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ABSTRACT 
Bacteria are one of the oldest life forms on Earth, dating back to more than 
3.5 billion years ago. They control the global cycling of carbon, nitrogen, and 
oxygen. They provide plants, fungi and other organisms with the necessary 
nutrients and elements. They help us digest our food, protect us against 
pathogens, and even affect our behavior. Microplastics, however, have 
disrupted the bacterial ecosystems across the globe, from the soil to the 
oceans. Microplastics are tiny plastic particles formed as a result of the 
breakdown of the consumer products and plastic waste. Due to their stability 
and persistence, they can travel long distances in the soil and subsurface 
environments, ultimately making their way to the water resources, rivers, 
and oceans. In this journey, they interact with bacteria and other 
micro/macro-organisms, become ingested or colonized, and act as carriers 
for contaminants and pathogens. How and whether bacteria adapt to these 
new microplastic-rich ecosystems are open questions with far-reaching 
implications for the health of our planet and us. Therefore, there is an urgent 
need for improving our fundamental understanding of bacterial interactions 
with the microplastics in complex environments. In this commentary, we 
focus on the nexus of bacteria, biofilms, and microplastics, also known as the 
“plastisphere”, and discuss the challenges and opportunities. 
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1. BACTERIAL ECOSYSTEMS IN SOIL 
1.1. Element and Nutrient Cycling 
Bacteria are essential to virtually all biogeochemical cycles on Earth (67, 183, 195). Their remarkable 
metabolic diversity and adaptability enables them to thrive in almost every environment on the planet 
(125). They can be aerobic (requiring oxygen), anaerobic (surviving without oxygen), phototrophic (using 
light as energy source), or chemotrophic (using chemical reactions for energy) (103). They are the key 
drivers in cycling of carbon, sulfur, nutrients, and nitrogen fixation, making atmospheric nitrogen 
accessible to plants (67, 118). Cyanobacteria, one of the oldest photosynthetic organisms, are believed 
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to have played a major role in the Great Oxygenation Event 2.4 billion years ago, and still contribute to 
the global oxygen production (92, 185). Many bacteria form mutualistic relationships with other 
organisms, playing an essential role in their survival and health; for instance, our gut bacteria help us 
digest our food, aid our immune system, defend us against the pathogenic bacteria, and even control 
our mood (47, 139). 

Most bacterial biomass resides in the soil and ocean sediments, with substantial populations also in the 
open oceans and inside other organisms (71). In soil, aerobic species reside near the surface and 
anaerobic species colonize the deeper, less oxygenated zones. This vertical stratification of the microbial 
communities is important for the element cycling, as different bacteria facilitate distinct biochemical 
transformations (157) (Fig. 1a). The aerobic bacteria such as Bacillus spp. and Pseudomonas spp. 
facilitate organic matter decomposition and nitrification, providing the plants with nitrogen. The 
anaerobic bacteria such as Clostridium spp. and Methanogens convert nitrates to nitrogen gas and 
produce methane. These processes affect both the soil, plant health, and greenhouse gas emissions (63, 
81, 146, 184, 201). 

1.1. Bacterial motility and chemotaxis 
In nutrient-rich environments, bacterial motility does not offer an advantage as it incurs energetic cost, 
which can otherwise be invested into growth and reproduction (136). However, even nutrient-rich 
environments can experience fluctuations and uncertainties. For instance, the rhizosphere, i.e., the soil 
region surrounding plant roots is rich in sugars and amino acids providing a hotspot for microbial 
activity; however, environmental factors, including flows due to rainfall and irrigation, and differences 
across plant species expose bacterial communities in the rhizosphere to chemical and mechanical 
stresses (118, 121, 158) (Fig. 1b). 

