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ABSTRACT

In petroleum engineering, it is essential to determine the ultimate recovery
factor (RF) particularly before exploitation and exploration. However,
accurately estimating requires data that may not be necessarily available or
measured at early stages of reservoir development. To rectify this, we
applied machine learning (ML) to estimate oil RF from readily available
features. To construct the ML models, we applied the XGBoost classification
algorithm. Classification was chosen over regression because recovery factor
is bounded from 0 to 1, much like probability. Three databases with various
reservoir properties and recovery factors were used, leaving us with four
different combinations to first train and test the ML models and then further
evaluate them using an independent database including unseen data. Cross-
validation with ten folds was applied on the training datasets to assess the
effectiveness of the models. To evaluate the accuracy and reliability of the
models, the accuracy, within-1 accuracy, precision, recall, macro-averaged f1
score and R? were determined. Overall, results showed that the XGBoost
classification algorithm could estimate the RF class with accuracies as high as
0.77 in the training datasets, 0.36 in the testing datasets and 0.24 in the
independent databases used. We found that the reliability of the XGBoost
classification model depended on the data in the training dataset, indicating
that the ML models were database dependent. The feature importance
analysis and the Shapley Additive exPlanations (SHAP) approach showed that
the most important features were reserves, reservoir area and thickness.
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1. INTRODUCTION

Accurate estimation of the ultimate recovery factor (RF) has broad applications to oil and gas exploration
and carbon storage. The RF, when combined with the reservoir size and production costs, indicates
whether a reservoir would be economical if developed (26). Accordingly, various methods—such as
dynamic reservoir simulations, production decline curve analysis, material balance, and field analogues
(4, 50, 55)—have been proposed over the past several decades to determine the RF from available
measured data. Such methods, however, are either computationally demanding, associated with
significant uncertainties and errors, or require input data that may not be readily available prior to field
development (41, 43, 57, 72). With recent advances in artificial intelligence, machine learning (ML)
algorithms have been used over the past several years to replace these methods. The goal of this study
is to train ML models to estimate the RF using readily available and easily measurable data. Such models
could offer a robust and cost-effective tool to support decision-making in identifying viable projects for
development (29, 53, 66).

Machine learning models have recently gained significant popularity and have been successfully applied
across various domains of petroleum engineering (54, 20). In the literature, most ML models developed
to estimate RF are based on regression analysis (2, 4, 5, 6, 39, 64, 69). For example, Srivastava et al. (66)
applied ML to the 2013 version of the Atlas of Gulf of Mexico database to cluster similar reservoirs and
subsequently performed regression to estimate the RF. First, they conducted a principal component
analysis to reduce the dimensionality of the original features in their database. Next, they used k-means
clustering to group similar reservoirs, and finally, they employed partial least squares regression to
correlate input features with the RF. Those authors found that the combination of k-means clustering,
principal component analysis, and partial least square regression led to unsatisfactory results, achieving
a maximum Pearson'’s correlation coefficient of 0.2 between predictions and realized RF. However, when
they instead grouped reservoirs using dimensionless numbers—such as gravity number, aspect ratio,
and density number—and used these numbers as input features for their partial least squares regression
model, they achieved better results. The partial least squares regression and k-means clustering based
on dimensionless numbers method yielded R? values that ranged from 0.92 (excellent) to 0.1 (very poor)
in four different clusters.

Kaczmarczyk et al. (30) applied clustering analysis and tree-based regression on data from three different
databases (TORIS, Digital Knowledge System, and the Oil and Gas Journal). They estimated primary,
secondary, and tertiary RFs. Their decision tree model was constructed using six different reservoir and
fluid properties (i.e., pressure, permeability, viscosity, porosity, API gravity, and depth). Decision trees
such as these are very prone to overfitting and have weak generalizability.

Gupta et al. (24) applied partial least squares regression to data from deep offshore assets in the Gulf of
Mexico to estimate the RF variance between the early appraisal phase and the post sanction phase. Their
work does not directly estimate RF. Instead, it forecasts the difference in predicted RF from two different
stages in the development process. In another study, Karacan (33) estimated tertiary RF using fuzzy logic,
reporting an R? of 0.88. Unfortunately, he used reservoir data collected from only 24 reservoirs.

