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ABSTRACT 
In this study, we propose a tensorization-anchoring strategy based on 
adaptive architectures to accelerate the computation of Enriched Physics-
Informed Neural Networks (EPINN) for two-phase flow simulations. 
Specifically, we design an adaptive tensorization mechanism for the 
adjacency matrix embedding, the activation function, and the skip-gated 
connection in EPINN, which collectively expand the neural network's (NN) 
parameter space for learning more generalized patterns. Moreover, we 
developed an anchoring strategy by establishing Anchors-EPINN (An-EPINN). 
By detaching tensorization parameters from the computational graph and 
anchoring weighted nodes to fixed positions, the NN can benefit from 
tensorized fusion effects while reducing high-dimensional matrix calculations 
during forward and backward propagation, thereby enhancing simulation 
efficiency. This approach reduces execution time by 31.47% in homogeneous 
cases and 27.91% in heterogeneous cases, while maintaining higher 
computational accuracy. 
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1. INTRODUCTION 
Recently, artificial intelligence for partial differential equations (AI4PDEs) (4) has emerged as a promising 
research area in machine learning. The next generation of neural networks (NNs) incorporates physical 
knowledge through improvements in network architecture (22), loss functions (11), and training 
strategies (23). Physics-informed neural networks (PINNs) (28), which are based on PDEs, learn directly 
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from physical laws and have demonstrated superior performance across a variety of physical problems 
(10). Methods similar to PINNs utilize automatic differentiation (3) to construct temporal and spatial 
derivatives of PDEs, enabling unsupervised learning. Additionally,  methods similar to PINNs have been 
widely applied in fluid dynamics analysis, including the simulation of complex flow phenomena, with 
computational performance enhancements achieved through the design of model architectures, 
optimization of convergence rates, and development of specialized computational modules (40). 
However, these models often exhibit slow convergence speed, particularly in heterogeneous models. 
This is primarily attributed to significant variations in the physical parameters within heterogeneous 
porous media, which cause traditional PINNs to become easily trapped in complex loss landscapes under 
rigorous physical constraints (39). Some studies have attempted to address the convergence challenges 
in PINNs training through adaptive sampling strategies (33), modified loss functions (1), and 
decomposition methods (37). In general, the difficulty in convergence is a persistent challenge 
encountered in physics-constrained learning. 

The latest research trend in the field of computational fluid dynamics (CFD) involves a deeper integration 
of physics-driven learning with traditional simulation methods (AI4CFD) (5). Numerous studies (6, 29, 31) 
have focused on discretizing physical constraints, proving these methods to be more suitable for discrete 
system simulation compared to vanilla PINNs. In a previous study (39), we used the Finite Volume 
Method (FVM) (13) to discretize the governing equations for two-phase flow simulation in porous media, 
ensuring strict mass conservation between adjacent grid cells and incorporating a well model (27) to 
address significant pressure gradients at sources and sinks. We also implemented hard constraints to 
directly encode boundary conditions into the loss function. In a separate study (35), we introduced a 
novel Enriched Physics-Informed Neural Network (EPINN), which embeds adjacency locations within the 
NN to better perceive and learn the connectivity relations. Notably, we incorporated adaptive 
embedding, adaptive activation functions, and adaptive gated connections to accelerate training. 
Increasing the parameter count of neural networks usually enhances model fitting capabilities, especially 
for more complex issues, including depth (21) or width (7) of the NNs, or integrating tensorized 
structures to increase flexibility (2, 9, 16, 18). However, this also leads to increased computational 
resource consumption during large-scale matrix operations. Particularly, the EPINN incorporates 
embedding of spatial adjacency relationships, which causes the matrix dimensions processed within the 
NN to correlate with the numerical model's node count. Therefore, it is imperative to investigate suitable 
methods to reduce computational resource consumption. 

In this study, we propose a novel learning strategy to enhance the computational efficiency of EPINNs 
for two-phase flow simulations in heterogeneous porous media. Specifically, different hidden nodes are 
tensorized and adaptively weighted, while a progressive tensorization-anchoring strategy is designed. 
During the early training stages, the network's adjacency information, activation functions, and gated 
connections undergo tensorization, prompting enhanced expressive capacity. When the model 
converges, the adaptive parameters are detached from the computational graph and anchored to fixed 
hidden nodes. The strategy's effectiveness was validated through homogeneous and heterogeneous 
cases, demonstrating superior computational efficiency while achieving marginally higher computational 
accuracy. 

