
  

 

InterPore Journal, Vol. 2, Issue 3, 2025       https://doi.org/10.69631/ipj.v2i3nr69  

InterPore2024 
Invited Student Paper Award 

 

A NOVEL OPTIMIZATION FRAMEWORK 
BASED ON SURROGATE MODELING 
FOR UNDERGROUND HYDROGEN 
STORAGE IN DEPLETED NATURAL GAS 
RESERVOIRS 
Zhilei Han , Zeeshan Tariq , Bicheng Yan  

Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), 
Thuwal, Saudi Arabia 

Correspondence to:  
Bicheng Yan, 
bicheng.yan@ 
kaust.edu.sa 
 
How to Cite:  
Han, Z., Tariq, Z., & Yan, 
B. (2025). A novel robust 
optimization framework 
based on surrogate 
modeling for 
underground hydrogen 
storage in depleted 
natural gas reservoirs. 
InterPore Journal, 2(3), 
IPJ250825-6. 
https://doi.org/10.69631/
ipj.v2i3nr69 
 
RECEIVED:  7 Dec. 2024  
ACCEPTED: 18 Jun. 2025 
PUBLISHED: 25 Aug. 2025 
 
 

ABSTRACT 
Underground hydrogen storage (UHS) plays a vital role in global net-zero 
energy systems, enabling the storage of excess renewable energy for future 
use. However, physical reservoir model-based optimization for UHS system 
design and operation is computationally expensive due to complex geological 
properties and well-operational controls. This study developed a novel, 
efficient framework for UHS stochastic optimization to address this 
challenge, integrating advanced compositional reservoir simulation, accurate 
surrogate modeling, and stochastic optimization techniques. First, a base 
reservoir simulation model was developed to capture compositional fluid 
flow, hydrogen methanation reactions, gravity segregation, hysteresis, and 
capillary effects. To rapidly evaluate various well controls and reservoir 
configurations, convolutional neural network (CNN)-bi-directional long short-
term memory (BiLSTM)-Attention models were trained as surrogate models 
using a comprehensive dataset generated from reservoir simulations. The 
CNN transforms three-dimensional (3D) geological fields into one-
dimensional (1D) vectors, effectively capturing spatial features. The BiLSTM 
network learns the temporal evolution of the input features over time by 
processing them in both forward and backward directions. Subsequently, the 
attention mechanism enhances prediction accuracy by identifying and 
emphasizing the most significant features at critical time steps. The well-
trained surrogate models were seamlessly integrated into the stochastic 
optimization framework based on the genetic algorithm, aiming to maximize 
the net present value (NPV) from UHS projects. The results demonstrate that 
the surrogate model exhibits satisfactory performance in the context of 
prediction accuracy, computational efficiency, and scalability. Notably, the 
newly developed framework based on surrogate models achieves an 

https://doi.org/10.69631/ipj.v2i3nr69
mailto:bicheng.yan@kaust.edu.sa
mailto:bicheng.yan@kaust.edu.sa
https://doi.org/10.69631/ipj.v2i3nr69
https://doi.org/10.69631/ipj.v2i3nr69
https://orcid.org/0000-0002-9042-6034
https://orcid.org/0000-0001-5456-7115
https://orcid.org/0000-0002-3356-7594


 
Han et al.  Page 2 of 32 
 

 

InterPore Journal, Vol. 2, Issue 3, 2025       https://doi.org/10.69631/ipj.v2i3nr69  

approximate 4878-fold speedup compared to an approach relying solely on 
reservoir simulation, while maintaining comparable accuracy. Overall, the 
proposed framework offers a promising solution for UHS optimization, 
providing valuable insights for the design and management of sustainable 
energy infrastructure. 
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1. INTRODUCTION 
The vision of a low-carbon economy has driven the rapid development of renewable energy technologies, 
primarily dominated by wind and solar energy. However, their short-term and rapid fluctuations challenge 
the power grid’s ability to respond effectively, thereby accelerating the development of various energy 
storage technologies, as shown in Figure 1. Considering its long discharge time and high storage capacity, 
Power-to-Gas (Hydrogen or Methane) becomes a viable solution for the long-term, large-scale storage of 
electrical energy. In recent years, the growing global demand for renewable energy has sparked significant 
interest in hydrogen as a clean and sustainable energy carrier (15, 39, 48). 

Geological formations, such as depleted hydrocarbon reservoirs (DHR), salt caverns, and saline aquifers, are 
promising options for seasonal and large-scale underground hydrogen storage (15). Among these, depleted 
natural gas reservoirs (DGRs) present a viable solution for managing renewable power intermittency and 
over-generation, ensuring a stable and scalable energy supply (23). The formation of DGRs has illustrated 
their geological trapping ability on natural gas, sealed by impermeable overburden mudrock or salt layers 

 