 

Figure 1: Bacterial ecosystems in the soil. (a) Winogradsky column: biogeochemical cycles in the cross- 
section of a pond (courtesy of HHMI BioInteractive). (b) Motility and chemotaxis toward exudates allows 
B. subtilis colonization of the plant roots (Republished with permission (13)). (c) Surface attachment 
and biofilm growth is modulated by the mechanosensing (Republished with permission (114)). A pdf file 
for all figures in this paper can be downloaded here.  
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Bacteria, therefore, need to adapt to their dynamic and complex environments (144). Motility allows 
them to explore, foraging for nutrients and new territories (65, 113). Motile bacteria can also adapt their 
swimming behavior to follow chemical gradients, for instance toward root exudates, in a process known 
as chemotaxis (3, 15, 16, 158, 163, 188, 198). While the molecular machinery of bacterial chemotaxis is 
very well understood (124, 196, 209), its ecological functions have remained mostly unknown (101). 
Chemotaxis allows the bacteria to find nutrients in resource-limited environments, explore new 
territories, and adapt to and thrive in dynamic and heterogeneous habitats (1, 2, 43, 46, 49, 72, 74, 120, 
163, 181, 212). 

1.2. Biofilm formation and growth 
Motility, however, makes individual bacteria vulnerable to threats as they explore their environment. This 
is perhaps why the majority of the bacteria exist in the form of surface-attached communities encased 
in extracellular polymeric substances (EPS) known as biofilms (70, 71). Biofilms are typically composed 
of polysaccharides, proteins, and DNA, creating a sticky matrix that attaches the bacteria to surfaces. 
They protect the bacteria from external fluctuations and stresses, making them less susceptible to 
antibiotics, and more stable environments for bacteria to grow (69). 

Both motile and immotile bacteria can form biofilms depending on the environmental and biological 
factors. Motile bacteria go through different stages, including reversible and irreversible attachment, 
before they attach to a surface and become immotile (Fig. 1c). This transition can happen in nutrient-
rich environments, where bacterial motility does not offer a benefit, or when the bacteria are exposed to 
mechanical/chemical stresses, including low nutrient availability, low pH, oxidative stress, high 
osmolarity, or exposure to antibiotics, where biofilm formation could provide stability, allowing the 
bacteria to share resources to survive. 

Bacterial attachment to surfaces begins with reversible, weak interactions between the bacterial cell 
surface and the substrate. These initial interactions are often mediated by Derjaguin–Landau–Verwey–
Overbeek theory (DLVO) and hydrophobic interactions (32). The strength and duration of initial 
attachment are influenced by the chemical composition and roughness of the surface, the ionic strength 
and pH of the surrounding environment, and the presence of nutrients that could facilitate bacterial 
growth. Some bacteria use flagella or pili, i.e., hair-like appendages, to enhance initial attachment (114). 
In motile bacteria, flagella allow cells to reach surfaces actively, often moving against flows or along 
gradients. Flagella can also help bacterial cells stick to surfaces, as they sometimes act like hooks. 

Once bacteria make initial contact, they begin to strengthen their attachment, making it more 
permanent. Contact with a surface can trigger genetic changes in bacteria, activating genes involved in 
adhesion and biofilm formation, including secondary messenger c-di-GMP (114, 152). Bacteria also use 
quorum sensing—a cell-to-cell communication system based on signaling molecules—to detect when 
enough cells are present to collectively activate genes associated with biofilm formation (114, 152). This 
transition to irreversible surface attachment involves the secretion of extracellular polymeric substances 
(EPS), which act as adhesives and create a more permanent bond with the surface. 

The surface-attached bacteria then grow and form micro-colonies, which gradually coalesce and form 
3D microbial communities (17, 60, 83). The biofilm’s architecture is determined by the mechanical and 
chemical constraints while enabling efficient resource sharing and protection against external stresses 
(197, 214). Mature biofilms can release planktonic (free-swimming) cells in response to environmental 
signals. This dispersal allows bacteria to colonize new areas, spreading the biofilm to other surfaces (180, 
202) (Fig. 1c). 