Recently, Roustazadeh et al. (61) developed regression-based models using three ML algorithms:
XGBoost, support vector machines, and forward stepwise multiple regression. They found that the
XGBoost regression model was slightly more accurate than the other two models. Roustazadeh et al.
(61) also reported that the results of XGBoost regression model were database-dependent. Pooladi-
Darvish et al. (60) also demonstrated the accuracy of the XGBoost model in estimating oil recovery factor
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using data from 18,000 reservoirs, based on input features such as pressure, porosity, permeability, API
gravity, temperature, viscosity, depth, thickness and water saturation. Using synthetically generated data,
Matkerim et al. (51) showed that the accuracy of the XGBoost model in estimating oil RF was comparable
to that of random forest and neural network models.

To the best of our knowledge, classification-based ML models have not yet been used to estimate oil RF
at the reservoir scale using a large database comprising several thousand samples. As shown above,
regression algorithms have been previously applied in the literature (13, 25, 31, 48). Furthermore, the
majority of ML models have not undergone further evaluation using new, unseen data that was not part
of their training. Although Roustazadeh et al. (61) showed that the performance and predictions of the
XGBoost regression model were dependent on underlying databases, similar analyses for classification
models in the context of oil recovery estimation remain unaddressed. Therefore, the main objectives of
this study are to: 1) apply extreme gradient boost (XGBoost) classification to construct ML models using
large databases, 2) estimate the ultimate oil RF at the early stages, and 3) investigate the database
dependence of classification-based ML models by evaluating them using unseen data.

2. MATERIALS AND METHODS

In this section, we first explain the data used in this study. Next, we describe the data preparation process
for constructing the ML-based models using the XGBoost classification algorithm. Finally, we explain
how Shapley Additive exPlanations (SHAP) was used to the determine feature importance.

2.1. Databases
The data used in this study come from the following three databases, which are briefly described below.

2.1.1. Commercial database

The private, commercial database contains information on over 1200 conventional reservoirs worldwide,
encompassing a variety of rock and fluid properties. It includes more than 200 features per reservoir,
such as pressure, water saturation, and porosity. This database provides data for both oil and gas
reservoirs. After applying filtering criteria, we selected data from 600 oil fields for use in this study. For
additional details on this database, please refer to Lee and Lake (39).

2.1.2. Tertiary Oil Recovery Information System database

The Tertiary Oil Recovery Information System (TORIS), compiled by the National Petroleum Council and
used by the US Department of Energy, is a well-established and respected database containing
information on oil reservoirs across the United States of America. It includes approximately 1300
observations and 60 features; however the database also has a relatively high number of missing values.
For further details, see Long (45).

2.1.3. Bureau of Ocean Energy Management Atlas of the Gulf of Mexico

The Bureau of Ocean Energy Management (BOEM) annually collects oil and gas data from conventional
fields on the outer shelf of the Gulf of Mexico (8). In this study, we used the 2018 version of this database,
hereafter referred to as Atlas. The Atlas database contains over 13,000 observations and 80 features
covering both oil and gas reservoirs. For the purpose of this study, only data from oil fields were used to
construct the ML models. Among the three databases analyzed, Atlas has the lowest proportion of
missing values.

Reservoirs appearing in multiple databases were de-duplicated by removing duplicate entries. The
observation with fewer input features was removed. Figure 1 shows the distributions of the RF, porosity
(ft3/ft3), and natural logarithm of permeability in the Commercial, Atlas, and TORIS databases. The
distributions of RF, permeability, and porosity in the TORIS and Commercial databases are similar, while
the Atlas database is different. The distribution of natural logarithm of permeability is left-skewed and
heavy-tailed for the TORIS and Commercial databases, while slightly left-tailed for the Atlas database.
The RF distributions for all the three databases are right-skewed with heavier tails in the TORIS and
Commercial databases.
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Figure 1: Distributions of the oil recovery factor (dimensionless), porosity, and natural logarithm of
permeability (in mD) for databases used in this study.

Figure 2 shows letter-value (extended box and whisker) plots for each feature of interest in each
database used in this study prior to data processing. As can be seen, the databases contain a few outliers
in porosity, permeability, and RF values. The TORIS and Commercial databases display similar
interquartile ranges, as well as comparable median, and mean values. In contrast, the Atlas database
consists of samples with smaller ranges in porosity and permeability compared to those in the TORIS
and Commercial databases. It also exhibits considerably different mean and median values compared to
TORIS and the Commercial database, as shown in all three plots. TORIS had the greatest number of RF
outlier values, while Atlas had the fewest among the three databases. The oil RF values have statistically
different averages between datasets.

