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ABSTRACT

The permeability of porous media is often calculated using correlations or
computationally expensive simulations. Several methods have been
developed which use neural networks to predict porous media properties,
but little work has been done on the development of a model that can handle
porous media at the representative elementary volume (REV) scale. This
work describes the framework for developing a graph neural network (GNN)
to predict the permeability of porous media based on representative pore
networks extracted from the structures, rather than representative structure
volumes. This allows for consistent input sizes for the neural network,
irrespective of the average pore size, which is more difficult when the entire
voxelized structure is the model input. A GNN was trained to predict the
permeability of porous media based on lattice Boltzmann method (LBM)
simulations of the flow through the structures. The GNN showed a good
agreement with the LBM simulations over samples with permeabilities
spanning several orders of magnitude. The GNN was able to outperform the
Carman-Kozeny equation with a mean squared error (MSE) for the unseen
testing dataset of 0.00190 and a mean absolute error (MAE) of 0.0302
compared to an MSE of 1.125 and an MAE of 0.783 for the Carman-Kozeny
equation, when comparing against the LBM ground truth. The inference time
of the GNN alone was several orders of magnitude faster than the LBM
simulations, and nearly 10 times faster when including the pore network
extraction time needed for the GNN. This work demonstrates the potential
of using GNNs to predict the permeability of representative porous media,
and the benefits of using model architectures that take pore networks as the
inputs.
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1. INTRODUCTION

Understanding the properties of porous media is beneficial for several important applications, including
fuel cells (62), batteries (84), geology (35), and automotive exhaust treatment (42). Typical methods for
numerically determining the properties of porous media, such as effective gas diffusivity or permeability,
involve pore-scale fluid simulations. These are split into different approaches, such as traditional
computational fluid dynamics (CFD), including the finite volume method (42, 54, 83) and the finite
element method (60), and fast Fourier transforms for direct numerical simulation (10, 52). The lattice
Boltzmann method (LBM) is an alternative CFD technique that has commonly been used for porous
media simulations (20, 76, 79). The LBM can be second order accurate (47) and complex structures can
be modeled (44), making it ideal for porous media simulations. However, traditional CFD techniques and
the LBM require significant computational cost, often requiring the use of high performance computing
(HPC) (20, 83). Pore network models have also been used to determine the properties of porous media
(8, 59). Common approaches for constructing pore network models use some type of porosimetry,
however, variations in pore size within the structure can lead to inaccurate pore size distributions (81).
Alternatively, permeability can be measured experimentally by driving flow through a porous structure,
measuring the pressure drop and determining the permeability using Darcy’s law (75). While this is useful
for validating simulations, it requires a complex experimental setup, and more results can be gathered
via simulation.

To overcome the need for extra simulations or experiments, various data-driven methods have been
used for predicting porous media properties. A common method is the convolutional neural network
(CNN) (3, 68, 76, 79), with both 2D and 3D implementations showing good predictive performance. As
with many neural networks, training of the models requires large datasets, and obtaining a sufficiently
large dataset from real porous media is difficult due to the time required to image the structures (42).
Furthermore, depending on scale, some imaging techniques can be destructive to the samples (62),
which is an issue when trying to generate datasets with more than 1000 samples due to waste and cost
considerations. Methods of producing large datasets from fewer or no real structures have been
developed, including the generation of a dataset by augmenting a pair of real structures (68), extracting
smaller, overlapping samples from larger structures (76), or generating a dataset of entirely non-real
structures (63, 77, 79, 83). Using methods such as these allows for large datasets with high variance to
be generated quickly and cheaply.

A key step in the development of data-driven methods is feature engineering, which provides
descriptions of the underlying dataset and improves the degree to which machine learning models can
be explainable (18). The features also play a significant role in describing how well the machine learning
model can be generalized to new, unseen structures (55). It is therefore important to decide how to best
represent the structures in a way that can be interpreted by machine learning methods. As mentioned
previously, a common approach is to take 2D (or 3D) images of porous structures and train a CNN. The
2D CNN has shown good results for predicting the properties of 2D images of porous media. However,
characteristics of the 2D images are not necessarily present in 3D structures. For example, dead-end
pores are often found in 2D images, but are rarely seen in 3D images (36). This means features of 2D
structures learned in the machine learning models will not necessarily carry over to the 3D structures.
Consequently, the 3D CNN has become more popular for porous media research. Wang et al. (76) trained
a 3D CNN to predict the effective diffusivity of randomly generated 3D porous media, showing good
predictive performance. However, a general problem with CNNs is that they are computationally
expensive, especially in 3D (13), which may prove problematic when trying to predict properties of
samples large enough to be representative of the structure they were sampled from.

