 

https://doi.org/10.69631/ipj.v2i3nr47
mailto:JMI179@student.bham.ac.uk
mailto:JMI179@student.bham.ac.uk
https://doi.org/10.69631/ipj.v2i3nr47
https://doi.org/10.69631/ipj.v2i3nr47
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0009-0002-8284-5105
https://orcid.org/0000-0002-0655-3744
https://orcid.org/0000-0003-4875-498X
https://orcid.org/0000-0003-4875-498X


 
I’Anson et al.  Page 2 of 21 
 

 
InterPore Journal, Vol. 2, Issue 3, 2025       https://doi.org/10.69631/ipj.v2i3nr47 

1. INTRODUCTION 
Understanding the properties of porous media is beneficial for several important applications, including 
fuel cells (62), batteries (84), geology (35), and automotive exhaust treatment (42). Typical methods for 
numerically determining the properties of porous media, such as effective gas diffusivity or permeability, 
involve pore-scale fluid simulations. These are split into different approaches, such as traditional 
computational fluid dynamics (CFD), including the finite volume method (42, 54, 83) and the finite 
element method (60), and fast Fourier transforms for direct numerical simulation (10, 52). The lattice 
Boltzmann method (LBM) is an alternative CFD technique that has commonly been used for porous 
media simulations (20, 76, 79). The LBM can be second order accurate (47) and complex structures can 
be modeled (44), making it ideal for porous media simulations. However, traditional CFD techniques and 
the LBM require significant computational cost, often requiring the use of high performance computing 
(HPC) (20, 83). Pore network models have also been used to determine the properties of porous media 
(8, 59). Common approaches for constructing pore network models use some type of porosimetry, 
however, variations in pore size within the structure can lead to inaccurate pore size distributions (81). 
Alternatively, permeability can be measured experimentally by driving flow through a porous structure, 
measuring the pressure drop and determining the permeability using Darcy’s law (75). While this is useful 
for validating simulations, it requires a complex experimental setup, and more results can be gathered 
via simulation. 

To overcome the need for extra simulations or experiments, various data-driven methods have been 
used for predicting porous media properties. A common method is the convolutional neural network 
(CNN) (3, 68, 76, 79), with both 2D and 3D implementations showing good predictive performance. As 
with many neural networks, training of the models requires large datasets, and obtaining a sufficiently 
large dataset from real porous media is difficult due to the time required to image the structures (42). 
Furthermore, depending on scale, some imaging techniques can be destructive to the samples (62), 
which is an issue when trying to generate datasets with more than 1000 samples due to waste and cost 
considerations. Methods of producing large datasets from fewer or no real structures have been 
developed, including the generation of a dataset by augmenting a pair of real structures (68), extracting 
smaller, overlapping samples from larger structures (76), or generating a dataset of entirely non-real 
structures (63, 77, 79, 83). Using methods such as these allows for large datasets with high variance to 
be generated quickly and cheaply. 

A key step in the development of data-driven methods is feature engineering, which provides 
descriptions of the underlying dataset and improves the degree to which machine learning models can 
be explainable (18). The features also play a significant role in describing how well the machine learning 
model can be generalized to new, unseen structures (55). It is therefore important to decide how to best 
represent the structures in a way that can be interpreted by machine learning methods. As mentioned 
previously, a common approach is to take 2D (or 3D) images of porous structures and train a CNN. The 
2D CNN has shown good results for predicting the properties of 2D images of porous media. However, 
characteristics of the 2D images are not necessarily present in 3D structures. For example, dead-end 
pores are often found in 2D images, but are rarely seen in 3D images (36). This means features of 2D 
structures learned in the machine learning models will not necessarily carry over to the 3D structures. 
Consequently, the 3D CNN has become more popular for porous media research. Wang et al. (76) trained 
a 3D CNN to predict the effective diffusivity of randomly generated 3D porous media, showing good 
predictive performance. However, a general problem with CNNs is that they are computationally 
expensive, especially in 3D (13), which may prove problematic when trying to predict properties of 
samples large enough to be representative of the structure they were sampled from. 

Although CNNs take in entire structures as inputs, other structural properties may be useful to the 
machine learning models. For example, a common choice for obtaining information about a porous 
structure is to extract the pore network (an example pore network is shown in Fig. 1). The pore network 
consists of pore coordinates and pore connections, which can be represented as a graph data structure 
(29), thereby encoding both pore features and connectivity within a single structure. Graph neural 
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networks (GNNs) are a class of neural 
networks specifically designed to process 
graph data structures (80). They have seen a 
variety of applications including social 
recommendation systems (21), journal paper 
citation trends (16), and text classification 
(53). However, they have also been used to 
predict properties of a variety of physical 
systems, including the quantum properties 
of molecules (26), and the properties of 
polycrystalline structures (17). Dai et al. (17) 
represented a structure of crystals with a 
graph, storing information about the crystals 
in a feature matrix and information about the 
crystal connectivity in an adjacency matrix. 
The adjacency and feature matrices were 
then passed to the GNN, making use of 
message passing layers to determine the 
influence of neighboring crystals on each 
other to predict structural properties (24). 