The Commercial, TORIS, and Atlas databases described above were used to construct classification
models for estimating oil RF based on other reservoir properties. These databases were merged using
four different combinations to create larger databases. More specifically, the combined TORIS and
Commercial databases were labelled TC, TORIS and Atlas were labelled TA, and Commercial and Atlas
were labeled CA. The last combination was created by merging all the three databases (i.e., TORIS,
Commercial, and Atlas) and labelling it TCA. In the first three combinations (i.e, TC, TA, and CA), the
third database was used for testing.

2.2. Data preparation and feature engineering

Data preparation began by removing any reservoirs from the databases that did not have a recorded RF
value. Although many different geological, petrophysical, and production features were available, we
selected only those features that were available in all three databases. Moreover, any feature associated
with post exploration phase data (e.g., production time, final abandonment pressure, and cumulative
production) was removed. Appendix A (available for download online here) presents heat map matrices
based on Spearman’s rank correlation coefficients calculated for eleven input features and one output
feature across the different databases.

To conserve data similarity across all databases, the selected features were constrained to the following
ranges: the oil formation volume factor 1 < B, < 3 (34), gas oil ratio 0 < GOR < 60 Mscf/stb (61), and
reserves between 0 and 5x10'"" stock tank barrels (14)—the Atlas database defines reserves as the
hydrocarbon remaining that could be economically recovered. We should point out that by reserves we
mean original oil in place. Any feature with more than 70% missing values and any reservoir with more
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than 55% missing values were removed. Table 1 lists the final input features and target variable (RF) as
well as their ranges in each database.

For the purpose of constructing ML classification models, ten RF classes were defined using intervals of
0.1. For example, samples with RF values between 0 and 0.1 were assigned to class 0. Similarly, samples
with 0.9< RF <1 were in class 9. We randomly selected 90% of the data for training and cross-validation
and 10% for testing, similar to the study by Dias et al. (18). The purpose of training and testing splits is
to provide the ML models with enough training data to be constructed upon and avoid over-fitting (1).
We used 10-fold cross-validation to tune the model hyperparameters on the training dataset (9). We
split the data into the training and testing sets prior to any data preprocessing or imputation. Then, we
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Figure 2: Letter-value plots of the 11 input features and 1 output feature for the three databases used
in this study before data processing and preparation. Units are as follows: degrees API for gravity;
bbl/rb (barrels/reservoir barrel) for Bo (Bo = oil formation volume factor); Mscf/stb (thousand standard
cubic feet per stock tank barrel) for GOR (gas oil ratio); dimensionless for water saturation (S,); F° for
temperature; psi for P, (pressure); D = thickness; bbl (=?) for reserves; dimensionless for porosity (o);
acres for area; millidarcy for k; and dimensionless for recovery factor. Dots in each box represent the
mean of the distribution, with bootstrapped uncertainty in the mean. The lines inside the boxes show
the median of the distribution. The lower boundaries in each box show the 25" quantile and the upper
boundaries of the boxes show the 75" quantile. Extended boxes show the 12.5" percentile, 6.25"
percentile, etc. Circles represent the outliers in each distribution.
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Table 1: Final input features and target variable (RF) as well as their ranges within each generated
database. Recall that TC refers to the combination of TORIS and Commercial, TA to TORIS and Atlas,
CAto Commercial and Atlas, and TCA to the merged dataset containing TORIS, Commercial, and Atlas.

Feature Database TC Database TA Database CA Database TCA
API Gravity 4-62 4-60 7-62 4-62

B, (RB/STB) 0.99-3.05 0.99-3.32 1-3.32 0.99-3.32
GOR’" (MSCF/RB) 0.001-57 0.006-59.62 0.001-59.62 0.001-59.62
Water saturation, 0-0.86 0-0.86 0.01-0.86 0-0.86

Sw(-)

Temperature (°F)  43-360 47-305 42.8-360 42.8-360
Pressure, P, (psi) 140-12,820 140-21609 200-21609 140-21609
Thickness, D (ft) 2-7681 1-2300 1-7681 1-7681
Reserves (STB) 2.33%10%-4.99x10™ 1-2.2x10'° 1-4.99x10" 1-4.99x10"
Permeability (mD) 0-5x10* 0-2.6x10* 0.01-5x10* 0-5x10*
Porosity, ¢ 0-0.58 0-0.58 0.01-0.58 0-0.58
(Ft3/t3)

Area (acre) 50-6.5x10° 1-1.4x10° 1-6.5x108 1-6.5x10°
Oil RF 0.02-1 0.01-1 0.01-0.91 0.01-1