This paper is organized as follows: First, we introduce the architecture and strategies for discrete PDE 
learning. Second, we describe the "tensorization-anchoring" strategy used in An-PINN. Third, we 
demonstrate the performance of An-EPINN across various test cases. Finally, we summarize the key 
contributions of this study. 

2. METHODOLOGY 
2.1. Physics-driven EPINN of Two-Phase Flow Simulation in Porous Media 
In this study, we consider the discretized PDE based on the Darcy’ law (24). The two-phase flow governing 
equation incorporating source and sink terms is (Eq. 1): 

https://doi.org/10.69631/ipj.v2i3nr67
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where 𝜙𝜙  is porosity; 𝑆𝑆  is saturation; 𝑡𝑡  is time; 𝐶𝐶  is the compressibility coefficient; 𝑝𝑝  is pressure; 𝜆𝜆  is 
mobility, defined as 𝜆𝜆 = 𝑘𝑘/𝜇𝜇, where 𝑘𝑘 is permeability and 𝜇𝜇 is viscosity; 𝛷𝛷 represents the flow potential, 
given by 𝛷𝛷 = 𝑝𝑝 − 𝜌𝜌𝜌𝜌ℎ, 𝑔𝑔 is gravitational acceleration, ℎ is depth; the subscript 𝛽𝛽 is the fluid phase, which 
can be the wetting phase w or the non-wetting phase n; the subscript r is the porous medium. The 
Implicit-Pressure Explicit-Saturation (IMPES) scheme (8) is employed, Equation 1 is derived as Equation 
2: 

𝜙𝜙(𝑆𝑆n𝐶𝐶n + 𝑆𝑆w𝐶𝐶w + 𝐶𝐶r)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇ ⋅ (𝜆𝜆n𝑘𝑘∇Φn) + ∇ ⋅ (𝜆𝜆w𝑘𝑘∇Φw) + 𝑞𝑞n + 𝑞𝑞w (2) 

where 𝑞𝑞n is velocity of the non-wetting phase; 𝑞𝑞w is velocity of the wetting phase; the velocity of sources 
and sinks are defined as Equation 3:  

𝑞𝑞𝛽𝛽 = 𝜆𝜆𝛽𝛽
2𝜋𝜋𝜋𝜋ℎ

ln (𝑟𝑟e/𝑟𝑟w) + 𝑆𝑆k
(𝑝𝑝 − 𝑝𝑝wf) (3) 

where 𝑟𝑟e is equivalent radius, defined as 𝑟𝑟𝑒𝑒 = 0.14�d𝑥𝑥2 + d𝑦𝑦2, d𝑥𝑥 is the grid size in the 𝑥𝑥 direction, dy is 
the grid size in the 𝑦𝑦 direction; 𝑟𝑟w is wellbore radius; 𝑆𝑆k is skin factor; 𝑝𝑝wf is the bottom hole pressure 
(BHP). Within the framework of the FVM, the divergence theorem is applied, the discretized form of 
Equation 2 is derived as Equation 4: 

𝑅𝑅(𝑝𝑝𝑖𝑖𝑡𝑡 , 𝑝𝑝𝑖𝑖𝑡𝑡+1) = 𝜙𝜙(𝑆𝑆n𝐶𝐶n+𝑆𝑆w𝐶𝐶w+𝐶𝐶r)𝑉𝑉𝑖𝑖
Δ𝑡𝑡

(𝑝𝑝𝑖𝑖𝑡𝑡+1 − 𝑝𝑝𝑖𝑖𝑡𝑡) = ∑  𝑗𝑗∈𝐺𝐺𝑖𝑖 �𝜆𝜆t,𝑖𝑖𝑖𝑖+1/2𝑇𝑇𝑖𝑖𝑖𝑖�𝛷𝛷w,𝑗𝑗
𝑡𝑡+1 − 𝛷𝛷w,𝑖𝑖

𝑡𝑡+1��  

 −∑  𝑗𝑗∈𝐺𝐺𝑖𝑖 �𝜆𝜆n,𝑖𝑖𝑖𝑖+1/2𝑇𝑇𝑖𝑖𝑖𝑖�𝛷𝛷c,𝑗𝑗
𝑡𝑡 − 𝛷𝛷c,𝑖𝑖

𝑡𝑡 �� + (𝑞𝑞n + 𝑞𝑞w)𝑉𝑉𝑖𝑖 

(4) 