Cai et al. (10) used a graph isomorphism 
network, a type of GNN, in order to predict 
formation factor and effective permeability 
using Morse graphs extracted from porous media images. A Morse graph is extracted from the distance 
transform, with features such as coordinates and distance values assigned to the graph nodes. This 
produces a reduced dimension representation of the structure that contains information about each of 
the pore regions and pore connectivity. It therefore aids in understanding how the neural network 
obtains information about the structures, leading to a more interpretable machine learning model. Graph 
neural networks have also been coupled with CNNs to make predictions of porous media properties (4, 
86). They aim to capture the strengths of both models: the CNN extracts detailed surface properties from 
the images, while the GNN captures the connectivity of the structure. However, this often results in highly 
complex models. 

While several methods exist to predict the properties of porous media, it is crucial that they are 
sufficiently scalable to handle structures large enough to be representative of the original materials from 
which they were extracted. Training machine learning models on representative 2D samples has been 
explored (79). However, limited research has been done on the use of 3D samples that are shown to be 
representative in the CNN literature (70) and, as far as we are aware, no research has been done on the 
use of representative pore networks for training a GNN. This work addresses the problem by training a 
GNN on representative pore networks extracted from the samples, enabling it to generalize to previously 
unseen porous media. 

First, a set of large, unique, non-real structures that mimic the properties of real porous media were 
generated. Lattice Boltzmann method simulations were then performed on the large structures. 
Following this, smaller, representative samples were extracted from the larger structures and the 
simulation results, creating a large and varied dataset. Finally, a GNN was trained to predict the 
permeability of the samples based on the pore network extracted from within. 

 

Figure 1: Example 2D pore network generated with 
PoreSpy (30) and OpenPNM (29). The size and color of 
the circles represent pores of equivalent size and the 
lines represent pore connections. 
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2. METHODOLOGY 
2.1. Method Overview 
This section outlines the process for predicting the permeability of porous media using a GNN. Figure 
2 provides an overview of the model development framework and its deployment. Sections 2.2 to 2.6 
provide details of each part of the framework. 

2.2. Generating Structures 
Training machine learning models to predict properties of porous media typically requires thousands of 
samples (3, 68, 76, 79). However, obtaining this dataset from real, virtually reconstructed porous media 
samples alone is difficult because samples can take hours to image with techniques such as X-ray 
tomography (42). Therefore, to test the method, a dataset was produced comprising randomly generated 
porous media. Several generation techniques exist in the porous media literature, including sphere 
packing (76, 83), cylinder packing (63), and the quartet structure generation set (QSGS) method (78, 79), 

 

Figure 2: A flow diagram showing the development of the graph neural network (GNN) and how the 
GNN will be deployed. 
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each with their own benefits and drawbacks. In this work, structures generated with fractal noise from 
the PoreSpy Python library (30) were used. This allowed for random, realistic structures with varying 
properties to be generated quickly and cheaply, with each structure taking just seconds to generate. 
Non-real structures were used because testing the method does not necessarily require real porous 
media samples. Training a model on fractal noise structures allows for a proof of concept of the 
approach, which can later be applied to more complex, real structures. The fractal noise structures were 
selected over other types such as packed spheres because they have more similarities such as a rough 
surface. 

The resulting structure is a 3D array of values between zero and one. Binary porous structures were then 
generated by applying a threshold to the noise, which roughly corresponds to the porosity of the final 

structure. Three example structures are shown in Figure 3, with Figure 3a showing a 2D slice of a 3D 
fractal noise image, Figure 3b showing a 2D slice taken from a 3D binary structure, where the light 
regions are the solid and the dark regions are the pores, and Figure 3c showing a 3D voxelized structure. 
Several parameters influence the properties of the structures; these include frequency, gain, and number 
of octaves of the noise (30), as well as the threshold applied to the noise. A Latin hypercube (LHC) design 
(56) was used to produce a set of structures with semi-random parameters over the entire range of 
possible parameters, ensuring the whole sample space is explored evenly, and improving on methods 
such as random or grid search. Three datasets were generated: one for training, one for validation and 
one for testing. 

Typically, cross-validation is used to develop the model and identify the optimal hyperparameters (5). In 
this approach, the training and validation sets are derived from the training dataset, while a separate 
third dataset is reserved for final model testing. This is not possible here due to data leakage issues that 
arise when extracting validation samples from the training dataset. The sample extraction technique used 
is a form of data augmentation, a method used to enhance a dataset by producing new samples from 
the existing samples (72). If augmented samples from the same original structure are placed in both 
training and testing datasets, it can lead to seemingly better model accuracy, but the model will not 
generalize well to new data, which is a known issue in the CNN literature (82). Since the data 
augmentation techniques are similar to those used in the CNN literature, unique structures generated 
with the porous media generator (Fig. 2) were required for the training, validation, and testing datasets 
to avoid data leakage. 