APl = American Petroleum Institute; Bo = oil formation volume factor (function of temperature and pressure); GOR
= Gas Oil Ratio; MSCF/RB = Thousands Standard Cubic feet per Reservoir Barrel; STB = Stock Tank Barrel; RF =

preprocessed the testing data with the identical parameters used on the training dataset (32). We did
not perform any imputation on the independent databases. Instead, we removed samples with missing
data among either input features or the target variable. This is because the independent databases were
used to further evaluate the ML models using real-time data, not imputed ones. As stated earlier,
observations in the training and testing datasets were de-duplicated. To ensure the fraction of samples
in each class for the training and testing datasets was approximately equal, both the training and testing
datasets were stratified by recovery factor class (7, 28).

2.3. Machine learning and XGBoost classification model

The aim of this study was to apply an ML classification model to estimate an expected RF interval for a
reservoir at the exploration stage. We used the XGBoost model, an open-source algorithm with a Python
APL XGBoost may be used for either classification (27, 59) or regression (19, 56) problems. It is an

Table 2: Hyperparameters and their optimized values for the XGBoost model developed on four
combinations of three databases. Recall that TC is TORIS merged with commercial, TAis TORIS merged
with Atlas, CAis Commercial merged with Atlas, and TCA is the combination of TORIS, commercial and
Atlas. The training datasets in the TC, TA, CA, and TCA databases consisted of 1669, 5311, 5172, and
6076 samples, respectively.

Parameters Database TC Database TA Database CA Database TCA
Max depth 2 4 7 7

Minimum child weight 6 11 8 9

Learning rate 0.21 0.30 0.30 0.30
Subsample 0.94 0.70 0.74 0.98

Column sample by tree 0.59 0.91 0.99 0.90
Objective Multi:softmax Multi:softmax Multi:softmax Multi:softmax
Evaluation metric mlogloss mlogloss mlogloss mlogloss
Alpha 0.2 0.2 0.2 0.2

Lambda 0.01 0.01 0.01 0.01

Column sample by level 0.9 0.9 0.9 0.9

Gamma 0.01 0.01 0.01 0.01

Max delta step 0.1 0.1 0.1 0.1

Number of classes 10 10 10 10
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ensemble ML algorithm rooted in decision trees, but it mitigates the risk of overfitting inherent in tree-
based methods by using gradient boosted on model errors (12). In the XGBoost framework, weak
learners are stacked to create strong learners (68).

XGBoost can provide more accurate estimations than other ML models, such as support vector machines
(44, 59), random forest and k-nearest neighbors (11, 27). In addition, gradient boosting algorithms (e.g.,
XGBoost) are unaffected by collinearity among input features (10, 36, 52).

The tunning of hyperparameters is required to develop more accurate ML-based models (37). During
hyperparameter tuning, we optimized hyperparameters with 10-fold cross-validation, using ray-tune
with hyperopt to select the models with the lowest multiclass logistic (logarithmic) loss function
(mlogloss). The hyperparameter values that yielded the lowest value of mlogloss were used to construct
the ML models.

2.4. Model evaluation
The performance and accuracy of the models were evaluated using four parameters including accuracy,
within 1 class accuracy, macro averaged f1 score and R?, as given by Equations 1 to 6,

Correct classifications TP +TN (1
Total classifications = TP +TN + FP + FN

accuracy =

Number of estimations € Neighbour classes )

within 1 accuracy = - -
Y Total number of estimations

... TP 3)
precision = TP + FP

TP (4)

recall = TP+ FN
F1 score = i classi's f1score (5)
n
N _ )2 6
o DR R ®

;}IZI(RF}meas _ <RF}meas>)2

where n is the number of classes, N is the number of samples, precision is the proportion of positive
classifications that are actually positive, recall is the proportion of actual positives that are correctly
identified and TP, TN, FP and FN represent the true positives, true negatives, false positives and false
negatives, respectively. All these parameters range from 0 and 1. Within 1 class accuracy indicates the
number of estimations in one class above and/or below the desired class.

2.5. Shapley Additive exPlanations and Permutation Feature Importance
Shapley Additive exPlanations, commonly known as SHAP, can estimate the importance of each feature
and its impact on ML model outputs. It was originally proposed by Shapley (63) who applied concepts
from game theory to determine the outcome of a game based on every individual player's input. It
explains how each feature influences a ML model (46). This method (SHAP) has been widely applied to
determine feature importance (35, 40, 49).

