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ABSTRACT

In this study, we propose a tensorization-anchoring strategy based on
adaptive architectures to accelerate the computation of Enriched Physics-
Informed Neural Networks (EPINN) for two-phase flow simulations.
Specifically, we design an adaptive tensorization mechanism for the
adjacency matrix embedding, the activation function, and the skip-gated
connection in EPINN, which collectively expand the neural network's (NN)
parameter space for learning more generalized patterns. Moreover, we
developed an anchoring strategy by establishing Anchors-EPINN (An-EPINN).
By detaching tensorization parameters from the computational graph and
anchoring weighted nodes to fixed positions, the NN can benefit from
tensorized fusion effects while reducing high-dimensional matrix calculations
during forward and backward propagation, thereby enhancing simulation
efficiency. This approach reduces execution time by 31.47% in homogeneous
cases and 27.91% in heterogeneous cases, while maintaining higher
computational accuracy.

KEYWORDS

Artificial intelligence for partial differential equations, AI4PDE, Simulation,
Two-phase flow, Heterogeneous, Tensorizing, Adaptive architecture, Neural
networks

This is an open access article published by InterPore under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND
4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).

1. INTRODUCTION

Recently, artificial intelligence for partial differential equations (AI4PDEs) (4) has emerged as a promising
research area in machine learning. The next generation of neural networks (NNs) incorporates physical
knowledge through improvements in network architecture (22), loss functions (11), and training
strategies (23). Physics-informed neural networks (PINNs) (28), which are based on PDEs, learn directly
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from physical laws and have demonstrated superior performance across a variety of physical problems
(10). Methods similar to PINNs utilize automatic differentiation (3) to construct temporal and spatial
derivatives of PDEs, enabling unsupervised learning. Additionally, methods similar to PINNs have been
widely applied in fluid dynamics analysis, including the simulation of complex flow phenomena, with
computational performance enhancements achieved through the design of model architectures,
optimization of convergence rates, and development of specialized computational modules (40).
However, these models often exhibit slow convergence speed, particularly in heterogeneous models.
This is primarily attributed to significant variations in the physical parameters within heterogeneous
porous media, which cause traditional PINNs to become easily trapped in complex loss landscapes under
rigorous physical constraints (39). Some studies have attempted to address the convergence challenges
in PINNs training through adaptive sampling strategies (33), modified loss functions (1), and
decomposition methods (37). In general, the difficulty in convergence is a persistent challenge
encountered in physics-constrained learning.

The latest research trend in the field of computational fluid dynamics (CFD) involves a deeper integration
of physics-driven learning with traditional simulation methods (AI4CFD) (5). Numerous studies (6, 29, 31)
have focused on discretizing physical constraints, proving these methods to be more suitable for discrete
system simulation compared to vanilla PINNs. In a previous study (39), we used the Finite Volume
Method (FVM) (13) to discretize the governing equations for two-phase flow simulation in porous media,
ensuring strict mass conservation between adjacent grid cells and incorporating a well model (27) to
address significant pressure gradients at sources and sinks. We also implemented hard constraints to
directly encode boundary conditions into the loss function. In a separate study (35), we introduced a
novel Enriched Physics-Informed Neural Network (EPINN), which embeds adjacency locations within the
NN to better perceive and learn the connectivity relations. Notably, we incorporated adaptive
embedding, adaptive activation functions, and adaptive gated connections to accelerate training.
Increasing the parameter count of neural networks usually enhances model fitting capabilities, especially
for more complex issues, including depth (21) or width (7) of the NNs, or integrating tensorized
structures to increase flexibility (2, 9, 16, 18). However, this also leads to increased computational
resource consumption during large-scale matrix operations. Particularly, the EPINN incorporates
embedding of spatial adjacency relationships, which causes the matrix dimensions processed within the
NN to correlate with the numerical model's node count. Therefore, it is imperative to investigate suitable
methods to reduce computational resource consumption.