2.3. Feature Extraction 

2.3.1. Structure Properties 
A variety of physical structure properties can be extracted from the voxelized structures which can be 
used as input features for the fully-connected section of the GNN. Porosity can be obtained quickly by 
taking the volume fraction of the pore space in the total volume. Another useful property is the specific 

 

Figure 3: Example fractal noise porous structures: a) a 2D slice taken from a 3D fractal noise image, b) 
a 2D slice taken from a 3D binary image, and c) a voxelized 3D structure. 
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solid surface area, which describes the surface area per unit volume, where the surface area is calculated 
from a mesh of the structure. The specific solid surface area was computed with the mesh for the 
Carman-Kozeny equation, but was approximated by using the fraction of solid voxels connected to pores 
as a proxy for the surface area for the GNN input. This provides a good, scale-independent 
representation for the GNN, without needing to compute the surface area from the mesh. Given the 
porosity and specific solid surface area, an estimate of the permeability can be found with the Carman-
Kozeny equation (12, 43). The permeability obtained from this equation does not perform well on 
heterogeneous structures (61), however, it is useful to compare to the LBM simulations for more 
homogeneous structures. The Carman-Kozeny equation can take a variety of forms depending on the 
application. Equation 1 shows a widely cited version based on the porosity and specific solid surface 
area (37, 67, 71, 75). The permeability obtained from the Carman-Kozeny equation was compared to the 
permeability obtained from the LBM and the GNN. 

𝑘𝑘 =
𝜙𝜙3

𝑘𝑘𝐾𝐾𝐾𝐾𝑆𝑆02(1 − 𝜙𝜙)2 (1) 

In Equation 1, 𝑘𝑘  is the permeability in m2, 𝜙𝜙  is the porosity, 𝑘𝑘𝐾𝐾𝐾𝐾  is the Kozeny constant, which is 
dimensionless, and 𝑆𝑆0 is the specific solid surface area in m-1. The Kozeny constant is typically given a 
value of 5 (12), which was also selected for this work. The porosity and specific solid surface area are 
macroscopic properties of the structures, however, heterogeneities in the structures will not be 
sufficiently represented by the macroscopic properties. As discussed by Nishiyama and Yokoyama (61), 
the critical pore diameter (defined as the maximum sized sphere that can pass through the porous 
structure) correlates well to the permeability, but is difficult to determine. For this reason, the LBM was 
used to determine the ground truth for the permeability of the structures, despite requiring significant 
computational cost. 

Another common property used with the porous media field is the tortuosity, which describes the ratio 
of the free path between two points compared to the shortest distance between the two points (25). 
While there are versions of the Carman-Kozeny equation that include the tortuosity (71), there is 
significant ambiguity around its calculation with a range of methods providing different values that are 
weakly correlated and not interchangeable (85). This implies the physics behind these approaches is also 
inconsistent and therefore it is best avoided. Furthermore, representing the pore network as a graph 
effectively allows the data required to compute the tortuosity to be encoded into the adjacency matrix, 
meaning the tortuosity is not required as a feature. 

2.3.2. Pore Network Extraction 
Graph data structures, comprising an adjacency matrix and a feature matrix, extracted from the pore 
networks were used to train the GNN. The pore networks were extracted with PoreSpy (30) using a 
watershed segmentation algorithm (31). The PoreSpy implementation was chosen due to its speed and 
the variety of properties, such as the pore volume, diameter and surface area or connection length and 
diameter, which can be passed to the GNN. For visualization purposes, a 2D example of the extracted 
pore network is shown in Figure 1, however the 3D version works in the same way. 

The adjacency matrix is a square matrix of size 𝑀𝑀 × 𝑀𝑀 where 𝑀𝑀 is the number of pores in the pore 
network. Information about the edges can also be encoded in the adjacency matrix by weighting the 
connection values with edge features, known as a weighted adjacency matrix (15). The feature matrix is 
a 2D matrix of size 𝑀𝑀 × 𝑁𝑁 where 𝑁𝑁 is the number of features. These features represent the properties 
of each pore. 

2.3.3. Feature Selection 
Extracting the pore networks with watershed segmentation provides node and edge feature matrices 
with several correlated features such as the pore inscribed diameter (the diameter of the largest sphere 
that can be placed in the pore) and pore equivalent diameter (the diameter of the sphere with a volume 
equal to the pore volume). Pearson correlation matrices were used to determine which of the pore and 
throat features to retain (9), as keeping too many correlated features increases model complexity and 
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can even lead to reduced model performance (33). Features with a correlation of greater than 0.5 can be 
regarded as strongly correlated (14). However, for this study, this threshold was increased to 0.8 to ensure 
only the most correlated features, such as inscribed pore diameter and equivalent pore diameter, were 
removed. 

As the feature matrix is of size 𝑀𝑀 ×𝑁𝑁, any number of pore features can be selected, with the only cost 
being a slight computation time increase for more features. Many of the simple graph convolution layers 
used in GNNs only allow weighted adjacency matrices (41), with more computationally expensive layers 
allowing multiple edge features (27). The total length of each throat was taken as the single edge feature 
used to weight the adjacency matrix. This was because other throat features, such as diameter, are more 
closely related to the pore features, whereas the length is completely independent. This meant that the 
entire structure can be represented with a pore network and a few structure properties, which is much 
smaller than the voxelized structure required for the CNN. 