Although CNNs take in entire structures as inputs, other structural properties may be useful to the
machine learning models. For example, a common choice for obtaining information about a porous
structure is to extract the pore network (an example pore network is shown in Fig. 1). The pore network
consists of pore coordinates and pore connections, which can be represented as a graph data structure
(29), thereby encoding both pore features and connectivity within a single structure. Graph neural
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networks (GNNs) are a class of neural
networks specifically designed to process
graph data structures (80). They have seen a
variety of applications including social
recommendation systems (21), journal paper
citation trends (16), and text classification
(53). However, they have also been used to
predict properties of a variety of physical
systems, including the quantum properties
of molecules (26), and the properties of
polycrystalline structures (17). Dai et al. (17)
represented a structure of crystals with a
graph, storing information about the crystals
in a feature matrix and information about the
crystal connectivity in an adjacency matrix.
The adjacency and feature matrices were
then passed to the GNN, making use of
message passing layers to determine the
influence of neighboring crystals on each
other to predict structural properties (24).

Figure 1: Example 2D pore network generated with
PoreSpy (30) and OpenPNM (29). The size and color of
Cai et al. (10) used a graph isomorphism | the circles represent pores of equivalent size and the
network, a type of GNN, in order to predict | linesrepresentpore connections.

formation factor and effective permeability
using Morse graphs extracted from porous media images. A Morse graph is extracted from the distance
transform, with features such as coordinates and distance values assigned to the graph nodes. This
produces a reduced dimension representation of the structure that contains information about each of
the pore regions and pore connectivity. It therefore aids in understanding how the neural network
obtains information about the structures, leading to a more interpretable machine learning model. Graph
neural networks have also been coupled with CNNs to make predictions of porous media properties (4,
86). They aim to capture the strengths of both models: the CNN extracts detailed surface properties from
the images, while the GNN captures the connectivity of the structure. However, this often results in highly
complex models.

While several methods exist to predict the properties of porous media, it is crucial that they are
sufficiently scalable to handle structures large enough to be representative of the original materials from
which they were extracted. Training machine learning models on representative 2D samples has been
explored (79). However, limited research has been done on the use of 3D samples that are shown to be
representative in the CNN literature (70) and, as far as we are aware, no research has been done on the
use of representative pore networks for training a GNN. This work addresses the problem by training a
GNN on representative pore networks extracted from the samples, enabling it to generalize to previously
unseen porous media.

First, a set of large, unique, non-real structures that mimic the properties of real porous media were
generated. Lattice Boltzmann method simulations were then performed on the large structures.
Following this, smaller, representative samples were extracted from the larger structures and the
simulation results, creating a large and varied dataset. Finally, a GNN was trained to predict the
permeability of the samples based on the pore network extracted from within.
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Figure 2: A flow diagram showing the development of the graph neural network (GNN) and how the
GNN will be deployed.

2. METHODOLOGY

2.1. Method Overview

This section outlines the process for predicting the permeability of porous media using a GNN. Figure
2 provides an overview of the model development framework and its deployment. Sections 2.2 to 2.6
provide details of each part of the framework.

2.2. Generating Structures

Training machine learning models to predict properties of porous media typically requires thousands of
samples (3, 68, 76, 79). However, obtaining this dataset from real, virtually reconstructed porous media
samples alone is difficult because samples can take hours to image with techniques such as X-ray
tomography (42). Therefore, to test the method, a dataset was produced comprising randomly generated
porous media. Several generation techniques exist in the porous media literature, including sphere
packing (76, 83), cylinder packing (63), and the quartet structure generation set (QSGS) method (78, 79),

InterPore Journal, Vol. 2, Issue 3, 2025 https://doi.org/10.69631/ipj.v2i3nr47


https://doi.org/10.69631/ipj.v2i3nr47

I’Anson et al. Page 5 of 21

each with their own benefits and drawbacks. In this work, structures generated with fractal noise from
the PoreSpy Python library (30) were used. This allowed for random, realistic structures with varying
properties to be generated quickly and cheaply, with each structure taking just seconds to generate.
Non-real structures were used because testing the method does not necessarily require real porous
media samples. Training a model on fractal noise structures allows for a proof of concept of the
approach, which can later be applied to more complex, real structures. The fractal noise structures were
selected over other types such as packed spheres because they have more similarities such as a rough
surface.

The resulting structure is a 3D array of values between zero and one. Binary porous structures were then
generated by applying a threshold to the noise, which roughly corresponds to the porosity of the final

Figure 3: Example fractal noise porous structures: a) a 2D slice taken from a 3D fractal noise image, b)
a 2D slice taken from a 3D binary image, and ¢) a voxelized 3D structure.

structure. Three example structures are shown in Figure 3, with Figure 3a showing a 2D slice of a 3D
fractal noise image, Figure 3b showing a 2D slice taken from a 3D binary structure, where the light
regions are the solid and the dark regions are the pores, and Figure 3c showing a 3D voxelized structure.
Several parameters influence the properties of the structures; these include frequency, gain, and number
of octaves of the noise (30), as well as the threshold applied to the noise. A Latin hypercube (LHC) design
(56) was used to produce a set of structures with semi-random parameters over the entire range of
possible parameters, ensuring the whole sample space is explored evenly, and improving on methods
such as random or grid search. Three datasets were generated: one for training, one for validation and
one for testing.