In this study, we propose a novel learning strategy to enhance the computational efficiency of EPINNs
for two-phase flow simulations in heterogeneous porous media. Specifically, different hidden nodes are
tensorized and adaptively weighted, while a progressive tensorization-anchoring strategy is designed.
During the early training stages, the network's adjacency information, activation functions, and gated
connections undergo tensorization, prompting enhanced expressive capacity. When the model
converges, the adaptive parameters are detached from the computational graph and anchored to fixed
hidden nodes. The strategy's effectiveness was validated through homogeneous and heterogeneous
cases, demonstrating superior computational efficiency while achieving marginally higher computational
accuracy.

This paper is organized as follows: First, we introduce the architecture and strategies for discrete PDE
learning. Second, we describe the "tensorization-anchoring” strategy used in An-PINN. Third, we
demonstrate the performance of An-EPINN across various test cases. Finally, we summarize the key
contributions of this study.

2. METHODOLOGY

2.1. Physics-driven EPINN of Two-Phase Flow Simulation in Porous Media
In this study, we consider the discretized PDE based on the Darcy’ law (24). The two-phase flow governing
equation incorporating source and sink terms is (Eq. 1):
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as d

where ¢ is porosity; S is saturation; t is time; C is the compressibility coefficient; p is pressure; 1 is
mobility, defined as A = k/u, where k is permeability and p is viscosity; @ represents the flow potential,
given by @ = p — pgh, g is gravitational acceleration, h is depth; the subscript g is the fluid phase, which
can be the wetting phase w or the non-wetting phase n; the subscript r is the porous medium. The
Implicit-Pressure Explicit-Saturation (IMPES) scheme (8) is employed, Equation 1 is derived as Equation
2:

d
d)(sncn + SywCw + Cr)a_}z =V (Ankvq)n) +V. (lwkvq)w) +qn + Gw @

where q, is velocity of the non-wetting phase; q,, is velocity of the wetting phase; the velocity of sources
and sinks are defined as Equation 3:

2rnkh 3)

g = ﬂﬁm@ = Pwf)

where 1, is equivalent radius, defined as r, = 0.14,/dx? + dy?, dx is the grid size in the x direction, dy is
the grid size in the y direction; r, is wellbore radius; Sy is skin factor; p,, is the bottom hole pressure
(BHP). Within the framework of the FVM, the divergence theorem is applied, the discretized form of
Equation 2 is derived as Equation 4:

¢ (SnCn+Swlw+Cr)V;
R(pit'piHl) = T(Pf“ - Pit) = Zjeci (At,iju/zTij(‘l"va,rjl - q’\fvfil ) )

—Yjeq; (An,ij+1/2Tij((pé,j - (pg,i)) + (qn + qu)Vi
where R the discrete PDE residual; G; the connected elements; T is the transmissibility, defined as
Equation 5:

T = Aijkijia/ (5)
Y di+d;
where Aij is the interface area; k;;.,,, the harmonic means of k; and k;; d is the vertical distance of grid
center to the interface area. The saturation is updated explicitly as Equation 6:

Yjeq; (leij(‘p‘EvJ,rjl — o)) At g At (6)
o ) +=g ~ Swille + GBI —pD)
L

In this study, the external boundary conditions are defined as closed boundaries (Neumann boundary
conditions with zero velocity). For the IMPES-based numerical method, Equation 4 will be solved
through numerical iterations at each step. The pressure solution is used to explicitly calculate the
saturation via Equation 6. In our NN-based approach, the mapping p*! = f(p") is established, where
the NN undergoes parameter optimization at each timestep to minimize output errors (i.e., enhance
physical consistency). This error quantification is defined through a PDE residual-based loss function (Eq.
7):

t+1 _ ¢t
Sw,i - Sw,i +

1 ) @)
Ly =) (RGLF)
€i=1

The updated NN equation is as follows (Eq. 8):