2.4. The Lattice Boltzmann Method 
The LBM has been used for a variety of applications including multiphase flows (51), moving geometries 
(49), heat transfer (74), as well as flow through porous media (20, 76, 79). As mentioned in the 
Introduction, traditional CFD can be used to perform porous media simulations, however, complex 
meshes must be generated to adequately represent the complex geometries found with porous media 
(58). They often require further refinement closer to the surfaces to provide sufficient surface definition 
(7), further increasing the mesh size. Due to the voxelized domain, the LBM is very well suited to porous 
media simulations, removing the need for these complex meshes (47), and is not subject to continuum 
modeling constraints (34). As the generated structures are binary 3D arrays, they are in a voxelized 
format, meaning a simulation technique which can deal with voxelized domains is ideal. 

2.4.1. Simulating Flow Through Porous Media 
The porous media simulations were performed with Palabos (50), an open-source C++ library capable 
of performing highly parallelized simulations. The chosen lattice was a D3Q19 lattice—a 3D lattice with 
19 discrete velocities per node—selected for its balance between computational cost and accuracy (48). 
The Bhatnagar-Gross-Krook (BGK) collision operator was chosen for its simplicity (48), though other, 
more complex, collision operators are available (45). A uniform pressure gradient was imposed between 
the inlet and outlet which drives flow through the structure. A no-slip impermeable boundary condition 
was applied to the edges of the domain adjacent to the direction of flow, and the full-way bounce-back 
scheme was used for the fluid-solid collisions within the structure that occur on the boundary lattice 
nodes between the solid and the fluid. 

2.4.2. Computing Permeability 
Once the simulation had been completed, the permeability was calculated from the component of the 
velocity field in the direction of flow using a rearrangement of Darcy’s law, shown in Equation 2. 

𝑘𝑘 =
𝑞𝑞𝑞𝑞𝑞𝑞
Δ𝑃𝑃

 
 

(2) 

Here 𝑘𝑘 is the permeability, 𝑞𝑞 is the average velocity component in the direction of flow, 𝜇𝜇 is the lattice 
viscosity, 𝐿𝐿 is the length of the domain in the direction of flow, and Δ𝑃𝑃 is the change in pressure in the 
direction of flow, all in lattice units. 

2.5. Producing a Dataset 
As mentioned previously, obtaining a dataset large enough to train the GNN from entirely real data is 
expensive, so non-real structures were generated to mimic the properties of real structures. It was also 
mentioned that the simulations take a long time to complete, which is the reason a data-driven approach 
for determining the porous structure properties is useful. While the structure generation is quick for the 
non-real structures, the LBM simulations would require significant computation time. An augmented 
dataset can be generated by extracting several smaller, overlapping samples from a single larger 
structure, providing the samples are representative of the larger structure. The size at which this is true 
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is known as the representative elementary volume (REV) scale (32), explained further in Section 2.5.1. 
This allows for many more partially unique structures to be extracted from a single simulation, reducing 
computation time for a given dataset. The structures are only partially unique because each sample 
extracted from a single structure may have some overlap with other samples. 

Computing the permeability of the samples requires an extra step because the pressure drop between 
the inlet and the outlet of the sample is not known. The pressure drop can be calculated from the inlet 
and outlet density using Equation 3 (46). 

Δ𝑃𝑃 = 𝑐𝑐𝑠𝑠2(𝜌𝜌𝑖𝑖𝑖𝑖 − 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜) (3) 

Where Δ𝑃𝑃 is the change in pressure between the inlet and outlet, 𝜌𝜌𝑖𝑖𝑖𝑖 and 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 are the average inlet and 
outlet densities, obtained from the density field, and 𝑐𝑐𝑠𝑠 is the speed of sound in the lattice, given the 
value �1/3, all in lattice units. 

2.5.1. Representative Elementary Volume 
The REV-scale refers to the volume at which the macroscopic properties of a sample are the same as the 
macroscopic properties of the structure from which the sample was extracted (32). When randomly sized 
samples are extracted from a structure, there is more spread in the permeability for smaller samples, 

meaning each of the small samples are not representative of the structure they were sampled from. 
Figure 4a shows the permeability of the cubic samples as a function of the length of one side and Figure 
4b shows the permeability of the same samples as a function of the number of pores in the pore network. 
The representative scale for a given structure can be quantified as the point at which the spread of 
permeabilities is within a given threshold. It can be given in terms of the volume (REV) or the pore count, 
denoted as the representative pore count throughout this work. For example, a threshold of ±10% would 
define the representative scale to be the point at which all the samples are within a range of ±10% of 
the permeability of the structure the samples were taken from. A lower threshold value would be more 
accurate, but each sample would need to be larger, while a higher threshold would be less accurate but 
would require smaller samples, reducing computation costs. The chosen value was ±10% for this work. 