where 𝑅𝑅  the discrete PDE residual; 𝐺𝐺𝑖𝑖  the connected elements; 𝑇𝑇  is the transmissibility, defined as 
Equation 5: 

𝑇𝑇𝑖𝑖𝑖𝑖 =
𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖+1/2

𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑗𝑗
 (5) 

where 𝐴𝐴𝑖𝑖𝑖𝑖 is the interface area; 𝑘𝑘𝑖𝑖𝑖𝑖+1/2 the harmonic means of 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑗𝑗 ; 𝑑𝑑 is the vertical distance of grid 

center to the interface area. The saturation is updated explicitly as Equation 6: 

𝑆𝑆w,𝑖𝑖
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𝑡𝑡+1�� Δ𝑡𝑡

𝜙𝜙𝑉𝑉𝑖𝑖
+
𝑞𝑞wΔ𝑡𝑡
𝜙𝜙

− 𝑆𝑆w,𝑖𝑖
𝑡𝑡 �𝐶𝐶𝛽𝛽 + 𝐶𝐶r�(𝑝𝑝𝑖𝑖𝑡𝑡+1 − 𝑝𝑝𝑖𝑖𝑡𝑡) 

(6) 

In this study, the external boundary conditions are defined as closed boundaries (Neumann boundary 
conditions with zero velocity). For the IMPES-based numerical method, Equation 4 will be solved 
through numerical iterations at each step. The pressure solution is used to explicitly calculate the 
saturation via Equation 6. In our NN-based approach, the mapping 𝑝𝑝�𝑡𝑡+1 = 𝑓𝑓(𝑝𝑝𝑡𝑡) is established, where 
the NN undergoes parameter optimization at each timestep to minimize output errors (i.e., enhance 
physical consistency). This error quantification is defined through a PDE residual-based loss function (Eq. 
7): 

𝐿𝐿𝑅𝑅 =
1
𝑁𝑁e

�  
𝑁𝑁e

𝑖𝑖=1

�𝑅𝑅(𝑝𝑝𝑖𝑖𝑡𝑡 , 𝑝𝑝�𝑡𝑡+1)�2 
(7) 

The updated NN equation is as follows (Eq. 8): 

𝜃𝜃𝜏𝜏+1 = 𝜃𝜃𝜏𝜏 − 𝜂𝜂∇𝐿𝐿𝑅𝑅 (8) 
where 𝜃𝜃  is the NN parameters, and 𝜂𝜂  is the learning rate. By iteratively executing Equation 8 and 
employing backpropagation with the gradient descent algorithm, we can reduce the loss to the desired 
threshold, thereby obtaining the pressure solution for each time step. Subsequently, the saturation is 
calculated through Equation 6. This method offers advantages over vanilla PINNs when solving 
heterogeneous problems: Rather than strictly enforcing PDE-based physical constraints at every discrete 
point during NN training, the FVM-based approach enforces flux conservation at each discretized grid. 

https://doi.org/10.69631/ipj.v2i3nr67
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This modification reduces the local steepness of the loss landscape. Moreover, the operation of 
source/sink terms in Equation 3 mitigates challenges posed by pressure gradients near well locations.  