Permutation feature importance is another useful measure of feature importance. In this method, a
feature is randomly permuted several times, and the model is used to predict the target variable. Its
permutation feature importance is how much, on average, the model has been degraded by garbling
that input. For a feature with high permutation feature importance, the model is much worse after
permuting that feature. For one with a low permutation feature importance, the model is unaffected or
even (though this is likely) improved.

Both methods, SHAP and Permutation Feature Importance, offer slightly different roles. Shapley Additive
exPlanations explain how a model arrives at a prediction. It is useful when examining the data a model
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was trained on. Permutation Feature Importance, on the other hand, is more useful when looking at data
that the model was not trained on. We use SHAP on the training data for each model and Permutation
Feature Importance on the testing data and independent dataset.

2.6. Workflow of the constructed models

Figure 3 presents the workflow used for constructing the ML models, starting with data selection and
de-duplication on the databases used in this study including TC (TORIS merges with Commercial), TA
(TORIS merged with Atlas), CA (Commercial merged with Atlas), and TCA (the combination of all three
databases). Next, every model was constructed using XGBoost to estimate the oil RF classes in the
training and testing datasets. They were then evaluated on independent databases. In total, four ML
models were constructed and evaluated using accuracy, neighborhood accuracy, and the macro average
1 score.

( \/ hYd Y4 N\ 4 Y4 N\
. Model Model Model Feature

L Data Input e Data Preparation ) \Construction) \Validation) [Evaluation} \Importance) L Ugsat:: .
p p \r \

Database TC Data cleaning Classification Test Accuracy SHAP Atlas

Database TA Feature engineering XGBoost datasets Within 1 Commercial

Database CA RF class creation accuracy TORIS
Database TCA || Stratified train-test split Precision

Missing value imputation Recall
Data standardization f1 score
Data normalization I%{} EI? R? EJQ EI?

Figure 3: The workflow used to prepare the data, construct the models and evaluate the models using
independent databases.

3. RESULTS

3.1. Hyperparameter tuning

Table 2 lists the optimized hyperparameters used to construct the classification-based ML models using
the XGBoost algorithm. As the number of training samples increased—from 1669 samples in the TC
database to 6076 samples in the TCA database—the hyperparameters became easier to optimize. The
optimum learning rate decreased as the training dataset increased. This means that the best performing
models took more steps to reach the optimum value that had the minimum overfitting or underfitting.

3.2. Oil RF estimation

Table 3 presents the calculated values for accuracy, within-1 accuracy, precision, recall, macro-averaged
f1 score, and R? for both the training and testing datasets, as well as for the independent databases used
to further evaluate the constructed ML models. The number of samples in the training datasets were
1669 for TC, 5311 for TA, 5172 for CA, and 6076 for TCA. The lowest accuracy and f1 score values (i.e.,
0.31 and 0.29) belong to the database TC, which had the fewest observations. An accuracy of 0.31 means
that the XGBoost model predicted the correct oil RF class for 31% of the samples. The f1 score of 0.29 is
the harmonic average of the precision and recall for the model trained on TC. Ideally, all metrics would
be 1 (23, 40).

As the number of samples in the training dataset increases from the database TC to TA, the accuracy
and f1 score values also increase (accuracy = 0.31 vs. 0.34 and f1 score = 0.29 vs. 0.32). Similar results
were observed for the CA and TCA databases, which indicates the ML models improve as they are given
more data. Although the TCA database contains nearly 700 more samples than the TA database, its
accuracy and f1 score values (0.36 and 0.35) are not greatly improved from those reported for TA (0.34
and 0.32). However, the RF estimations for the TCA and TA databases are more accurate than those for
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Table 3: The performance metrics for the XGBoost classification algorithm employed to predict the
oil RF class in each database used in this study.

Database Metric Train Test Independent
TC accuracy 0.48 0.31 0.20
within-1 accuracy 0.75 0.75 0.55
precision 0.51 0.33 0.14
recall 0.48 0.31 0.20
f1 score 0.45 0.29 0.13
R? 0.23 0.16 -0.49
TA accuracy 0.59 0.34 0.24
within-1 accuracy 0.81 0.73 0.68
precision 0.59 0.33 0.20
recall 0.59 0.34 0.24
f1 score 0.58 0.32 0.20
R? 0.44 0.22 -0.02
CA accuracy 0.75 0.35 0.24
within-1 accuracy 0.87 0.75 0.62
precision 0.76 0.33 0.20
recall 0.75 0.35 0.24
f1 score 0.75 0.33 0.20
R? 0.59 0.28 -0.31
TCA accuracy 0.77 0.36 -
within-1 accuracy 0.88 0.75 -
precision 0.77 0.36 -
recall 0.77 0.36 -
f1 score 0.76 0.35 -
R? 0.62 0.32 -

the CA database in the training. We found the testing f1 score values were consistently lower than the
training f1 values for all databases.