2.5.2. Extracting Samples 
A pore network was extracted, and the LBM simulation was performed on each of the generated 
structures. From each structure, 500 smaller, overlapping samples were extracted, thereby reducing the 
computational cost of the dataset. Extracting samples of a fixed size from each structure results in pore 
networks with comparable numbers of pores and similar permeabilities. This inadvertently caused the 
GNN to use the number of pores as a predictor, which was not intended and led to degraded model 
performance. Therefore, the samples were randomly sized between a range of 100 and 400 voxels per 

 

Figure 4: Trumpet plot showing the permeability of random samples extracted from a larger structure 
as a function of a) the size of the structure in voxels and b) the number of pores in the pore network. 
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dimension, leading to varying pore network sizes. A margin was applied around the edges of the 
structures from which samples could not be extracted. This was to reduce the effects of the boundary 
conditions from the LBM simulations on the permeability value. The margin size was defined based on 
the point at which the permeability stops changing as the margin increases, indicating the effects of the 
margin were negligible. 

2.5.3. Dataset Processing and Structure 
The structure features, the feature matrix and the permeability were all scaled before training to ensure 
accurate and stable training (39). The feature matrix and the structure features were normalized to have 
values between zero and one, ensuring the features with large values are weighted equally to features 
with small values. The adjacency matrix was scaled with symmetric normalization, explained further in 
Section 2.6.1. The permeability for the samples spanned multiple orders of magnitude (in lattice units), 
and therefore a natural log transform was applied to the permeability, ensuring errors in the prediction 
of samples with high permeability are penalized equally to the samples with low permeability. Both the 
validation and test datasets were scaled using the values obtained from the training dataset to ensure 
independence, and thus avoid information from the training dataset influencing the testing performance 
(38), which would lead to data leakage. 

Each pore network must be of the same size to be passed to the GNN. To ensure this, the sample with 
the maximum number of pores, 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚, was identified, and pore networks with fewer pores were zero-
padded to match this size. The extra zeros do not have a significant effect on the training, just as two 
pores that are not connected would contribute little to the training. 

2.6. Graph Neural Network 
The neural network was developed and trained using PyTorch (66) and PyTorch Geometric (23). This 
allowed large GNNs to be trained quickly, using multiple GPUs on a HPC cluster. The GNN allows the 
model to be independent of the size of the structure (in terms of voxels), compared to CNNs which take 
in images of the same size (69), limiting the model structures to a fixed structure size. The GNN takes in 
a graph and encodes it into a new feature matrix with information from the original feature matrix and 
the connections from the adjacency matrix. The GNN was split into two parts: a set of message passing 
layers and a set of fully connected layers. 

2.6.1. Message Passing 
The goal of the message passing is to learn node embeddings from the node features (24). After each 
message passing layer, each node gains information about its neighboring nodes. Multiple message 
passing layers can be joined in series, with each layer providing information about the connections 
further away from a given node. However, using too many message passing layers can lead to over-
smoothing of the network, where each of the resulting features have similar values (11). Figure 5 
illustrates how the message passing layers pass information from a node to its neighbors after each 
layer. Initially, the feature matrix only contains the selected pore features, with no information about the 
pore connections. Considering just the pore highlighted with an ’x’, the feature values for that node are 

 

Figure 5: How information is passed from one node to its neighboring nodes after each message 
passing layer. 
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just the pore features. After a single message passing layer, the feature values of the pore highlighted 
with an ’x’ have information about its two neighbors, highlighted in light blue. 

Equation 4 shows the main equation describing the message passing (41), 

𝐹𝐹𝑛𝑛+1 = 𝜎𝜎(𝐷𝐷�−
1
2𝐴̃𝐴𝐷𝐷�−

1
2𝐹𝐹𝑛𝑛𝑊𝑊𝑛𝑛) (4) 

where 𝜎𝜎 is an activation function and 𝑊𝑊𝑛𝑛 is a matrix of trainable parameters called the weight matrix. 

𝐷𝐷�−
1
2𝐴̃𝐴𝐷𝐷�−

1
2 is the symmetric normalized Laplacian matrix (65) which can help to eliminate some training 

instability compared to some other normalization techniques (41), while also maintaining the symmetry 
of the adjacency matrix, which is important because asymmetry of the adjacency matrix would imply a 
directed graph, which the pore network is not. 𝐹𝐹𝑛𝑛 and 𝐹𝐹𝑛𝑛+1 are the feature matrices after 𝑛𝑛 and 𝑛𝑛 + 1 
message passing layers. Several activation functions were tested including TanH and ReLU, but they lead 
to unstable training; therefore, the leaky ReLU was used. The size of the weight matrices in the message 
passing layers and the number of message passing layers are hyperparameters of the model and need 
to be optimized. This is to ensure enough information from the feature matrix and adjacency matrix is 
passed to the fully connected layers without causing the over-smoothing effects. 

2.6.2. Fully-connected Layers 
Following message passing, the node embeddings are flattened and combined with the single value 
features (porosity, specific solid surface area and sample size) and passed to the input of a fully-
connected neural network. There are several architectural choices to be made for the fully connected 
layers; these include  the number of hidden layers and the number of nodes per layer (28). As with the 
message passing layers, the leaky ReLU activation function was chosen because it proved to be the most 
stable during the training process. 