01’+1 =07 — nVLR (8)
where 6 is the NN parameters, and 7 is the learning rate. By iteratively executing Equation 8 and
employing backpropagation with the gradient descent algorithm, we can reduce the loss to the desired
threshold, thereby obtaining the pressure solution for each time step. Subsequently, the saturation is
calculated through Equation 6. This method offers advantages over vanilla PINNs when solving
heterogeneous problems: Rather than strictly enforcing PDE-based physical constraints at every discrete
point during NN training, the FVM-based approach enforces flux conservation at each discretized grid.
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This modification reduces the local steepness of the loss landscape. Moreover, the operation of
source/sink terms in Equation 3 mitigates challenges posed by pressure gradients near well locations.

2.2. Tensorization-anchoring Strategy of An-PINN
The mapping process of the EPINN can be expressed as Equation 9:

f(®") = ws - p* + (1 — w3) - w3 - ReLU(w, - w, - BN (wy - (wy - p* + by) + Mygi) + b,) + bs 9)

where, wy, w,, wy and by, by, b; are the weights and biases for the upscaling, hidden, and output linear
layers, respectively; BN is to the Batch Normalization layer (16); m,q; is the adjacency matrix (35);
w1, w,, w3 are learnable adaptive parameters, w, adjusts the weight between m,y; and the upscaled pt,

w, modifies the adaptive ReLU activation function (17), w5 regulates the extent of references to p* when
solving pt*1,

Tensorization is a natural choice for enhancing the complexity of NNs, and it has shown impressive
results in various state-of-the-art algorithms such as attention mechanisms (32), gating method (36),
and the widely adopted Transformer architecture (30). Essentially, it involves alteration at each hidden
node. As discussion in studies (2, 9, 16), continuous regularization of intermediate outputs during NN
training fundamentally entails ongoing adjustments to the intermediate feature distribution to prevent
covariate shift. In this study, we tensorize the adaptive learnable parameters in Equation 9 to define the
Tensorized-EPINN (T-EPINN), thereby modifying Equation 9 as Equation 10:

f(pt) =W;0 Pt +(1-=W;)Ows- ReLU(Wz Ow, - BN(W; © (wy 'pt +b;) + madj) + bz) (10)
+ bs

where, W;, W,, W; are the tensorized adaptive parameters.

This strategy shares a similar function with the uncertain weighting in (18), enabling the NN to
autonomously generate an appropriate fusion weight for different nodes. This approach aligns more
closely with gating-based methods rather than attention-based mechanisms, as the weight values are
primarily adaptively learned by the NN through backpropagation instead of being computed through
specific rules during forward propagation. Tensorization operations could provide enhanced coupling
between these different modules, improving their collaborative performance: 1) Deeper layers are
generally considered to learn more detailed features, while shallower layers capture more macroscopic
features. These layers may contribute differently to the local and global computational accuracy of
physical fields. 2) Adaptive components at the adjacency matrix embedding and activation function
modules involve processing high-dimensional hidden matrices, which introduce more parameters and
handles complex patterns. In contrast, the gating module operates on tensors that have been projected
back to the original pressure field dimensions through linear transformations, exerting a more direct
influence on prediction outcomes.

However, it is evident that the tensorization increases the computational resource consumption,
especially when manipulating large-scale tensors. Numerous efforts (14, 15, 25) have been made to
compress NNs to enhance both training and inference speeds. We designed the tensorization-anchoring
strategy inspired by the fine-tuning strategy from transfer learning (41) and continual learning (12). In
our simulations, the inputs and outputs of the NN correspond to physically meaningful quantities—
specifically, the spatial distribution of the pressure field p. To ensure consistency, we applied a standard
normalization criterion for pressure (Eq. 11):