Typically, cross-validation is used to develop the model and identify the optimal hyperparameters (5). In
this approach, the training and validation sets are derived from the training dataset, while a separate
third dataset is reserved for final model testing. This is not possible here due to data leakage issues that
arise when extracting validation samples from the training dataset. The sample extraction technique used
is a form of data augmentation, a method used to enhance a dataset by producing new samples from
the existing samples (72). If augmented samples from the same original structure are placed in both
training and testing datasets, it can lead to seemingly better model accuracy, but the model will not
generalize well to new data, which is a known issue in the CNN literature (82). Since the data
augmentation techniques are similar to those used in the CNN literature, unique structures generated
with the porous media generator (Fig. 2) were required for the training, validation, and testing datasets
to avoid data leakage.

2.3. Feature Extraction

2.3.1. Structure Properties

A variety of physical structure properties can be extracted from the voxelized structures which can be
used as input features for the fully-connected section of the GNN. Porosity can be obtained quickly by
taking the volume fraction of the pore space in the total volume. Another useful property is the specific
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solid surface area, which describes the surface area per unit volume, where the surface area is calculated
from a mesh of the structure. The specific solid surface area was computed with the mesh for the
Carman-Kozeny equation, but was approximated by using the fraction of solid voxels connected to pores
as a proxy for the surface area for the GNN input. This provides a good, scale-independent
representation for the GNN, without needing to compute the surface area from the mesh. Given the
porosity and specific solid surface area, an estimate of the permeability can be found with the Carman-
Kozeny equation (12, 43). The permeability obtained from this equation does not perform well on
heterogeneous structures (61), however, it is useful to compare to the LBM simulations for more
homogeneous structures. The Carman-Kozeny equation can take a variety of forms depending on the
application. Equation 1 shows a widely cited version based on the porosity and specific solid surface
area (37, 67,71, 75). The permeability obtained from the Carman-Kozeny equation was compared to the
permeability obtained from the LBM and the GNN.

¥ (1)
ke SZ(1 — )2

In Equation 1, k is the permeability in m?, ¢ is the porosity, kg is the Kozeny constant, which is
dimensionless, and S, is the specific solid surface area in m™. The Kozeny constant is typically given a
value of 5 (12), which was also selected for this work. The porosity and specific solid surface area are
macroscopic properties of the structures, however, heterogeneities in the structures will not be
sufficiently represented by the macroscopic properties. As discussed by Nishiyama and Yokoyama (61),
the critical pore diameter (defined as the maximum sized sphere that can pass through the porous
structure) correlates well to the permeability, but is difficult to determine. For this reason, the LBM was
used to determine the ground truth for the permeability of the structures, despite requiring significant
computational cost.

k

Another common property used with the porous media field is the tortuosity, which describes the ratio
of the free path between two points compared to the shortest distance between the two points (25).
While there are versions of the Carman-Kozeny equation that include the tortuosity (71), there is
significant ambiguity around its calculation with a range of methods providing different values that are
weakly correlated and not interchangeable (85). This implies the physics behind these approaches is also
inconsistent and therefore it is best avoided. Furthermore, representing the pore network as a graph
effectively allows the data required to compute the tortuosity to be encoded into the adjacency matrix,
meaning the tortuosity is not required as a feature.

2.3.2. Pore Network Extraction

Graph data structures, comprising an adjacency matrix and a feature matrix, extracted from the pore
networks were used to train the GNN. The pore networks were extracted with PoreSpy (30) using a
watershed segmentation algorithm (31). The PoreSpy implementation was chosen due to its speed and
the variety of properties, such as the pore volume, diameter and surface area or connection length and
diameter, which can be passed to the GNN. For visualization purposes, a 2D example of the extracted
pore network is shown in Figure 1, however the 3D version works in the same way.

The adjacency matrix is a square matrix of size M X M where M is the number of pores in the pore
network. Information about the edges can also be encoded in the adjacency matrix by weighting the
connection values with edge features, known as a weighted adjacency matrix (15). The feature matrix is
a 2D matrix of size M X N where N is the number of features. These features represent the properties
of each pore.

2.3.3. Feature Selection

Extracting the pore networks with watershed segmentation provides node and edge feature matrices
with several correlated features such as the pore inscribed diameter (the diameter of the largest sphere
that can be placed in the pore) and pore equivalent diameter (the diameter of the sphere with a volume
equal to the pore volume). Pearson correlation matrices were used to determine which of the pore and
throat features to retain (9), as keeping too many correlated features increases model complexity and
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can even lead to reduced model performance (33). Features with a correlation of greater than 0.5 can be
regarded as strongly correlated (14). However, for this study, this threshold was increased to 0.8 to ensure
only the most correlated features, such as inscribed pore diameter and equivalent pore diameter, were
removed.