The within-1 class accuracy is also reported in Table 3. For the training dataset, we found the within-1
accuracy varied from 0.75 to 0.88. For the testing dataset, this dropped by about 10 percentage points
for all databases except for TC, which remained constant. These values show that the constructed models
estimate the oil RF with approximately 75% accuracy within the correct or a neighboring class with in-
sample data. Given that the interval in the RF classes is 0.1 (10%), the obtained results indicate reasonable
estimations by the XGBoost model.

The ML models estimated the RF less accurately for the independent databases (unseen data) than for
the testing datasets, aligning with Roustazadeh et al. (61), who highlighted the database dependence of
regression-based ML models. This means that ML models are more accurate if the testing and training
data are statistically similar. As Table 3 shows, accuracy fell into the 0.2 range, and R? went to or below
zero for these out-of-sample databases. Near zero and negative R? values were also reported by Kumar
et al. (37) who developed regression-based ML models to estimate RF for reservoirs within the TORIS
and Gulf of Mexico databases (see Table 3 and Table 5 in 37). The R? values reported in Table 3 are also
smaller than those reported by Thanh et al. (71) who applied general regression neural network, cascade
forward neural network with Levenberg-Marquardt optimization, cascade forward neural network with
Bayesian regularization, and XGBoost models to estimate RF. They reported an R? greater than 0.97 for
both training and testing datasets (see Table 5 in 71). This is because of lack of diversity in their database,
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which contained only 260 samples. More specifically, their input features—permeability, initial oil in place
saturation, total pore volume and injected pore volume—approximately followed a uniform distribution
(see Fig. 12in 71).

TC: Train TC: Test TC: Independent
0-10% - 3 8 8 18 3 2 -1 2 5 13 194 14 4
10-20% - 37 22 56 12 1 - 7 3 8 187 50 9
20-30% - 10 (111 95 27 6 - 5 7 4 228 67 11
30-40% - 7 30 36 13 1 - 2 3 4 218 7511
40-50% - 1 30 84 21 1 - 2 2 3 5 208 84 15
50-60% - 2 12 46 36 74 3 - 1 1 92 55N 15
60-70% - 2 8 21 20 12 18 - 1 1 26 11 o6
70-80% - 3 7 7 7 2 1 - 2 1
80-90% - 1 2 3 4 1 1 - 1
90+% - 1 2 2 1 -
TA: Train Independent
0-10% EE[] 41 37 12 4 1 10 6
10-20% - 53 86 90 28 6 1 -29 30 4
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40-50% - 16 30 62 % 43 1 -10 12 4 2 1
50-60% - 7 13 34 85 152 229 3 E 3 4 1 1 1
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70-80% - 2 3 7 4 2 1 - 1
80-90% - 1 1 3 5 1 1 - 2
90+% - 1 1 4 1 - 1
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0-10% - 27 28 10 3 1 23 5 4 1 5 15 4 2
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50-60% - 9 11 19 52 74 1 -
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Figure 4: Confusion matrices for true RF classes (left) compared to XGBoost predictions (bottom axis)
for the training and testing datasets in addition to the independent database. The number in each cell
indicates the number of samples in that RF class. TC denotes TORIS merged with Commercial, TA is
TORIS merged with Atlas, CArepresents Commercial merged with Atlas, and TCA denotes Commercial
merged with TORIS and Atlas.

Heat maps showing the estimated versus actual oil RF in each class for the four database combinations
are shown in Figure 4. For the training data, the model performs well, following the diagonal. However,
for the testing plots, the constructed models tend to overestimate the oil RF for the lower classes and to
underestimate it for the higher classes, in accord with the results of Lee and Lake (39), Talluru and Wu
(67), Makhotin et al. (48), and Roustazadeh et al. (61). Figure 4 shows that most samples have an RF
value between 0.2 and 0.5, corresponding to intermediate classes (i.e., 4, 5, and 6).