2. COLLOID TRANSPORT IN SUBSURFACE FLOWS 
2.1. Natural Colloids 
The word “colloid” originates from the Greek word kolla, meaning ”glue”, introduced by Thomas Graham 
in 1861 (78). Graham used colloid to describe substances that, like glue, formed stable, non-crystallizing 
dispersions in water. The use of colloidal dispersions by humans, however, dates back thousands of years 
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as evidenced by the artifacts left behind by the ancient civilizations. Colloids are small enough to move 
randomly due to thermal fluctuations as first reported by Robert Brown in 1827 (30), and formalized by 
Bachelier, Einstein, Smoluchowski, and Perrin almost a century later (20, 64). Their works demonstrated 
that Brownian motion is indirect evidence for the existence of atoms and molecules. The colloidal stability 
reported by Graham was explained in the 1940s by Derjaguin, Landau, Verwey, and Overbeek to originate 
from the balance between van der Waals attraction and electrostatic repulsion, which prevents the 
aggregation of the colloidal particles (175) (Fig. 2a). 

Colloids are abundant in nature in the form of minerals and organic matter. Natural colloids are typically 
charged and can adsorb ions and organic molecules. They can therefore act as carrier vehicles for 
contaminants such as pesticides, heavy metals, and nutrients (104, 135). Rainfall or irrigation mobilize 
these colloids, facilitating the transport of contaminants over large distances to the water resources (Fig. 
2b). Early attempts of describing colloidal transport in subsurface flows relied on filtration models that 
were originally developed to explain the filtration of particles by sand filters. This theory quantifies the 
retention of colloidal particles based on particle size, pore size, flow conditions, and DLVO-type 
interactions. The filtration models were later adapted to describe colloid transport in subsurface flows, 
accounting for attachment-detachment dynamics, pore-scale variability, reactive transport processes, 
heterogeneous surface interactions, as well as dynamic and intermittent flows (21, 26, 28, 79, 95, 104, 
134, 151, 176, 204, 205, 210). Coupled colloid-contaminant transport models further allowed predicting 
the colloid-mediated spreading of contaminants (98). 

2.2. Synthetic colloids 
The field of colloidal science developed significantly in the decades following the development of the 
DLVO theory. The food, cosmetics, and pharmaceutical industries utilized the colloid science to improve 
the product stability, texture, and longevity. Engineers, physicists, and chemists combined forces to 
design self-assembling colloids using programmable interactions to fabricate photonic crystals, 
metamaterials, and stimuli-responsive drug delivery carriers (76, 97). Colloids have also been used as 
analogs for atoms and molecules in studying phase transitions, crystallization, defect dynamics, melting, 
and glass formation. 

However, the introduction of synthetic colloids, including nanoparticles (e.g. silver nanoparticles, 
titanium dioxide, carbon nanotubes, and Nano zero-valent iron (nZVI) for remediation) and microplastics 
into soils and water bodies through agricultural runoff, industrial waste, and consumer products has led 
to growing concerns regarding their toxicity, persistence, and potential to disrupt ecosystems (123, 203). 
Unlike natural colloids, synthetic colloids often have coatings or surface functionalities that alter their 
reactivity, mobility, persistence, and ecological impact. Similar to their natural counterparts, synthetic 

 

Figure 2: Colloid and contaminant transport in subsurface flows. (a) DLVO interactions describe the 
interactions between the colloids and surrounding surfaces (Republished with permission (137)). (b) 
Colloids can facilitate the spreading of contaminants (courtesy of (104)). A pdf file for all figures in this 
paper can be downloaded here. 
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colloids can also act as contaminant carrier vehicles. Their stability and persistence can lead to the 
transport of contaminants over much longer distances, influencing ecosystems, biogeochemical cycles, 
and bioaccumulating through food webs (12, 59, 91, 126, 165, 221). For instance, silver nanoparticles can 
be harmful to microbial communities, altering their growth and enzymatic activity that are crucial for 
nutrient and element cycling (38, 75, 143 ,155); zinc oxide (ZnO) nanoparticles can inhibit root elongation 
and affect plant nutrient uptake, impacting overall plant health (123). Microplastics can alter soil texture, 
water retention, and aeration, influencing the root growth and microbial populations, and impacting 
crop yield and soil fertility over time (42, 50-52, 167). These effects need to be contrasted with those of 
natural colloids such as clay and organic matter, which contribute to soil aggregation by forming stable 
micro-aggregates that improve the soil structure. 