As the feature matrix is of size M X N, any number of pore features can be selected, with the only cost
being a slight computation time increase for more features. Many of the simple graph convolution layers
used in GNNs only allow weighted adjacency matrices (41), with more computationally expensive layers
allowing multiple edge features (27). The total length of each throat was taken as the single edge feature
used to weight the adjacency matrix. This was because other throat features, such as diameter, are more
closely related to the pore features, whereas the length is completely independent. This meant that the
entire structure can be represented with a pore network and a few structure properties, which is much
smaller than the voxelized structure required for the CNN.

2.4. The Lattice Boltzmann Method

The LBM has been used for a variety of applications including multiphase flows (51), moving geometries
(49), heat transfer (74), as well as flow through porous media (20, 76, 79). As mentioned in the
Introduction, traditional CFD can be used to perform porous media simulations, however, complex
meshes must be generated to adequately represent the complex geometries found with porous media
(58). They often require further refinement closer to the surfaces to provide sufficient surface definition
(7), further increasing the mesh size. Due to the voxelized domain, the LBM is very well suited to porous
media simulations, removing the need for these complex meshes (47), and is not subject to continuum
modeling constraints (34). As the generated structures are binary 3D arrays, they are in a voxelized
format, meaning a simulation technique which can deal with voxelized domains is ideal.

2.4.1. Simulating Flow Through Porous Media

The porous media simulations were performed with Palabos (50), an open-source C++ library capable
of performing highly parallelized simulations. The chosen lattice was a D3Q19 lattice—a 3D lattice with
19 discrete velocities per node—selected for its balance between computational cost and accuracy (48).
The Bhatnagar-Gross-Krook (BGK) collision operator was chosen for its simplicity (48), though other,
more complex, collision operators are available (45). A uniform pressure gradient was imposed between
the inlet and outlet which drives flow through the structure. A no-slip impermeable boundary condition
was applied to the edges of the domain adjacent to the direction of flow, and the full-way bounce-back
scheme was used for the fluid-solid collisions within the structure that occur on the boundary lattice
nodes between the solid and the fluid.

2.4.2. Computing Permeability

Once the simulation had been completed, the permeability was calculated from the component of the
velocity field in the direction of flow using a rearrangement of Darcy’s law, shown in Equation 2.

k =% (2)

Here k is the permeability, q is the average velocity component in the direction of flow, u is the lattice
viscosity, L is the length of the domain in the direction of flow, and AP is the change in pressure in the
direction of flow, all in lattice units.

2.5. Producing a Dataset

As mentioned previously, obtaining a dataset large enough to train the GNN from entirely real data is
expensive, so non-real structures were generated to mimic the properties of real structures. It was also
mentioned that the simulations take a long time to complete, which is the reason a data-driven approach
for determining the porous structure properties is useful. While the structure generation is quick for the
non-real structures, the LBM simulations would require significant computation time. An augmented
dataset can be generated by extracting several smaller, overlapping samples from a single larger
structure, providing the samples are representative of the larger structure. The size at which this is true
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is known as the representative elementary volume (REV) scale (32), explained further in Section 2.5.1.
This allows for many more partially unique structures to be extracted from a single simulation, reducing
computation time for a given dataset. The structures are only partially unique because each sample
extracted from a single structure may have some overlap with other samples.

Computing the permeability of the samples requires an extra step because the pressure drop between
the inlet and the outlet of the sample is not known. The pressure drop can be calculated from the inlet
and outlet density using Equation 3 (46).

AP = Csz (Pin — Pout) 3)
Where AP is the change in pressure between the inlet and outlet, p;;, and p,,,; are the average inlet and
outlet densities, obtained from the density field, and ¢, is the speed of sound in the lattice, given the
value \/1/3, all in lattice units.

2.5.1. Representative Elementary Volume

The REV-scale refers to the volume at which the macroscopic properties of a sample are the same as the
macroscopic properties of the structure from which the sample was extracted (32). When randomly sized
samples are extracted from a structure, there is more spread in the permeability for smaller samples,

Samples 16 1 Samples
—— Final —— Final

1.6
144 1.4 4

124

Permeability / L.u.
Permeability / Lu.

02 ° 0.2 4

T T T T T T T T T
a 100 200 300 400 500 600 b 100 1000 10000
Size of one edge / voxels Number of pores in sample

Figure 4: Trumpet plot showing the permeability of random samples extracted from a larger structure
as a function of a) the size of the structure in voxels and b) the number of pores in the pore network.

meaning each of the small samples are not representative of the structure they were sampled from.
Figure 4a shows the permeability of the cubic samples as a function of the length of one side and Figure
4b shows the permeability of the same samples as a function of the number of pores in the pore network.
The representative scale for a given structure can be quantified as the point at which the spread of
permeabilities is within a given threshold. It can be given in terms of the volume (REV) or the pore count,
denoted as the representative pore count throughout this work. For example, a threshold of +10% would
define the representative scale to be the point at which all the samples are within a range of +10% of
the permeability of the structure the samples were taken from. A lower threshold value would be more
accurate, but each sample would need to be larger, while a higher threshold would be less accurate but
would require smaller samples, reducing computation costs. The chosen value was +10% for this work.