Figure 4 also shows that most training and testing observations are either on or adjacent to the long
diagonal. This is consistent with the high within-1 accuracies (>0.74) reported in Table 3. Particularly for
0.2< RF <0.5, the performance of the constructed ML models is satisfactory. This range corresponds to
that of most conventional oil reservoirs (22, 38, 60), indicating the potential practical applicability of the
model to such reservoir types. Conventional reservoirs have an average RF of approximately 0.35 (65).
While the models generally succeed in predicting low-RF for low-RF reservoirs, their performance
becomes less reliable when predicting high-RF reservoirs.
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3.3. Feature importance

Feature importance analysis was performed for the four combinations of databases studied here. Figure
5 shows the results of the SHAP feature importance analysis on the training data and permutation feature
importance on the testing and independent datasets. As can be observed, reserves, reservoir thickness,
and area are consistently the top features in the ML models, consistent with the results of Roustazadeh
et al. (61) who estimated oil and gas RF using the regression-based ML models. Their feature importance
analyses in general are similarly ranked, but the drop-off between reserves and other features varies
significantly. For the features reservoir thickness and area, one may argue that larger reservoirs are more
probable to have higher oil RFs. Mahmoud et al. (47) collected data from 173 reservoirs and applied an
artificial neural network to train and test a predictive model using 77% and 23% of their data. They
identified reservoir area as one of the most important features and observed a positive correlation
between oil RF and reservoir area (see their Fig. 1 and Table 2 in 47).

SHAP training Permutation testing Permutation independent
Porosity - § §
API| Gravity § §
Temperature b b S
GOR 1 1 1 =
Water Saturation - . . o
FVF - 1 1 7
Pressure - . . ®
Permeability 1 1 I
Thickness - . . A
Area - b b
Reserves 1 T T T 1 T T T 1 T T
Porosity b L
API| Gravity § §
Temperature - 1 1 I
GOR 1 1 1 o
Water Saturation - § § o
FVF - . . 7]
Pressure - 1 1 ®
Permeability o . . I
Thickness - k k ;T>'
Area - b b
Reserves 1 T T T 1 T T T 1 l T T
Porosity - b b
API Gravity . .
Temperature o 1 1 S
GOR 1 ] ] g
Water Saturation - b b 3
FVF A B »
Pressure - . . (lll’
Permeability A 1 1
Thickness - § § o
Area A b b :
Reserves 1 T T T 1 T T T 1 T T T
Porosity - . .
API Gravity . . o
Temperature - 7 7 o}
GOR - . . 3
Water Saturation - § §
FVF - ] ] N/A &
Pressure b b I
Permeability - b b =
Thickness - b b Q
Area - b b
Reserves L T T T L T T T L T T T
0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
Importance Importance Importance
Figure 5: Feature importance for the XGBoost models for the TC (TORIS + commercial), TA (TORIS +
Atlas, CA (commercial + Atlas), and TCA (TORIS + commercial & Atlas) databases for the training,
testing, and independent datasets. The left row shows the average absolute SHAP value of each feature.
The middle and right rows show the permutation feature importance. Uncertainty in the feature
importance is visualized with black lines at the end of each bar. The independent dataset for TC is Atlas,
for TA is the Commercial data, and for CA is TORIS.
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Permutation feature importance on the testing data reveals that several factors have low prediction
performance. Porosity has a negative or zero performance in all testing datasets. For several datasets,
API gravity and temperature were found to have negligible impact on model performance. On the other
hand, reserves and area are consistently the two most important features. In the independent datasets,
feature importance is highly degraded. The model trained on the TC database has no useful features
when predicting recoveries from Atlas. Many features have zero or negative importance. Only reserves
appear important for multiple datasets. Porosity has negative importance in two datasets.

4. DISCUSSION

The classification-based ML models constructed in this study showed satisfactory performances for the
training and testing datasets. However, the performance of the models for the independent databases
was poor. Dissimilarities in training and independent datasets are most probably why ML models predict
an output feature unsatisfactorily for unseen data (61). Schaap and Leij (62) are among the first who
demonstrated that regression-based ML models are database-dependent, meaning that they may not
provide satisfactory estimations if evaluated using new and unseen data. As we stated earlier, ML models
are not typically assessed using unseen data and independent databases. The database dependence of
regression-based ML models in the estimation of oil and gas RFs was recently addressed by Roustazadeh
et al. (61) who showed that the accuracy and reliability of regression-based ML models depended on
data and size of databases used to train them. Those authors used the t-test method to statistically
analyze the similarity in data. Although their results showed no significant differences between training
and testing datasets (p-value >0.05), they reported p-values less than 0.05 by comparing input and
output features in training datasets with those in independent databases, meaning that their trained
datasets had significantly different values than their independent databases.