3. THE PLASTISPHERE: CHALLENGES AND OPPORTUNITIES 
The rate of plastic production is overtaking the rate of global carbon emissions (25). This observation 
together with the fact that there is a time-lag between the plastic production and realizing its effects 
across different ecosystems highlight the urgency of the need for improving our fundamental 
understanding of the processes at play in the plastisphere, their consequences, and ways to predict and 
mitigate them (24, 168). 

 

Figure 3: The microbial interactions with the microplastics could potentially disrupt the global 
biogeochemical cycles, pointing at the urgent need to advance our fundamental understanding of the 
processes in the soil plastisphere. A pdf file for all figures in this paper can be downloaded here. 
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The plastisphere is a dynamic environment shaped by the interplay between microplastics and bacteria 
(10) (Fig. 3). In soil, flows, chemical gradients, and confinement modulate the evolution of the 
plastisphere. Flows due to irrigation, rain, or other groundwater sources can transport the microplastics 
and bacteria. Microplastic properties, including their hydrophobicity and surface chemistry as well as 
their stability and persistence offer an advantage for microbial colonization over the natural colloids, 
which degrade much faster (4, 5, 7, 12, 22, 45, 59, 85, 117, 126, 153, 154, 166, 168, 178, 211, 219). 

Microplastic Transport: Chemical gradients are ubiquitous in the subsurface environments, from 
contaminants to reactive sites, pesticides, industrial wastes, and natural salinity gradients in the coastal 
zones (56, 57, 86, 115, 169, 208). These chemical gradients could drive the phoretic migration of colloids 
and microplastics (11, 14, 128, 191). Recent studies have demonstrated that the phoretic migration could 
lead to significant changes in the macroscopic transport and dispersion of colloids (8, 96, 150). Therefore, 
the coupled transport of microplastics and contaminants needs to be revisited to account for these non-
equilibrium interactions. Incorporating these effects together with the DLVO interactions with the solid 
surfaces, hydrodynamic/steric interactions, rheological effects at higher colloid concentrations, as well 
as permeability evolution due to intermittent deposition, clogging and erosion events will lead to more 
realistic and predictive models for the transport of microplastics and contaminants. 

Bacterial Interception: Motile bacteria can escape the flow streamlines, exploring their environment in 
search of nutrients and new territories. They spend more time near surfaces due to hydrodynamic and 
steric interactions, leading to their anomalous dispersion through porous media (31, 39, 44, 53, 55, 94, 
109, 177). Their larger residence time near surfaces could lead to their interception by the faster moving 
microplastics. Alternatively, swimming bacteria might intercept the larger microplastics. Bacteria 
swimming near flowing microplastics experience a shear flow near the microplastic surface, leading to 
their reorientation and potential capture (129, 172, 187, 194). Further, microplastics can adsorb nutrients 
or other chemicals and contaminants, and act as traveling beacons, leading to the chemotactic migration 
of bacteria toward their plumes and their potential colonization (73, 101, 163, 164, 179, 199, 200, 217). 
There is a need for improving our fundamental understanding of how the interplay between flow shear 
near surfaces, confinement, and chemotaxis governs the colonization of microplastics by the motile 
bacteria. 

Biofilm Formation and Growth: When bacteria intercept the microplastics, they can transition to 
become surface-attached and form biofilms. The biofilms formed on microplastics could travel much 
longer distances than those formed on natural colloids, interacting with distinct microbial communities 
and forming multispecies biofilm colonies (41, 66, 87, 161, 182, 193), and potentially acting as carrier 
vectors for pathogens (27, 211, 222). Some of these communities develop distinct features such as 
antibiotic resistance (223). Conversely, the growth of the sticky biofilm matrix on the microplastics could 
lead to their trapping or aggregation. Further, biofilms in soil, subsurface flows, or even wastewater 
treatment facilities could act as natural filters for the microplastics, preventing their spread (102, 156). 