2.2. Tensorization-anchoring Strategy of An-PINN 
The mapping process of the EPINN can be expressed as Equation 9: 

𝑓𝑓(𝑝𝑝𝑡𝑡) = 𝜔𝜔3 ⋅ 𝑝𝑝𝑡𝑡 + (1 − 𝜔𝜔3) ⋅ 𝑤𝑤3 ⋅ ReLU�𝜔𝜔2 ⋅ 𝑤𝑤2 ⋅ 𝐵𝐵𝐵𝐵(𝜔𝜔1 ⋅ (𝑤𝑤1 ⋅ 𝑝𝑝𝑡𝑡 + 𝑏𝑏1) + 𝑚𝑚adj) + 𝑏𝑏2� + 𝑏𝑏3 (9) 

where, 𝑤𝑤1 ,𝑤𝑤2,𝑤𝑤3 and 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 are the weights and biases for the upscaling, hidden, and output linear 
layers, respectively; 𝐵𝐵𝐵𝐵  is to the Batch Normalization layer (16); 𝑚𝑚adj  is the adjacency matrix (35); 
𝜔𝜔1,𝜔𝜔2,𝜔𝜔3 are learnable adaptive parameters, 𝜔𝜔1 adjusts the weight between 𝑚𝑚adj and the upscaled 𝑝𝑝𝑡𝑡 , 
𝜔𝜔2 modifies the adaptive ReLU activation function (17), 𝜔𝜔3 regulates the extent of references to 𝑝𝑝𝑡𝑡 when 
solving 𝑝𝑝𝑡𝑡+1. 

Tensorization is a natural choice for enhancing the complexity of NNs, and it has shown impressive 
results in various state-of-the-art algorithms such as attention mechanisms (32), gating method (36), 
and the widely adopted Transformer architecture (30). Essentially, it involves alteration at each hidden 
node. As discussion in studies (2, 9, 16), continuous regularization of intermediate outputs during NN 
training fundamentally entails ongoing adjustments to the intermediate feature distribution to prevent 
covariate shift. In this study, we tensorize the adaptive learnable parameters in Equation 9 to define the 
Tensorized-EPINN (T-EPINN), thereby modifying Equation 9 as Equation 10: 

𝑓𝑓(𝑝𝑝𝑡𝑡) = 𝑊𝑊3 ⊙ 𝑝𝑝𝑡𝑡 + (1 −𝑊𝑊3) ⊙𝑤𝑤3 ⋅ ReLU�𝑊𝑊2 ⊙ 𝑤𝑤2 ⋅ 𝐵𝐵𝐵𝐵(𝑊𝑊1 ⊙ (𝑤𝑤1 ⋅ 𝑝𝑝𝑡𝑡 + 𝑏𝑏1) + 𝑚𝑚adj) + 𝑏𝑏2�
+ 𝑏𝑏3 

(10) 

where, 𝑊𝑊1,𝑊𝑊2,𝑊𝑊3 are the tensorized adaptive parameters.  

This strategy shares a similar function with the uncertain weighting in (18), enabling the NN to 
autonomously generate an appropriate fusion weight for different nodes. This approach aligns more 
closely with gating-based methods rather than attention-based mechanisms, as the weight values are 
primarily adaptively learned by the NN through backpropagation instead of being computed through 
specific rules during forward propagation. Tensorization operations could provide enhanced coupling 
between these different modules, improving their collaborative performance: 1) Deeper layers are 
generally considered to learn more detailed features, while shallower layers capture more macroscopic 
features. These layers may contribute differently to the local and global computational accuracy of 
physical fields. 2) Adaptive components at the adjacency matrix embedding and activation function 
modules involve processing high-dimensional hidden matrices, which introduce more parameters and 
handles complex patterns. In contrast, the gating module operates on tensors that have been projected 
back to the original pressure field dimensions through linear transformations, exerting a more direct 
influence on prediction outcomes. 

However, it is evident that the tensorization increases the computational resource consumption, 
especially when manipulating large-scale tensors. Numerous efforts (14, 15, 25) have been made to 
compress NNs to enhance both training and inference speeds. We designed the tensorization-anchoring 
strategy inspired by the fine-tuning strategy from transfer learning (41) and continual learning (12). In 
our simulations, the inputs and outputs of the NN correspond to physically meaningful quantities—
specifically, the spatial distribution of the pressure field 𝑝𝑝. To ensure consistency, we applied a standard 
normalization criterion for pressure (Eq. 11): 

