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Appendix A

Workflow of image processing and analysis:

The workflow for image processing and analysis is presented in Figure A1 on the next page. Note that
the absolute value of the global auto threshold evolves with the sample but the same point relative to
the material interface (See Fig. A1 inset graph, yellow line) does not. The yellow line in this case signifies
the boundary that was used between the pore space and solid phases (quartz sand and CaCOs).

The workflow for preparation and running of the fluid mixing model in OpenFOAM is presented in Figure
A2 with model parameters and settings presented in Table A1.
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Figure A1: Image processing and analysis workflow.
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Figure A2: Image processing, mesh preparation and parameters/
conditions for CFD mixing model.
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Table A1: OpenFOAM Mixing Model Parameters and Settings

Parameter
Solver
Time discretization
Gradient scheme
Divergence scheme

Laplacian scheme
Interpolation scheme
Surface-normal gradient
scheme

Solver algorithm
Convergence criterion

Solver for pressure (p_rgh)
Solver for velocity (U)
Smoother

Number of correctors
Number of outer correctors

Simulation start time
Simulation end time

Time step (deltaT)

Write interval

Maximum Courant number
Maximum Alpha Courant
number

Viscosity of enzyme solution
(Pa-s)

Density of enzyme solution
(kg/md)

Viscosity of cementing solution

(Pa-s)

Density of cementing solution

(kg/m?)

Turbulence model
Gravitational acceleration
(m/s?)

Description
Name of the solver used
Temporal scheme for time-st

Scheme for gradient calculati

- div(rhoPhi,U)
- div(phi,alpha)
- div(phi,k)

- div(((rho*nuEff)*dev2(T(grad(U)))))

Scheme for laplacian calcula

Scheme for interpolating values

Surface-normal gradient calc
method

Algorithm used for solving equations
Residual tolerance for p_rgh (pressure)

Residual tolerance for U (velocity)

Solver type for pressure equa

Solver type for velocity equations

Type of smoother used
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Value
twolLiquidMixingFoam
Euler
Gauss linear
Gauss linear
Gauss vanlLeer
Gauss limitedLinear 1
Gauss linear
Gauss linear corrected
linear
corrected

epping
ions

tions

ulation

PIMPLE

Tolerance: 1e-7, relTol:
0.01

Tolerance: 1e-7, relTol: 0.1
GAMG

smoothSolver
GaussSeidel

tions

Number of PIMPLE correctors 2
Number of outer correctors for coupled 1
solvers

Starting time of the simulation 0
Ending time of the simulation 5*
Time step size for the simulation 0.0001
Frequency of data output 0.1
Maximum allowed Courant number 1

Maximum allowed Courant number for 0.5

alpha phase
Dynamic viscosity of the fluid

Fluid density

Run 1 - 4M urea, 2.67M CaCl,
Run 2 - 2M urea, 1.33M CaCl,
Run 3 - water

Run 1 - 4M urea, 2.67M CaCl,
Run 2 - 2M urea, 1.33M CaCl,
Run 3 - water

Turbulence model used
Magnitude and direction of gr

1.00E-06

998

2.12E-06
1.36E-06
1.00E-06
1234
1140
998
laminar

avity -9.81

*Due to limitation on max job size by the supercomputer cluster - the simulation was run in 5 second

interval batches.
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