The output of the fully-connected layers was a single value which represented the prediction of the 
natural log of the permeability. The mean squared error (MSE) (57) was used as the criterion for assessing 
the model performance. 

2.6.3. Hyperparameter Tuning 
Tuning the hyperparameters in any supervised machine learning model with several tunable parameters 
is important for finding the optimal model (6). Manually selecting hyperparameters is a nearly impossible 
task for problems with potentially millions of hyperparameter combinations. Because of this, Optuna (1) 
was used to determine a set of optimal hyperparameters. Optuna employs efficient sampling algorithms 
to select new configurations of hyperparameters based on the previous training runs. It can also prune 

Table 1: Summary of the hyperparameter options for Optuna. 

Hyperparameter Options for Optuna 

Number of inner message passing layers 0-3 

Size of each message passing layer 2, 4, 6, 8, 10 or 12 

Size of final message passing layer 1 or 2 

Number of hidden fully-connected layers 2-6 

Size of each fully-connected layer 32, 64, 128, 256, 512, 1024, 2048 

Optimizer SGD, Adam, AdamW, Adamax 

Learning rate 0.001-0.1 (log uniform) 

Learning rate step 10-100 

Learning rate decay 0.8-1 

Optimizer beta values 0.75-1 
SGD: Stochastic Gradient Descent 
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poorly performing trials, and thus was chosen over other methods such as grid search or random search 
to reduce the computation costs of the hyperparameter search (2, 22). 

Table 1 shows a summary of the hyperparameter options for the Optuna hyperparameter tuning. The 
number of message passing layers had a range of 1-4 to avoid over-smoothing. The number of nodes 
in each layer was kept relatively low compared to the number of nodes in the fully-connected layers due 
to memory requirements. The size of the final message passing layer was capped at two nodes because 
it is flattened and passed to the fully-connected layers, so large values lead to further memory issues. 
The number of fully-connected layers had a range of 2-6, and each layer had a width of between 32 and 
2048 nodes. This allows both the depth and width of the fully-connected neural network to be explored 
in the hyperparameter search. The stochastic gradient descent (SGD) and Adam (40) optimizers were 
included in the hyperparameter search as they are some of the most widely used. Variations of Adam 
that have been used for GNNs were also tested, including AdamW (64) and Adamax (19). Finally, the 
learning rate, including the learning rate scheduler hyperparameters, were included in the 
hyperparameter search, along with the beta values (28), which are parameters of the Adam, Adamax and 
AdamW optimizers. 

A hyperparameter study was set up and allowed to run until a given number of successive trials were 
pruned. The trials were trained on the entire training dataset and tested on the entire validation dataset. 
Each trial was allowed to run for up to 250 epochs, unless the trial was stopped early. The median pruner 
was chosen as the early stopping algorithm, since it allows several warm-up steps before pruning is 
checked. This is useful because the training process of the GNN can be initially unstable before stabilizing 
into a more typical learning curve. The selected sampler was the tree-structured Parzen estimator, chosen 
to accommodate the relatively small number of trials imposed by the long training time of the GNN. The 
optimization criterion for the Optuna study was based on the MSE of the validation dataset at the end 
of the training process. 

2.6.4. Model Testing 
Once the hyperparameter study had been completed, a final model was then trained using the optimal 
hyperparameters. This model was trained for up to 500 epochs as the computational costs of a single 
training run are less significant than the combined hyperparameter study trials. Training for longer than 
this resulted in overfitting of the model, leading to significantly better performance on the training 
dataset, with no improvement on the testing performance. The third, unseen testing dataset was used 
to test the performance of this model to ensure the testing dataset was independent and to avoid a 
biased estimation of generalization. 

Finally, the trained model was compared to the Carman-Kozeny equation. A set of 15 new structures 
were generated with porosities ranging from 0.2 to 0.8. These structures were the same size as the 
structures used in the other datasets, and every other generation parameter was kept constant. An LBM 
simulation was performed on each of the structures to obtain the velocity and density fields. A 10% 
margin region was placed around the structures, and 100 randomly sized samples were extracted from 
random locations outside of the margin regions. The pore network from each sample was passed to the 
trained model, the porosity and specific solid surface area were used to obtain the permeability from 
Equation 1, and the velocity and density fields were used to compute the permeability from the LBM 
simulations to compare the three methods. 

3. RESULTS AND DISCUSSION 
3.1. Dataset Generation 

3.1.1. Generating Structures 
Three independent sets of 500 × 500 × 500 voxel structures were generated: one for training with 200 
structures, one for validation with 50 structures, and one for testing with 50 structures. The three sets of 
parent structures were kept separate to ensure there was no data leakage caused by overlapping 
samples. 
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3.1.2. Pore Network Feature Selection 
Correlation matrices were produced for both the pore and throat features, and the features with a 
correlation of more than 0.8 were removed from the dataset, simplifying the model. The selected pore 
features were the three coordinates, extended pore diameter, and pore region volume, while the selected 
throat feature was total length. 