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑝𝑝

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 (11) 

where 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the initial pressure of the reservoir formation and 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the normalized pressure. 
Equation 11 uniformly scales the pressure to a value close to 1. In subsequent time steps, the pressure 
will also vary in the vicinity of 1, and neural networks excel at learning on this scale. Consequently, the 
inputs and outputs of the NN inherently possess similar distribution, this ensures the feature distribution 
will not exhibit pronounced changes. In the early stages, learnable weights are generated in 𝑊𝑊1,𝑊𝑊2,𝑊𝑊3 
during the NN solving process to alter the features across different nodes. As the NN's learning 

https://doi.org/10.69631/ipj.v2i3nr67
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approaches stable convergence, these learnable parameters are detached from the computational 
graph, thereby anchoring the hidden nodes to fixed distribution states.  Specifically, after completing 
the training phase of the tensorizing epochs (Ta), we perform the anchoring operation: the latest NN 
parameters are output, and the parameters of the adaptive components are fixed to fully detach them 
from the computational graph. Training is then restarted. In our experiments, this procedure typically 
reduces GPU memory usage by 30%–50%. Compared to conventional pruning operations, this 
methodology fundamentally eliminates the fixed components from both forward and backward 
propagation computational graphs, rather than merely deactivating connections. The detailed workflow 
of the An-EPINN framework is outlined in Algorithm 1. 

3. RESULTS AND DISCUSSIONS 
3.1. Model Setting 
We conducted tests on both homogeneous and heterogeneous reservoir cases. The grid size for the 
homogeneous case was 25×25, with each grid measuring 5m×5m. The absolute permeability was 10 
mD, and the relative permeability curves are shown in Figure 1. Water was defined as the wetting phase 
and oil as the non-wetting phase. The porosity was set to 0.25, the initial reservoir pressure was 25MPa, 
and the rock compressibility was 1.0×10-8 Pa-1. The initial water saturation was 0.2, the irreducible water 
saturation was 0.2, water density was 1000 kg ∙m-3, water viscosity was 1.0 mPa ∙ s, and water 
compressibility was 1.0×10-10 Pa-1. The residual oil saturation was 0.2, oil density was 800 kg∙m-3, oil 
viscosity was 1.8 mPa ∙ s, and oil compressibility was 1.0×10-10 Pa-1. One injection well and one 
production well were positioned at opposite corners of the reservoir diagonal, with the injection and 
production rate set to 2.0 m3∙d-1. The wellbore radius was 0.1, and the skin factor was 0.0. The 

Algorithm 1: The training algorithm for An-PINN. 
1: inputs: simulation time T, time step Δt, tolerance ε, and maximum epoch M, learning rate lr 
2: set up Adam (19) with lr, set up tensorizing epoch Ta 
3: while t < Ta do 
3:  if t = first time: initialize NN by using Xavier (20) method, and input IC 
4:  if t > first time: initialize NN by using the trained NN of previous time step 
5:  loop1 using Δt, until ε or M is reached, retain the result associated with the lowest loss 
6:  explicit update other parameters, set t = t + 1 
6: end while 
7: remove the W1, W2 and W3 from the computation graph, reset Adam with 𝒍𝒍𝒍𝒍 
8: while t < T do 
9:  initialize with the NN of the previous time step, input IC 
10:  loop1 using Δt, until ε or M is reached, retain the result associated with the lowest loss 
11:  explicit update other parameters, set t = t + 1 
12: end while 

 

a) 

 

b) 

 

Figure 1: The heterogeneous permeability distribution (a) and relative permeability curve (b). 
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heterogeneous reservoir 
example had the same basic 
parameters as the homo-
geneous case except for the 
absolute permeability; the 
heterogeneous permeability 
distribution varied from 1.0 
mD to 100 mD as shown in 
Figure 1a. All models sim-
ulated 1000 days, with a timestep of 0.01 days. All reference solutions used for comparison were 
generated by an in-house precise simulator (34). 