Another reason for the database dependence is the subjective way in which the features are measured.
For instance, the thickness could be gross or net thickness, and the net thickness cutoff could be different
between different datasets, and indeed between different interpreters. The average porosity could be
averaged by well, by area, or by volume, and derived from core, wireline logs, or both. Water saturation
could include clay-bound water or not, and it could be calculated from wireline logs, core measurements,
water production, or a combination thereof. The dataset curators appear, from the results, to have been
self-consistent in defining how features are measured, but that is unlikely to have been the case across
all databases.

It is not straightforward to compare results of classification-based models with those of regression-based
ones because evaluation parameters used in classification problems (e.g., accuracy and f1 score) are
different from those used in regression cases (e.g., root mean square error and correlation coefficient).
In the study by Roustazadeh et al. (61), the accuracy was quantified by root mean square error, and the
coefficient of determination for independent databases was substantially less than that for training and
testing datasets. In this work, although the performance of the classification-based ML models for the
independent databases is not as satisfactory as for the training and testing datasets, the difference is not
substantial, and the ML models still provide reasonable oil RF estimations, with over 50% within one
class of the correct RF estimation (within-1 accuracy > 0.55 in Table 3).

Our feature importance results for the TC database disagree with those reported by Makhotin et al. (48)
who applied the regression-based gradient boosting approach to estimate the oil RF. Those authors
constructed two models based on pre- and post-production data using two databases i.e., TORIS,
composed on 1381 oil reservoirs from the United States, and Proprietary, containing 1119 oil reservoirs
from around the world collected by Russian oil companies. The results of their pre-production model
showed that the top four features detected using the F-score were permeability, water saturation,
viscosity, and API gravity (see Fig. 7 in 48). While we found permeability was among the top 4 factors,
other factors were slightly less important. Although Makhotin et al. (48) found the reservoir thickness
among the top five features, reserves was among the least impactful features in their pre-production
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analysis. This disagreement could result from the feature importance conferred by their proprietary
database, which we do not have access to.

In another study, using 18,000 oil reservoirs, Pooladi-Darvish et al. (60) applied the XGBoost model and
trained it to estimate oil RF from water saturation, API gravity, pressure, porosity, permeability,
temperature, viscosity, reservoir depth and thickness. Their results showed that only reservoir depth,
permeability, porosity, oil viscosity, oil density and water saturation were the most important parameters.
In our study, however, porosity was among the least influential parameters (see Fig. 5). This could be
due to the large database that Pooladi-Darvish et al. (60) used in their study. The effect of the number
of samples on ML models has been highlighted by Dawson et al. (15) and Ahmadisharaf et al. (3). Several
studies demonstrated that by combining databases and increasing the number of samples, the accuracy
of ML-based models improved (3, 21). Combining data from different resources, however, requires that
the input and output parameters be consistently defined and determined among the databases. For
instance, it is well documented that reserves has been defined differently in the literature (16, 17). One
should also keep in mind that reservoirs from different databases are not necessarily at the same stage
of production. Since RF changes with time, one should expect more accurate predictions when time of
production is considered as an input feature.

All input and output features used in this study were numerical. We should point out that including some
categorical data, such as reservoir rock origin (carbonate, sandstone, etc.) or reservoir conditions (e.g.,
fractured or not) may improve RF predictions. Therefore, further investigations are still required to
predict RF from both numerical and categorical features.

5. CONCLUSION

In this study, we constructed classification-based ML models to estimate the oil RF from readily available
data at the exploration stage. We collected thousands of reservoir observations by combining three
databases. To address whether the classification-based ML models are database-dependent, we used
four combinations of the three databases. The oil RF data were grouped into ten classes with 10%
intervals. Using the XGBoost classification algorithm, we trained the ML models for each combination.
Results showed that the constructed models were accurately trained for all the combinations except the
one that had the lowest number of samples. The oil RF estimations for the testing datasets were within
either the correct or a neighboring class 73-75% of the time. There was degradation between training
and testing datasets. Models were tested on independent datasets to assess the database dependence
of the ML models. Results showed that the accuracy of the models for the independent databases was
less than that for the testing datasets. This could be due to inconsistencies in how the features were
estimated. Further investigations are still required to improve the accuracy and reliability of ML models.
The choice of ten classes in this study is also somewhat arbitrary, and it remains unclear how the results
would differ if a narrower class interval (e.g., 5%) was used. Further research is needed to determine
whether the accuracy of the XGBoost classification model improves or declines as the number of classes
increases.
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