2.5.2. Extracting Samples

A pore network was extracted, and the LBM simulation was performed on each of the generated
structures. From each structure, 500 smaller, overlapping samples were extracted, thereby reducing the
computational cost of the dataset. Extracting samples of a fixed size from each structure results in pore
networks with comparable numbers of pores and similar permeabilities. This inadvertently caused the
GNN to use the number of pores as a predictor, which was not intended and led to degraded model
performance. Therefore, the samples were randomly sized between a range of 100 and 400 voxels per
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dimension, leading to varying pore network sizes. A margin was applied around the edges of the
structures from which samples could not be extracted. This was to reduce the effects of the boundary
conditions from the LBM simulations on the permeability value. The margin size was defined based on
the point at which the permeability stops changing as the margin increases, indicating the effects of the
margin were negligible.

2.5.3. Dataset Processing and Structure

The structure features, the feature matrix and the permeability were all scaled before training to ensure
accurate and stable training (39). The feature matrix and the structure features were normalized to have
values between zero and one, ensuring the features with large values are weighted equally to features
with small values. The adjacency matrix was scaled with symmetric normalization, explained further in
Section 2.6.1. The permeability for the samples spanned multiple orders of magnitude (in lattice units),
and therefore a natural log transform was applied to the permeability, ensuring errors in the prediction
of samples with high permeability are penalized equally to the samples with low permeability. Both the
validation and test datasets were scaled using the values obtained from the training dataset to ensure
independence, and thus avoid information from the training dataset influencing the testing performance
(38), which would lead to data leakage.

Each pore network must be of the same size to be passed to the GNN. To ensure this, the sample with
the maximum number of pores, M, ,,, was identified, and pore networks with fewer pores were zero-
padded to match this size. The extra zeros do not have a significant effect on the training, just as two
pores that are not connected would contribute little to the training.

2.6. Graph Neural Network

The neural network was developed and trained using PyTorch (66) and PyTorch Geometric (23). This
allowed large GNNs to be trained quickly, using multiple GPUs on a HPC cluster. The GNN allows the
model to be independent of the size of the structure (in terms of voxels), compared to CNNs which take
in images of the same size (69), limiting the model structures to a fixed structure size. The GNN takes in
a graph and encodes it into a new feature matrix with information from the original feature matrix and
the connections from the adjacency matrix. The GNN was split into two parts: a set of message passing
layers and a set of fully connected layers.

2.6.1. Message Passing

The goal of the message passing is to learn node embeddings from the node features (24). After each
message passing layer, each node gains information about its neighboring nodes. Multiple message
passing layers can be joined in series, with each layer providing information about the connections
further away from a given node. However, using too many message passing layers can lead to over-
smoothing of the network, where each of the resulting features have similar values (11). Figure 5
illustrates how the message passing layers pass information from a node to its neighbors after each
layer. Initially, the feature matrix only contains the selected pore features, with no information about the
pore connections. Considering just the pore highlighted with an 'x’, the feature values for that node are

Second Layer
—

First Layer
—

Figure 5: How information is passed from one node to its neighboring nodes after each message
passing layer.
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just the pore features. After a single message passing layer, the feature values of the pore highlighted
with an 'x’ have information about its two neighbors, highlighted in light blue.

Equation 4 shows the main equation describing the message passing (41),

I S @
Fn+1 - U(D zAD anWn)
where g is an activation function and W, is a matrix of trainable parameters called the weight matrix.

5_%/15_% is the symmetric normalized Laplacian matrix (65) which can help to eliminate some training
instability compared to some other normalization techniques (41), while also maintaining the symmetry
of the adjacency matrix, which is important because asymmetry of the adjacency matrix would imply a
directed graph, which the pore network is not. F,, and F,,, 1 are the feature matrices afternandn + 1
message passing layers. Several activation functions were tested including TanH and ReLU, but they lead
to unstable training; therefore, the leaky ReLU was used. The size of the weight matrices in the message
passing layers and the number of message passing layers are hyperparameters of the model and need
to be optimized. This is to ensure enough information from the feature matrix and adjacency matrix is
passed to the fully connected layers without causing the over-smoothing effects.

2.6.2. Fully-connected Layers

Following message passing, the node embeddings are flattened and combined with the single value
features (porosity, specific solid surface area and sample size) and passed to the input of a fully-
connected neural network. There are several architectural choices to be made for the fully connected
layers; these include the number of hidden layers and the number of nodes per layer (28). As with the
message passing layers, the leaky ReLU activation function was chosen because it proved to be the most
stable during the training process.