Figure 1: Various energy storage technologies (see 44). 
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and surrounded by bottom and edge water layers. Moreover, extensive operational expertise and long-term 
production experience make these reservoirs well-characterized (42). This includes insights into reservoir 
connectivity, caprock integrity, and related factors. Such understanding allows for accurate estimation of 
reservoir storage capacity, reduces uncertainty, and mitigates leakage risks, thereby leading to significant 
cost savings. As a result, DGRs offer lower capital and operating expenditures by reusing existing equipment 
and wells after evaluation, ensuring the economic feasibility of underground hydrogen storage (UHS) 
operations (3). While extensive experience exists in underground natural gas storage (UGS) (29), the 
significant differences in the properties of hydrogen and methane present unique challenges when 
attempting to directly apply UGS experience to UHS (46). Underground hydrogen storage operations in 
DGRs are still in the research and exploration period. To gain deeper insights into hydrogen recovery in UHS 
projects, reservoir simulation and optimization are essential to optimize decision parameters during 
operations. In recent years, researchers have extensively explored UHS simulations using both commercial 
and open-source simulators, such as CMG GEM (55), ECLIPS (22), 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥 (22), COMSOL (47), and TOUGH2 
(36). Key physics of focus include black-oil type simulations (24), compositional simulations with cushion gas 
types (16, 27), cycling schedules (6, 38), caprock integrity (26, 37), microbial activity (14, 53), geochemical 
reactions (18, 59), and rock-fluid behaviors (2, 19, 58). Although these studies have provided valuable insights 
into various factors influencing UHS operations, they are often limited to specific scenarios and operational 
conditions. To address this limitation, it is essential to develop a more comprehensive approach to UHS 
optimization, exploring a broader and more generalized search space to identify optimal well controls. Such 
an approach facilitates a deeper understanding of operational performance across a wider range of 
conditions. 

However, conducting physical reservoir model-based optimizations often requires extensive computational 
resources, making the process time-consuming and resource-intensive. This limits their practicality for real-
time decision-making and UHS optimization. To overcome this challenge, researchers started to develop 
surrogate models as efficient alternatives for various optimization problems (4, 45). These models 
significantly accelerate the optimization process, mitigating the computational time constraints associated 
with traditional methods (57). Despite this potential, the integration of deep learning (DL) based surrogate 
models for UHS optimization remains underexplored, with only a few preliminary efforts reported in the 
literature. For instance, Kanaani et al. (28) introduced a multi-objective co-optimization framework for UHS 
and carbon dioxide storage using machine learning (ML) algorithms. They employed a multi-layer neural 
network (MLNN) to predict multiple outputs simultaneously. Similarly, Sun et al. (51) proposed a framework 
for UHS in saline aquifers, utilizing two Gaussian support vector machine (SVM) models as proxies to address 
computational challenges in the optimization process. Further advancements include reduced-order models 
(ROMs) based on deep neural networks (DNNs) developed to predict UHS performance in DGRs (40), and 
to select optimal subsurface hydrogen storage sites in saline aquifers (7). Despite the growing interest in 
surrogate model-based UHS optimization, significant research gaps remain. For instance, these optimization 
studies ignore some critical physical processes in UHS, such as the impact of biochemically mediated 
hydrogen loss (33, 50), which can significantly influence storage performance and recovery efficiency. 
Additionally, stochastic optimization approaches, which quantify the effects of uncertainties in geological 
parameters on project design and performance, have not yet been reported in the context of UHS 
operations. Addressing these gaps is essential for developing more reliable and comprehensive stochastic 
optimization frameworks for UHS applications. 

This study proposes a novel stochastic optimization framework for UHS in DGRs, leveraging accurate and 
efficient surrogate models that capture the dynamic behavior of UHS systems under various operating 
conditions. We develop an advanced reservoir simulation model to account for compositional fluid flow, gas 
component diffusion, bio-reaction (i.e., methanation), gravity segregation, relative permeability (drainage 
and hysteresis), and capillary effects. Based on the comprehensive dataset generated from these simulations, 
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we build the surrogate models for time-series sequence-to-sequence prediction problems based on a 
convolutional neural network (CNN), a bi-directional long short-term memory (BiLSTM) network, and an 
attention mechanism. In particular, BiLSTM is designed to capture dependencies in time-sequential data by 
processing it in both forward and backward directions. This capability makes BiLSTMs particularly effective 
for tasks where understanding both past (preceding) and future (succeeding) contexts is crucial. The CNN-
BiLSTM-Attention model is rigorously validated for accuracy, efficiency, and reliability. Subsequently, the 
validated surrogate model is seamlessly integrated into a genetic algorithm (GA) based stochastic 
optimization workflow, aiming at maximizing net present value (NPV). 

The rest of the paper is structured as follows: Section 2 details the governing equations for two-phase 
compositional fluid flow, the development of the physical reservoir simulation model, the construction and 
performance evaluation of the surrogate models, and the stochastic optimization workflow. Section 3 
provides an in-depth analysis of the reservoir simulation results and the stochastic optimization outcomes. 
Section 4 summarizes the key findings of this study. 

2. METHODOLOGY 
This section describes the key steps involved in developing the stochastic optimization framework based on 
the proposed surrogate model for the UHS system. First, the governing equations underlying the physical 
processes are introduced, followed by a detailed description of the numerical simulation model and the 
generation of a high-fidelity dataset. Next, the architecture and components of the proposed CNN-BiLSTM-
Attention model are presented. Finally, the formulation of the objective function and the optimization 
algorithm are discussed, enabling the quantitative evaluation of NPV. 