3.1.3. LBM Simulations 
The LBM simulations were performed on an HPC cluster using a 44-core CPU. The simulation results 
included a density scalar field and velocity vector field. The density field and the x-component of the 
velocity field were passed to the sample generator. This was the same code that was used to sample the 
voxelized structures as highlighted by the flow diagram in Figure 2. Figure 6 shows an example pressure 
gradient and 3D velocity field from the LBM simulations. The resulting dataset had permeabilities 
spanning orders of magnitude between 10−3 and 102 in lattice units. 

3.1.4. Representative Scale Analysis 
The representative pore count was found for a range of structures of increasing noise frequency (which 
is equivalent to a decrease in average pore size of the pore network) in terms of both number of voxels 
and number of pores in the pore network. Figure 7 shows how the representative scale changes as a 
function of the noise frequency in terms of both volume (voxels) and pore count. There is a decrease in 
the required voxels for the sample to be representative, but the required number of pores in the pore 
network does not show a clear trend and fluctuates around 1200 pores. 

Figure 7 shows the benefits of defining the representative scale based on the number of pores rather 
than the number of voxels. If the representative volume was used, every sample, regardless of the noise 
frequency (and therefore average pore size), would need to have over 3003 voxels, whereas only 1503 
voxels are needed for the higher frequency structures. This increases the size of the dataset and slows 
model training. Instead, using the representative pore count provides a more consistent value of 1000-
1400 pores per sample across the entire range of noise frequencies. Using number of pores also allows 
for non-cubic samples to be used providing they have the required number of pores in the pore network. 
Based on the results in Figure 7, the minimum number of pores required in a pore network sample was 
chosen to be 1500 and any sample with fewer than 1500 pores was removed from the dataset. 

3.1.5. Samples Dataset 
From each of the 200 training structures, 500 samples were extracted, resulting in a total of 100,000 
training structures. The same process was repeated for the validation and testing datasets to produce 

 

Figure 6: Visualization of some lattice Boltzmann method simulation results, with a) showing the 
density field across the direction of flow and b) showing the 3D velocity field. 
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25,000 validation samples and 25,000 testing samples. During sample extraction, samples with fewer 
than 1500 pores were discarded because they were not representative samples. Similarly, samples with 
more than 6000 pores were discarded to ensure the size of each sample was not too large, which would 
increase computation costs and therefore training time. 

3.2. Graph Neural Network 

3.2.1. Selecting the Optimal Model 
The Optuna study was allowed to run until a significant number of successive trials were pruned. At the 
end, a total of 178 trials were completed, of which 46 were successful. The pruned trials were still useful 
for the study as it showed the combinations of hyperparameters that lead to poor performance. The 
study was not continued further because the improvements were minimal. The optimal hyperparameters 
are shown in Table 2. The fully-connected layer input had 6,005 nodes, which is based on the product 
of the number of features following the message passing layers and the number of pores in the pore 
networks, plus the five structure features.  

3.2.2. Training the Optimal Model 
Once the optimal hyperparameters were found, a 
final model was trained with the full training 
dataset and tested on the unseen testing dataset. 
This model was allowed to run for a total of 500 
epochs, taking an average of 16.02 seconds per 
epoch to train with four 16 GB Nvidia T4 GPUs and 
had 3,206,672 trainable parameters. During the 
training process, the results and checkpoints of 
the models were stored every 10 epochs, allowing 
for intermediate models to be retrieved. Beyond 
20 epochs, the testing MSE started to increase 
while the training MSE continued decreasing, 
indicating that the model was beginning to overfit. The learning rate for the optimal model was relatively 
high, which led to the quick training. Figure 8a shows the training and testing MSE for each epoch 

 

Figure 7: Representative scale analysis in terms of both number of pores in the pore 
network (pink) and number of voxels in the structure (blue). 

 

Table 2: Summary of the optimal hyper-
parameters from the Optuna study. 

Hyperparameter Optimal Value 

Message passing layer [2, 1] 

All layer sizes [6005, 512, 256, 1] 

Optimizer AdamW 

Initial learning rate 0.00971 

Learning rate step 19 

Learning rate decay 0.827 

AdamW Beta Values [0.925, 0.829] 
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during the training process and Figure 8b shows the parity plot for both training and testing data for 
the optimal model after 20 epochs of training. 

The model showed good performance on both the training and testing dataset over nearly four orders 
of magnitude, showing the trained model can generalize well to the unseen testing dataset. The learning 
curves appear noisy, however, the amount of noise is exaggerated by the log-scale on the y-axis. Noisy 
learning curves are not uncommon for deep learning training, with several examples of well-performing 
models with noisy learning curves being shown in the literature (3, 76). The 𝑅𝑅2 of the training data was 
0.999, scored on the natural log of the permeability. However, using the 𝑅𝑅2 as a metric for performance 
for this model is misleading because the parity plot is on log-log axes and the data spans several orders 
of magnitude. An alternative metric for model performance is a direct comparison of the GNN against 
the Carman-Kozeny equation. The MSE and MAE were the chosen metrics, and they were calculated on 
the natural log of the permeability for both models as that was what the GNN was aiming to predict. 
The comparison is shown in Figure 9. 