Much of our understanding of biofilm formation and growth is due to lab studies on bacterial colonies 
on agar plates (70, 127). These studies have significantly improved our understanding of the inner 
workings of biofilms, the genes involved, their microscopic packing, mechanical and rheological 
properties, and morphological evolution (13, 17, 29, 36, 40, 58, 60, 68, 69, 90, 141, 142, 145, 152, 159, 
170, 189, 215, 218). In their natural habitats, however, bacteria experience dynamic and heterogeneous 
flows, chemical gradients, and confinement (54, 71, 80, 101, 131, 156). The interplay between flows and 
confinement can lead to the formation of a new category of biofilms, known as streamers (173, 174). 
These biofilm streamers form due to the mechanical shear stress, and act as catching nets, trapping more 
bacteria, growing to clog the pore spaces, redirect the flow, and lead to intermittent channeling and 
rupturing, creating a dynamic, living poroelastic medium (61, 105, 107, 108, 116). The heterogeneous 
and permeable nature of the biofilms formed in subsurface flows further impacts the transport and 
mixing of solutes, nutrients and antibiotics (33, 34, 48, 100, 130, 147). 

In the oceans, microplastics can disrupt the biological pump, i.e., the vertical flux of sedimenting organic 
matter known as marine snow, which plays an important role in carbon cycling in the oceans (37, 62, 
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192, 206). Bacterial interception and colonization of these sedimenting particles could impact their 
sedimentation and degradation rate, and therefore whether or not they make it to the abyss (6, 122, 
190). Microplastics provide novel surfaces for the bacteria to colonize, potentially competing with the 
marine snow particles (4, 7). Microplastics can also be incorporated into the marine snow, leading to 
their chemical heterogeneity, and impacting their microbial communities. 

Recent progress on experimental and computational techniques allow us to tackle the above listed 
challenges. On the experimental side, microfluidics and 3D porous media offer platforms for observing 
the dynamics of bacteria and microplastics over multiple lengths and timescales (18, 19, 23, 49, 84, 99, 
106, 148, 171, 179, 181, 186, 207, 216). Confocal microscopy together with machine learning allows 
imaging and extracting the orientation and packing structure of the biofilms and their evolution (82, 83, 
93, 162). For instance, recent works have demonstrated how the morphology of bacterial colonies 
formed on the surface of oil drops influences their rate of consumption (88, 89, 160). The special 
chemistry of microplastics could potentially lead to novel morphologies with implications for the 
development of antibiotic resistance (59, 85, 178, 223). On the modeling and simulation side, agent 
based as well as continuum models have advanced our understanding of how the interplay between 
mechanical interactions and growth shapes the evolution of biofilms (9, 54, 77, 112, 119, 132, 145, 213, 
220). These models need to be further developed to couple the bacterial growth to nutrient 
concentration, quorum sensing, secondary signaling molecules, and oxygen concentration (35, 80, 110, 
111, 133, 138, 181). These models can also shed light on how phenotypic patterning emerges in biofilms, 
and whether the parallels with morphogenesis of eukaryotic cells can offer insights for our understanding 
of biofilm growth and evolution (197). 

The porous media community is perfectly situated to tackle these fundamental, interdisciplinary and 
consequential questions. The decades of knowledge in the areas of scalar, colloid, and contaminant 
transport in subsurface flows are perfect starting points for understanding the microplastic transport. 
Predictive models for the coupled evolution of microplastics, bacteria, and biofilms require advancing 
our fundamental understanding of these processes at the pore-scale. How bacterial motility and 
chemotaxis influences their interception of microplastics, how and when this initial encounter leads to 
colonization and biofilm formation, how background flows and chemical gradients modulate this 
process, and how the transport of biofilm-coated microplastics differs from that of natural colloids or 
uncoated microplastics are immediate questions that can be addressed, advancing our fundamental 
understanding of the soil plastisphere. 
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