P (1

Pinit

where p;,;; is the initial pressure of the reservoir formation and pg.,; is the normalized pressure.
Equation 11 uniformly scales the pressure to a value close to 1. In subsequent time steps, the pressure
will also vary in the vicinity of 1, and neural networks excel at learning on this scale. Consequently, the
inputs and outputs of the NN inherently possess similar distribution, this ensures the feature distribution
will not exhibit pronounced changes. In the early stages, learnable weights are generated in W;, W,, W,
during the NN solving process to alter the features across different nodes. As the NN's learning

Pscal =
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approaches stable convergence, these learnable parameters are detached from the computational
graph, thereby anchoring the hidden nodes to fixed distribution states. Specifically, after completing
the training phase of the tensorizing epochs (Ta), we perform the anchoring operation: the latest NN
parameters are output, and the parameters of the adaptive components are fixed to fully detach them
from the computational graph. Training is then restarted. In our experiments, this procedure typically
reduces GPU memory usage by 30%-50%. Compared to conventional pruning operations, this
methodology fundamentally eliminates the fixed components from both forward and backward
propagation computational graphs, rather than merely deactivating connections. The detailed workflow
of the An-EPINN framework is outlined in Algorithm 1.

Algorithm 1: The training algorithm for An-PINN.

1: inputs: simulation time T, time step At, tolerance &, and maximum epoch M, learning rate lr
2: set up Adam (19) with lr, set up tensorizing epoch T,

3: while t<T,do

3: if t = first time: initialize NN by using Xavier (20) method, and input IC

4: if t > first time: initialize NN by using the trained NN of previous time step

5: loop1 using At, until € or M is reached, retain the result associated with the lowest loss
6: explicit update other parameters, sett=t+1

6: end while

7: remove the W;, W»and W; from the computation graph, reset Adam with Ir

8: while t<Tdo

9: initialize with the NN of the previous time step, input IC

10: loop1 using At, until € or M is reached, retain the result associated with the lowest loss
11: explicit update other parameters, sett=t+1

12: end while

3. RESULTS AND DISCUSSIONS
3.1. Model Setting

We conducted tests on both homogeneous and heterogeneous reservoir cases. The grid size for the
homogeneous case was 25x25, with each grid measuring 5mx5m. The absolute permeability was 10
mD, and the relative permeability curves are shown in Figure 1. Water was defined as the wetting phase
and oil as the non-wetting phase. The porosity was set to 0.25, the initial reservoir pressure was 25MPa,
and the rock compressibility was 1.0x10-8 Pa™". The initial water saturation was 0.2, the irreducible water
saturation was 0.2, water density was 1000 kgesm3, water viscosity was 1.0 mPaes, and water
compressibility was 1.0x10-10 Pa™". The residual oil saturation was 0.2, oil density was 800 kgem-, oil
viscosity was 1.8 mPaes, and oil compressibility was 1.0x10-10 Pa™'. One injection well and one
production well were positioned at opposite corners of the reservoir diagonal, with the injection and
production rate set to 2.0 m3ed. The wellbore radius was 0.1, and the skin factor was 0.0. The
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Figure 1: The heterogeneous permeability distribution (a) and relative permeability curve (b).
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heterogeneous  reservoir Table 1: The training speed of different neural networks.

example had the same basic Case Method Iteration epochs Elapsed time
parameters as the homo-  Homogeneous  EPINN 509104 2976.73s
geneous case except for the T-EPINN 338062 3572.14s
absolute permeability; the An-EPINN 339204 2039.97s
heterogeneous permeability Heterogeneous  EPINN 581002 3397.12s
distribution varied from 1.0 T-EPINN 409612 4328.18s
mD to 100 mD as shown in An-EPINN 407173 2448.74s

Figure 1a. All models sim-
ulated 1000 days, with a timestep of 0.01 days. All reference solutions used for comparison were
generated by an in-house precise simulator (34).