The output of the fully-connected layers was a single value which represented the prediction of the
natural log of the permeability. The mean squared error (MSE) (57) was used as the criterion for assessing
the model performance.

2.6.3. Hyperparameter Tuning

Tuning the hyperparameters in any supervised machine learning model with several tunable parameters
is important for finding the optimal model (6). Manually selecting hyperparameters is a nearly impossible
task for problems with potentially millions of hyperparameter combinations. Because of this, Optuna (1)
was used to determine a set of optimal hyperparameters. Optuna employs efficient sampling algorithms
to select new configurations of hyperparameters based on the previous training runs. It can also prune

Table 1: Summary of the hyperparameter options for Optuna.

Hyperparameter

Number of inner message passing layers
Size of each message passing layer

Size of final message passing layer
Number of hidden fully-connected layers
Size of each fully-connected layer
Optimizer

Learning rate

Learning rate step

Learning rate decay

Optimizer beta values

SGD: Stochastic Gradient Descent

InterPore Journal, Vol. 2, Issue 3, 2025

Options for Optuna

0-3

2,4,6,8,100r12

Tor2

2-6

32,64, 128, 256, 512, 1024, 2048
SGD, Adam, AdamW, Adamax
0.001-0.1 (log uniform)
10-100

0.8-1

0.75-1
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poorly performing trials, and thus was chosen over other methods such as grid search or random search
to reduce the computation costs of the hyperparameter search (2, 22).

Table 1 shows a summary of the hyperparameter options for the Optuna hyperparameter tuning. The
number of message passing layers had a range of 1-4 to avoid over-smoothing. The number of nodes
in each layer was kept relatively low compared to the number of nodes in the fully-connected layers due
to memory requirements. The size of the final message passing layer was capped at two nodes because
it is flattened and passed to the fully-connected layers, so large values lead to further memory issues.
The number of fully-connected layers had a range of 2-6, and each layer had a width of between 32 and
2048 nodes. This allows both the depth and width of the fully-connected neural network to be explored
in the hyperparameter search. The stochastic gradient descent (SGD) and Adam (40) optimizers were
included in the hyperparameter search as they are some of the most widely used. Variations of Adam
that have been used for GNNs were also tested, including AdamW (64) and Adamax (19). Finally, the
learning rate, including the learning rate scheduler hyperparameters, were included in the
hyperparameter search, along with the beta values (28), which are parameters of the Adam, Adamax and
AdamW optimizers.

A hyperparameter study was set up and allowed to run until a given number of successive trials were
pruned. The trials were trained on the entire training dataset and tested on the entire validation dataset.
Each trial was allowed to run for up to 250 epochs, unless the trial was stopped early. The median pruner
was chosen as the early stopping algorithm, since it allows several warm-up steps before pruning is
checked. This is useful because the training process of the GNN can be initially unstable before stabilizing
into a more typical learning curve. The selected sampler was the tree-structured Parzen estimator, chosen
to accommodate the relatively small number of trials imposed by the long training time of the GNN. The
optimization criterion for the Optuna study was based on the MSE of the validation dataset at the end
of the training process.

2.6.4. Model Testing

Once the hyperparameter study had been completed, a final model was then trained using the optimal
hyperparameters. This model was trained for up to 500 epochs as the computational costs of a single
training run are less significant than the combined hyperparameter study trials. Training for longer than
this resulted in overfitting of the model, leading to significantly better performance on the training
dataset, with no improvement on the testing performance. The third, unseen testing dataset was used
to test the performance of this model to ensure the testing dataset was independent and to avoid a
biased estimation of generalization.

Finally, the trained model was compared to the Carman-Kozeny equation. A set of 15 new structures
were generated with porosities ranging from 0.2 to 0.8. These structures were the same size as the
structures used in the other datasets, and every other generation parameter was kept constant. An LBM
simulation was performed on each of the structures to obtain the velocity and density fields. A 10%
margin region was placed around the structures, and 100 randomly sized samples were extracted from
random locations outside of the margin regions. The pore network from each sample was passed to the
trained model, the porosity and specific solid surface area were used to obtain the permeability from
Equation 1, and the velocity and density fields were used to compute the permeability from the LBM
simulations to compare the three methods.

3. RESULTS AND DISCUSSION
3.1. Dataset Generation

3.1.1. Generating Structures

Three independent sets of 500 X 500 X 500 voxel structures were generated: one for training with 200
structures, one for validation with 50 structures, and one for testing with 50 structures. The three sets of
parent structures were kept separate to ensure there was no data leakage caused by overlapping
samples.
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3.1.2. Pore Network Feature Selection

Correlation matrices were produced for both the pore and throat features, and the features with a
correlation of more than 0.8 were removed from the dataset, simplifying the model. The selected pore
features were the three coordinates, extended pore diameter, and pore region volume, while the selected
throat feature was total length.