Three types of NNs, EPINN (without tensorization and anchoring), T-EPINN (with tensorization only), and 
An-EPINN (with both tensorization and anchoring), were set up for solving the problem. The total 
number of learnable parameters for EPINN was 394,379, while for T-EPINN and An-EPINN, it was 
1,176,251, of which 781,875 parameters in An-EPINN could be detached from the computational graph. 
Based on experimental observations and guided by the methodology in (35), we manually adjusted and 
selected hyperparameters during the experiments to keep the models near their respective relative 
optima. The initial values of 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 were set to 0.01, 0.5, 0.1, respectively; initial values in tensors 
𝑊𝑊1,𝑊𝑊2, and 𝑊𝑊3  were uniformly set to 0.01, 0.5, and 0.9, respectively; the learning rate was set at 0.01; 
the maximum number of iterations per time step was 1000, and the residual convergence threshold was 
1.0×10-18. Notably, in our practical testing, after approximately 100 epochs of iteration, the NNs tended 
to stabilize in convergence, and the adaptive parameters approached saturation. Consequently, the 
tensorizing epoch Ta for An-EPINN was set to 100. Additionally, it is worth noting that early or premature 
parameter fixing during training had no significant impact on solution accuracy, as convergence 
thresholds were strictly enforced at each time step. However, such premature fixing (before stabilized 
convergence) could hinder the model's ability to capture general patterns, thereby requiring more 

Table 1: The training speed of different neural networks. 
Case Method Iteration epochs Elapsed time 
Homogeneous EPINN 509104 2976.73s 

T-EPINN 338062 3572.14s 
An-EPINN 339204 2039.97s 

Heterogeneous EPINN 581002 3397.12s 
T-EPINN 409612 4328.18s 
An-EPINN 407173 2448.74s 

 

  
Figure 2: The training speed of different neural networks in the homogeneous case. 

  

Figure 3: The training speed of different neural networks in the heterogeneous case. 
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iterations per time step. These hyperparameter configurations represent a general performance in our 
experiments. While further fine-tuning could marginally improve model performance, such adjustments 
were insufficient to alter the conclusions of this study. All NNs were built and trained on the PyTorch 
framework (Version 1.12.1) (26), with all learning executed on an Nvidia 4060 GPU. 

3.2. Results of NN Training 
As shown in Figure 2 and Figure 3, under both the homogeneous and heterogeneous scenario, T-EPINN 
consistently demonstrated a faster convergence speed than EPINN after tensorization, whereas the 
convergence rate for An-EPINN was similar to that of T-EPINN. Table 1 reveals that although T-EPINN 
required fewer epochs, its elapsed time in both homogeneous and heterogeneous cases was higher than 
EPINN. By detaching the adaptive part from the computational graph, An-EPINN significantly reduced 

  

Figure 4: The injection well BHP of different neural networks in the homogeneous case. 

  

Figure 5: The production well BHP of different neural networks in the homogeneous case. 

  

Figure 6: The wetting phase fraction of different neural networks in the homogeneous case. 
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its elapsed time, with a reduction of approximately 31.47% in the homogeneous case and 27.91% in the 
heterogeneous case.  

3.3. Results of injection and Production Curves  
In Figure 4, Figure 5, and Figure 6, under homogeneous conditions, the convergence accuracy of T-
EPINN and An-EPINN was comparable (with injection BHP errors below 0.06 MPa, production BHP errors 
under 0.02 MPa, and water fraction errors less than 0.3%) and outperformed EPINN (with injection BHP 
errors below 0.08 MPa, production BHP errors under 0.06 MPa, and water fraction errors less than 0.4%). 
In Figure 7, Figure 8, and Figure 9, under heterogeneous conditions, the calculated injection BHP and 
wetting phase fraction from T-EPINN and An-EPINN remained highly consistent (injection BHP errors 
below 0.08 MPa; water fraction errors under 0.4% except for a brief period before water breakthrough), 

 
 

Figure 7: The injection well BHP of different neural networks in the heterogeneous case. 

  

Figure 8: The production well BHP of different neural networks in the heterogeneous case. 

 
 

Figure 9: The wetting phase fraction of different neural networks in the heterogeneous case. 
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and exhibited higher accuracy than EPINN (injection BHP errors below 0.1 MPa, water fraction errors 
under 0.6%). The production well BHP calculations from T-EPINN and An-EPINN (errors below 0.06 MPa) 
were more precise than those from EPINN (errors up to 0.1 MPa) for most of the simulation period, 
except for a short period of post-water-breakthrough. Overall, T-EPINN and An-EPINN achieved nearly 
identical computational accuracy, with both slightly surpassing EPINN in overall performance. This 
indicates that tensorization operations enabled the NNs to learn more generalized patterns, while the 
anchoring technique maintained precision despite reduced parameter updating.  