The GNN showed good agreement with the LBM over the entire porosity range and for permeabilities 
that span nearly three orders of magnitude. The error bars on the GNN prediction were small, 
highlighting the accuracy of the GNN. The tight error bars on the LBM results also show the 100 samples 
used are representative of the parent structures used for testing. The GNN outperformed the Carman-
Kozeny equation in terms of both MSE and MAE, with an MSE of 0.00190 and an MAE of 0.0302 for the 
GNN, compared to an MSE of 1.125 and an MAE of 0.783 for the Carman-Kozeny equation. The Carman-
Kozeny equation overpredicted the LBM permeability over the entire range of structures, more 
significantly at the lower porosities, compared to the GNN which matches the LBM permeability over the 
entire range. There have been several formats of the Carman-Kozeny equation developed based on 
properties including porosity, surface area, mean pore size, and tortuosity (71). The chosen version for 
this comparison was based on the specific solid surface area because the fractal structures used to train 
the models have a high surface area. Despite this, the Carman-Kozeny equation still overpredicted the 
LBM simulations, suggesting the surface area parameter is not sufficiently capturing the structure 
properties, especially at lower porosities. Furthermore, using a data-driven approach such as the GNN 
for permeability estimation has the potential to be applied to any given porous media type included in 
the training set, which is not the case for the Carman-Kozeny equation. 

These results show the capability of the GNN to handle representative samples. The GNN trained for this 
work was significantly smaller than the upper limit of GNN size on the same hardware. Large batch sizes 
of 1024 were used, while still not fully utilizing the GPU memory. The GNN was built to handle samples 
to a maximum of 4003 voxels, however, the REV-scale of some real porous media samples can often be 

 

Figure 8: a) The training and testing MSE per epoch of the full training process and b) the parity plot for 
the final chosen model after 20 epochs. 
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larger than this (73). Despite this, given the option to lower batch size to allow for larger models, we 
believe the GNN will be scalable enough to handle porous media samples with a much larger REV-scale. 

Finally, the GNN was able to make predictions of the permeability significantly faster than the LBM 
simulations, even when including the time required to extract the pore networks. Figure 10 shows a 
comparison of the LBM simulation time, the GNN inference time and the GNN inference time with the 
pore network extraction time included for five randomly selected porous media samples of the same 
type as those used in the training dataset. For the purposes of the comparison, a four-core CPU was 
used for each example. The GNN inference time is extremely quick for each sample at around 8 ms, 
compared to the average LBM simulation time of around 37 minutes. It should also be noted that the 
LBM convergence criteria were relatively relaxed for this work to allow for faster and cheaper model 
development. Application of the method to real structures would benefit from more strict convergence 
criteria, which would further increase the LBM simulation time, without affecting the GNN inference time. 
The time for the GNN inference and the pore network extraction was on average under 4 minutes - 
nearly 10 times faster than the LBM simulation, showing the benefits of the GNN approach over the LBM 
simulations. Furthermore, analysis of porous media often includes some type of pore network extraction 
to gather information such as pore size distribution, so it is often already computed, in which case the 
GNN is able to provide a near-instant prediction of the permeability. 

4. CONCLUSIONS 
In this work, a GNN was trained to predict the permeability of artificial porous media samples using pore 
networks extracted from within the structures, as well as some physical structure properties, such as the 
porosity and specific solid surface area. A representative pore count study was performed, showing that 
samples with at least 1500 pores were representative of the structures the samples were extracted from. 
This allowed for a GNN to be trained that is large enough to provide accurate predictions of the 
structures of interest. The permeability data used to train the model was determined using LBM 

 

Figure 9: A comparison of the permeability obtained from the graph neural network 
(GNN), the lattice Boltzmann method (LBM) and the Carman-Kozeny equation for 
structures of varying porosity. 
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simulations. The GNN was able to make fast and accurate predictions of the permeability, showing a 
good agreement with the LBM simulations, outperforming the commonly used Carman-Kozeny 
equation, with the GNN having an MSE of 0.00190 and an MAE of 0.0302, and the Carman-Kozeny 
equation having an MSE of 1.125 and an MAE of 0.783 when compared to the LBM simulations. The 
GNN inference time was several orders of magnitude faster than the LBM simulations, with the same 
computational resources, and even with the pore network extraction included in the GNN time, it was 
still nearly 10 times faster than the LBM simulations. 

While the GNN was able to outperform the existing correlations and showed a good agreement with the 
simulations, it should be noted that the model was trained and tested on ideal porous media samples. 
Further work is needed to expand on the method and apply the GNN to real porous media samples 
where the representative scale is significantly higher due to heterogeneities often found within real 
porous media samples. Despite this, the GNN is a promising tool for predicting porous media properties, 
and provides a more scalable approach than existing methods, such as the 3D CNN, due to the scale 
being tied to the pore count of the pore network rather than the voxel count of the porous structure. 
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