3.1.3. LBM Simulations

The LBM simulations were performed on an HPC cluster using a 44-core CPU. The simulation results
included a density scalar field and velocity vector field. The density field and the x-component of the
velocity field were passed to the sample generator. This was the same code that was used to sample the
voxelized structures as highlighted by the flow diagram in Figure 2. Figure 6 shows an example pressure
gradient and 3D velocity field from the LBM simulations. The resulting dataset had permeabilities
spanning orders of magnitude between 1073 and 107 in lattice units.

p max

Velocity Magnitude / l.u.

a = ) — Pmin b - [009+00

Flow Direction

Figure 6: Visualization of some lattice Boltzmann method simulation results, with a) showing the
density field across the direction of flow and b) showing the 3D velocity field.

3.1.4. Representative Scale Analysis

The representative pore count was found for a range of structures of increasing noise frequency (which
is equivalent to a decrease in average pore size of the pore network) in terms of both number of voxels
and number of pores in the pore network. Figure 7 shows how the representative scale changes as a
function of the noise frequency in terms of both volume (voxels) and pore count. There is a decrease in
the required voxels for the sample to be representative, but the required number of pores in the pore
network does not show a clear trend and fluctuates around 1200 pores.

Figure 7 shows the benefits of defining the representative scale based on the number of pores rather
than the number of voxels. If the representative volume was used, every sample, regardless of the noise
frequency (and therefore average pore size), would need to have over 3003 voxels, whereas only 1503
voxels are needed for the higher frequency structures. This increases the size of the dataset and slows
model training. Instead, using the representative pore count provides a more consistent value of 1000-
1400 pores per sample across the entire range of noise frequencies. Using number of pores also allows
for non-cubic samples to be used providing they have the required number of pores in the pore network.
Based on the results in Figure 7, the minimum number of pores required in a pore network sample was
chosen to be 1500 and any sample with fewer than 1500 pores was removed from the dataset.

3.1.5. Samples Dataset

From each of the 200 training structures, 500 samples were extracted, resulting in a total of 100,000
training structures. The same process was repeated for the validation and testing datasets to produce
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Figure 7: Representative scale analysis in terms of both number of pores in the pore
network (pink) and number of voxels in the structure (blue).

25,000 validation samples and 25,000 testing samples. During sample extraction, samples with fewer
than 1500 pores were discarded because they were not representative samples. Similarly, samples with
more than 6000 pores were discarded to ensure the size of each sample was not too large, which would
increase computation costs and therefore training time.

3.2. Graph Neural Network

3.2.1. Selecting the Optimal Model

The Optuna study was allowed to run until a significant number of successive trials were pruned. At the
end, a total of 178 trials were completed, of which 46 were successful. The pruned trials were still useful
for the study as it showed the combinations of hyperparameters that lead to poor performance. The
study was not continued further because the improvements were minimal. The optimal hyperparameters
are shown in Table 2. The fully-connected layer input had 6,005 nodes, which is based on the product
of the number of features following the message passing layers and the number of pores in the pore
networks, plus the five structure features.
Table 2: Summary of the optimal hyper-

3.2.2. Training the Optimal Model parameters from the Optuna study.

Once the optimal hyperparameters were found, a
final model was trained with the full training
dataset and tested on the unseen testing dataset.

Hyperparameter Optimal Value

Message passing layer [2,1]

This model was allowed to run for a total of 500 All layer sizes [6005, 512, 256, 1]
epochs, taking an average of 16.02 seconds per Optimizer AdamW
epoch to train with four 16 GB Nvidia T4 GPUs and Initial learning rate 0.00971
hagl .3,206,672 trainable parameters. Durlr.19 the Learning rate step 19
training process, the results and checkpoints of
Learning rate decay 0.827

the models were stored every 10 epochs, allowing
for intermediate models to be retrieved. Beyond AdamW Beta Values [0.925, 0.829]

20 epochs, the testing MSE started to increase

while the training MSE continued decreasing,

indicating that the model was beginning to overfit. The learning rate for the optimal model was relatively
high, which led to the quick training. Figure 8a shows the training and testing MSE for each epoch
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Figure 8: a) The training and testing MSE per epoch of the full training process and b) the parity plot for
the final chosen model after 20 epochs.

during the training process and Figure 8b shows the parity plot for both training and testing data for
the optimal model after 20 epochs of training.

The model showed good performance on both the training and testing dataset over nearly four orders
of magnitude, showing the trained model can generalize well to the unseen testing dataset. The learning
curves appear noisy, however, the amount of noise is exaggerated by the log-scale on the y-axis. Noisy
learning curves are not uncommon for deep learning training, with several examples of well-performing
models with noisy learning curves being shown in the literature (3, 76). The R? of the training data was
0.999, scored on the natural log of the permeability. However, using the R? as a metric for performance
for this model is misleading because the parity plot is on log-log axes and the data spans several orders
of magnitude. An alternative metric for model performance is a direct comparison of the GNN against
the Carman-Kozeny equation. The MSE and MAE were the chosen metrics, and they were calculated on
the natural log of the permeability for both models as that was what the GNN was aiming to predict.
The comparison is shown in Figure 9.