 
Figure 10: The pressure distribution of the homogeneous case at 500 days; a) EPINN pressure, b) T-
EPINN pressure, c) An-EPINN pressure, d) EPINN error, e) T-EPINN error, f) An-EPINN error. 

 
Figure 11: The water saturation distribution of the homogenous case 500 days; a) EPINN saturation, 
b) T-EPINN saturation, c) An-EPINN saturation, d) EPINN error, e) T-EPINN error, f) An-EPINN error. 
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3.4. Results of flow fields  
As shown in Figure 10, the maximum relative errors in the pressure field obtained from T-EPINN and 
An-EPINN were both below 0.07%, demonstrating improved performance compared to EPINN (>0.15%). 
In Figure 10d-f, T-EPINN and An-EPINN exhibited relatively lower maximum relative errors near the 
injection well (top left region). Figure 11 shows that the errors of T-EPINN and An-EPINN were 
comparable (<0.4%) and lower than those of EPINN (>0.6%). Under heterogeneous conditions (Fig. 12, 
Fig. 13), the maximum relative errors in saturation and pressure fields for both T-EPINN and An-EPINN 
(homogeneous case: <0.13%; heterogeneous case: <0.4%) were substantially smaller than EPINN's 

 
Figure 12: The pressure distribution of the heterogeneous case at 500 days; a) EPINN pressure, b) T-
EPINN pressure, c) An-EPINN pressure, d) EPINN error, e) T-EPINN error, f) An-EPINN error. 

 
Figure 13: The saturation distribution of the heterogeneous case at 500 days; a) EPINN saturation, b) 
T-EPINN saturation, c) An-EPINN saturation, d) EPINN error, e) T-EPINN error, f) An-EPINN error. 
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results (homogeneous case: >0.25%; heterogeneous case: >0.8%). Comparative analysis of subplots (e-
f) versus (d) in Figure 12 and Figure 13 reveals that T-EPINN and An-EPINN achieved reduced 
computational errors in proximity to the injection well. In summary, An-EPINN demonstrates 
convergence accuracy equivalent to T-EPINN and superior to conventional EPINN methodology. The 
improved near wellbores accuracy suggests the enhanced capability to capture high-gradient flow 
patterns, thereby improving NN performance. 

4. CONCLUSIONS 
In this study, we proposed a novel Anchored-PINN (An-EPINN) to improve the solving of two-phase flow 
in porous media. Through the "tensorization-anchoring" strategy, a multitude of learnable parameters 
in the tensorized adaptive adjacency embedding, adaptive activation functions, and adaptive gating are 
anchored to a fixed hidden state. This algorithm can leverage the adaptive mechanisms to accelerate 
NN convergence and avoid the redundant calculation during backpropagation. In both homogeneous 
and heterogeneous scenarios, the tensorized operations significantly enhance the NN's convergence 
accuracy, the An-EPINN achieves superior computational speeds while maintaining improved 
convergence accuracy. This study offers viable approaches for further enhancing the convergence 
accuracy while reducing the computational resource consumption. It is valuable for running NN solutions 
on personal devices with limited computational resources and is expected to play a greater role in solving 
larger-scale problems. 

However, there remains room for further improvement in the current research: the initial stage of the 
tensorization-anchoring workflow still requires large-scale matrix operations. Future investigations plan 
to explore matrix factorization or dimensionality reduction approaches to substantially reduce 
computational complexity in this phase. While the present study was confined to 2D structured grids, 
we plan on extending the methodology to 3D reservoir simulations, unstructured grids and additional 
PDE types. Furthermore, the current research primarily revolves around the EPINN framework. In the 
future, we will extend this work to more state-of-the-art PINN variants and conduct systematic 
comparisons with existing methodologies. 
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Supplementary Material 
All supplementary or supporting information provided by the authors will be published online alongside 
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