Three types of NNs, EPINN (without tensorization and anchoring), T-EPINN (with tensorization only), and
An-EPINN (with both tensorization and anchoring), were set up for solving the problem. The total
number of learnable parameters for EPINN was 394,379, while for T-EPINN and An-EPINN, it was
1,176,251, of which 781,875 parameters in An-EPINN could be detached from the computational graph.
Based on experimental observations and guided by the methodology in (35), we manually adjusted and
selected hyperparameters during the experiments to keep the models near their respective relative
optima. The initial values of w;, w,, w; were set to 0.01, 0.5, 0.1, respectively; initial values in tensors
Wy, W,, and W5 were uniformly set to 0.01, 0.5, and 0.9, respectively; the learning rate was set at 0.01;
the maximum number of iterations per time step was 1000, and the residual convergence threshold was
1.0X107"8, Notably, in our practical testing, after approximately 100 epochs of iteration, the NNs tended
to stabilize in convergence, and the adaptive parameters approached saturation. Consequently, the
tensorizing epoch Ta for An-EPINN was set to 100. Additionally, it is worth noting that early or premature
parameter fixing during training had no significant impact on solution accuracy, as convergence
thresholds were strictly enforced at each time step. However, such premature fixing (before stabilized
convergence) could hinder the model's ability to capture general patterns, thereby requiring more

-5 -5

EPINN An-EPINN

T-EPINN

Log(MSE)

Log(MSE)

20
6 0 1 2 3 4 5 6

-20

Epochs 10° Epochs 10

Figure 2: The training speed of different neural networks in the homogeneous case.

EPINN An-EPINN

T-EPINN

Log(MSE)
Log(MSE)

Epochs 10 Epochs 10

Figure 3: The training speed of different neural networks in the heterogeneous case.
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iterations per time step. These hyperparameter configurations represent a general performance in our
experiments. While further fine-tuning could marginally improve model performance, such adjustments
were insufficient to alter the conclusions of this study. All NNs were built and trained on the PyTorch
framework (Version 1.12.1) (26), with all learning executed on an Nvidia 4060 GPU.

3.2.

Results of NN Training

As shown in Figure 2 and Figure 3, under both the homogeneous and heterogeneous scenario, T-EPINN
consistently demonstrated a faster convergence speed than EPINN after tensorization, whereas the
convergence rate for An-EPINN was similar to that of T-EPINN. Table 1 reveals that although T-EPINN
required fewer epochs, its elapsed time in both homogeneous and heterogeneous cases was higher than
EPINN. By detaching the adaptive part from the computational graph, An-EPINN significantly reduced
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Figure 4: The injection well BHP of different neural networks in the homogeneous case.
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Figure 5: The production well BHP of different neural networks in the homogeneous case.
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Figure 6: The wetting phase fraction of different neural networks in the homogeneous case.
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its elapsed time, with a reduction of approximately 31.47% in the homogeneous case and 27.91% in the

heterogeneous case.

3.3.

Results of injection and Production Curves

In Figure 4, Figure 5, and Figure 6, under homogeneous conditions, the convergence accuracy of T-
EPINN and An-EPINN was comparable (with injection BHP errors below 0.06 MPa, production BHP errors
under 0.02 MPa, and water fraction errors less than 0.3%) and outperformed EPINN (with injection BHP
errors below 0.08 MPa, production BHP errors under 0.06 MPa, and water fraction errors less than 0.4%).
In Figure 7, Figure 8, and Figure 9, under heterogeneous conditions, the calculated injection BHP and
wetting phase fraction from T-EPINN and An-EPINN remained highly consistent (injection BHP errors
below 0.08 MPa; water fraction errors under 0.4% except for a brief period before water breakthrough),
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Figure 7: The injection well BHP of different neural networks in the heterogeneous case.
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Figure 9: The wetting phase fraction of different neural networks in the heterogeneous case.
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Figure 10: The pressure distribution of the homogeneous case at 500 days; a) EPINN pressure, b) T-
EPINN pressure, ¢) An-EPINN pressure, d) EPINN error, €) T-EPINN error, f) An-EPINN error.
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Figure 11: The water saturation distribution of the homogenous case 500 days; a) EPINN saturation,
b) T-EPINN saturation, ¢) An-EPINN saturation, d) EPINN error, €) T-EPINN error, f) An-EPINN error.