The GNN showed good agreement with the LBM over the entire porosity range and for permeabilities
that span nearly three orders of magnitude. The error bars on the GNN prediction were small,
highlighting the accuracy of the GNN. The tight error bars on the LBM results also show the 100 samples
used are representative of the parent structures used for testing. The GNN outperformed the Carman-
Kozeny equation in terms of both MSE and MAE, with an MSE of 0.00190 and an MAE of 0.0302 for the
GNN, compared to an MSE of 1.125 and an MAE of 0.783 for the Carman-Kozeny equation. The Carman-
Kozeny equation overpredicted the LBM permeability over the entire range of structures, more
significantly at the lower porosities, compared to the GNN which matches the LBM permeability over the
entire range. There have been several formats of the Carman-Kozeny equation developed based on
properties including porosity, surface area, mean pore size, and tortuosity (71). The chosen version for
this comparison was based on the specific solid surface area because the fractal structures used to train
the models have a high surface area. Despite this, the Carman-Kozeny equation still overpredicted the
LBM simulations, suggesting the surface area parameter is not sufficiently capturing the structure
properties, especially at lower porosities. Furthermore, using a data-driven approach such as the GNN
for permeability estimation has the potential to be applied to any given porous media type included in
the training set, which is not the case for the Carman-Kozeny equation.

These results show the capability of the GNN to handle representative samples. The GNN trained for this
work was significantly smaller than the upper limit of GNN size on the same hardware. Large batch sizes
of 1024 were used, while still not fully utilizing the GPU memory. The GNN was built to handle samples
to a maximum of 4003 voxels, however, the REV-scale of some real porous media samples can often be
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Figure 9: A comparison of the permeability obtained from the graph neural network
(GNN), the lattice Boltzmann method (LBM) and the Carman-Kozeny equation for
structures of varying porosity.

larger than this (73). Despite this, given the option to lower batch size to allow for larger models, we
believe the GNN will be scalable enough to handle porous media samples with a much larger REV-scale.

Finally, the GNN was able to make predictions of the permeability significantly faster than the LBM
simulations, even when including the time required to extract the pore networks. Figure 10 shows a
comparison of the LBM simulation time, the GNN inference time and the GNN inference time with the
pore network extraction time included for five randomly selected porous media samples of the same
type as those used in the training dataset. For the purposes of the comparison, a four-core CPU was
used for each example. The GNN inference time is extremely quick for each sample at around 8 ms,
compared to the average LBM simulation time of around 37 minutes. It should also be noted that the
LBM convergence criteria were relatively relaxed for this work to allow for faster and cheaper model
development. Application of the method to real structures would benefit from more strict convergence
criteria, which would further increase the LBM simulation time, without affecting the GNN inference time.
The time for the GNN inference and the pore network extraction was on average under 4 minutes -
nearly 10 times faster than the LBM simulation, showing the benefits of the GNN approach over the LBM
simulations. Furthermore, analysis of porous media often includes some type of pore network extraction
to gather information such as pore size distribution, so it is often already computed, in which case the
GNN is able to provide a near-instant prediction of the permeability.

4. CONCLUSIONS

In this work, a GNN was trained to predict the permeability of artificial porous media samples using pore
networks extracted from within the structures, as well as some physical structure properties, such as the
porosity and specific solid surface area. A representative pore count study was performed, showing that
samples with at least 1500 pores were representative of the structures the samples were extracted from.
This allowed for a GNN to be trained that is large enough to provide accurate predictions of the
structures of interest. The permeability data used to train the model was determined using LBM
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Figure 10: A comparison of the lattice Boltzmann method (LBM) simulation time vs. the
graph neural network (GNN) inference time and the GNN inference time with the pore
network extraction time included.

simulations. The GNN was able to make fast and accurate predictions of the permeability, showing a
good agreement with the LBM simulations, outperforming the commonly used Carman-Kozeny
equation, with the GNN having an MSE of 0.00190 and an MAE of 0.0302, and the Carman-Kozeny
equation having an MSE of 1.125 and an MAE of 0.783 when compared to the LBM simulations. The
GNN inference time was several orders of magnitude faster than the LBM simulations, with the same
computational resources, and even with the pore network extraction included in the GNN time, it was
still nearly 10 times faster than the LBM simulations.

While the GNN was able to outperform the existing correlations and showed a good agreement with the
simulations, it should be noted that the model was trained and tested on ideal porous media samples.
Further work is needed to expand on the method and apply the GNN to real porous media samples
where the representative scale is significantly higher due to heterogeneities often found within real
porous media samples. Despite this, the GNN is a promising tool for predicting porous media properties,
and provides a more scalable approach than existing methods, such as the 3D CNN, due to the scale
being tied to the pore count of the pore network rather than the voxel count of the porous structure.
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