®

and exhibited higher accuracy than EPINN (injection BHP errors below 0.1 MPa, water fraction errors
under 0.6%). The production well BHP calculations from T-EPINN and An-EPINN (errors below 0.06 MPa)
were more precise than those from EPINN (errors up to 0.1 MPa) for most of the simulation period,
except for a short period of post-water-breakthrough. Overall, T-EPINN and An-EPINN achieved nearly
identical computational accuracy, with both slightly surpassing EPINN in overall performance. This
indicates that tensorization operations enabled the NNs to learn more generalized patterns, while the
anchoring technique maintained precision despite reduced parameter updating.
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3.4. Results of flow fields

As shown in Figure 10, the maximum relative errors in the pressure field obtained from T-EPINN and
An-EPINN were both below 0.07%, demonstrating improved performance compared to EPINN (>0.15%).
In Figure 10d-f, T-EPINN and An-EPINN exhibited relatively lower maximum relative errors near the
injection well (top left region). Figure 11 shows that the errors of T-EPINN and An-EPINN were
comparable (<0.4%) and lower than those of EPINN (>0.6%). Under heterogeneous conditions (Fig. 12,
Fig. 13), the maximum relative errors in saturation and pressure fields for both T-EPINN and An-EPINN
(homogeneous case: <0.13%; heterogeneous case: <0.4%) were substantially smaller than EPINN's
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Figure 12: The pressure distribution of the heterogeneous case at 500 days; a) EPINN pressure, b) T-
EPINN pressure, ¢) An-EPINN pressure, d) EPINN error, e) T-EPINN error, f) An-EPINN error.
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Figure 13: The saturation distribution of the heterogeneous case at 500 days; a) EPINN saturation, b)
T-EPINN saturation, ¢) An-EPINN saturation, d) EPINN error, e€) T-EPINN error, f) An-EPINN error.
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results (homogeneous case: >0.25%; heterogeneous case: >0.8%). Comparative analysis of subplots (e-
f) versus (d) in Figure 12 and Figure 13 reveals that T-EPINN and An-EPINN achieved reduced
computational errors in proximity to the injection well. In summary, An-EPINN demonstrates
convergence accuracy equivalent to T-EPINN and superior to conventional EPINN methodology. The
improved near wellbores accuracy suggests the enhanced capability to capture high-gradient flow
patterns, thereby improving NN performance.

4. CONCLUSIONS

In this study, we proposed a novel Anchored-PINN (An-EPINN) to improve the solving of two-phase flow
in porous media. Through the "tensorization-anchoring" strategy, a multitude of learnable parameters
in the tensorized adaptive adjacency embedding, adaptive activation functions, and adaptive gating are
anchored to a fixed hidden state. This algorithm can leverage the adaptive mechanisms to accelerate
NN convergence and avoid the redundant calculation during backpropagation. In both homogeneous
and heterogeneous scenarios, the tensorized operations significantly enhance the NN's convergence
accuracy, the An-EPINN achieves superior computational speeds while maintaining improved
convergence accuracy. This study offers viable approaches for further enhancing the convergence
accuracy while reducing the computational resource consumption. It is valuable for running NN solutions
on personal devices with limited computational resources and is expected to play a greater role in solving
larger-scale problems.

However, there remains room for further improvement in the current research: the initial stage of the
tensorization-anchoring workflow still requires large-scale matrix operations. Future investigations plan
to explore matrix factorization or dimensionality reduction approaches to substantially reduce
computational complexity in this phase. While the present study was confined to 2D structured grids,
we plan on extending the methodology to 3D reservoir simulations, unstructured grids and additional
PDE types. Furthermore, the current research primarily revolves around the EPINN framework. In the
future, we will extend this work to more state-of-the-art PINN variants and conduct systematic
comparisons with existing methodologies.
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