2.1. Governing equations 
To capture the dynamic behavior of hydrogen injection into depleted natural gas reservoirs, as well as the 
influence of cushion gas type, we consider a two-phase (gaseous and aqueous) and multi-component 
(𝐻𝐻2,𝑁𝑁2,  𝐶𝐶𝐶𝐶4,  𝐶𝐶𝐶𝐶2) fluid flow in subsurface porous media. By incorporating the advection and molecular 
diffusion mechanisms, the governing equation of mass conservation for each component is given as (Eq. 1): 

𝜕𝜕
𝜕𝜕𝜕𝜕
��𝜙𝜙

𝛼𝛼

𝑆𝑆𝛼𝛼𝜌𝜌𝛼𝛼𝑋𝑋𝛼𝛼𝑖𝑖 � + ∇ ∙��𝜌𝜌𝛼𝛼𝑢𝑢𝛼𝛼𝑋𝑋𝛼𝛼𝑖𝑖 − 𝜙𝜙𝑆𝑆𝛼𝛼𝐷𝐷𝛼𝛼𝑖𝑖 ∇(𝜌𝜌𝛼𝛼𝑋𝑋𝛼𝛼𝑖𝑖 )� = 𝑞𝑞𝑖𝑖
𝛼𝛼

 
(1) 

where 𝛼𝛼  and 𝑖𝑖  denote phase and component, respectively; 𝜙𝜙  and 𝑆𝑆𝑎𝑎  are porosity and saturation, 
respectively; 𝜌𝜌𝛼𝛼 is mole density; 𝑋𝑋𝛼𝛼𝑖𝑖  is mole fraction of component 𝑖𝑖 in phase 𝛼𝛼; 𝑢𝑢𝛼𝛼 is Darcy’s velocity; 𝐷𝐷𝛼𝛼𝑖𝑖  is 
diffusion coefficient; 𝑞𝑞𝑖𝑖 is source or sink term. Darcy’s velocity is expressed as (Eq. 2): 

𝑢𝑢𝛼𝛼 = −
𝐊𝐊𝑘𝑘𝑟𝑟𝑟𝑟
𝜇𝜇𝛼𝛼

(∇𝑝𝑝𝛼𝛼 − 𝜌𝜌𝛼𝛼𝑔𝑔∇𝓏𝓏) (2) 

where 𝐊𝐊 is the absolute permeability; 𝑘𝑘𝑟𝑟𝑟𝑟 is the relative permeability of phase 𝛼𝛼; 𝑢𝑢𝛼𝛼 is phase viscosity; 𝑝𝑝𝛼𝛼 is 
phase pressure; 𝑔𝑔 is gravitational acceleration; and 𝓏𝓏 is depth. 

Moreover, the capillary effect is integrated into the pressure term through the inclusion of capillary pressure, 
as expressed by (Eq. 3): 

𝑝𝑝𝑐𝑐 = 𝑝𝑝𝑛𝑛𝑛𝑛 − 𝑝𝑝𝑤𝑤 (3) 
where 𝑝𝑝𝑤𝑤 , 𝑝𝑝𝑛𝑛𝑛𝑛 , and 𝑝𝑝𝑐𝑐  are the pressures of the wetting phase (water), non-wetting phase (gas), and the 
capillary pressure, respectively. 
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The flash splitting calculation is utilized to calculate the mole fraction and density with the assumption of 
local thermodynamic equilibrium. The equation governing phase equilibrium is the equivalence of the 
fugacities of the component in both the gaseous and aqueous phases (Eq. 4): 

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑖𝑖 (4) 
where 𝑓𝑓𝑖𝑖𝑖𝑖 and 𝑓𝑓𝑖𝑖𝑖𝑖 are fugacities of component 𝑖𝑖 in the gaseous and aqueous phase, respectively. 

In particular, this study incorporates the Soave-Redlich-Kwong (SRK) Equation of State (EOS) (49) to 
effectively model the phase behavior of 𝐻𝐻2 and other gas components (23), while Henry’s law is applied to 
estimate the solubility of these gas components in the aqueous phase, where 𝑓𝑓𝑖𝑖𝑖𝑖 is given as (32) (Eq. 5): 

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 ∗ 𝐻𝐻𝑖𝑖 (5) 
where 𝑥𝑥𝑖𝑖𝑖𝑖 is mole fraction of component 𝑖𝑖 in aqueous phase; 𝐻𝐻𝑖𝑖 is Henry’s law constant. 

2.2. Reservoir simulation model 
A comprehensive reservoir model is developed to facilitate multi-phase compositional simulations for UHS 
operations in DGR by using the commercial reservoir simulator GEMa from the Computer Modeling Group 
(CMG) (8). This model utilizes the finite difference method for spatial discretization, along with an adaptive 
implicit scheme for simulating multi-phase multi-component flow with phase and bio-geochemical 
equilibrium using a fully coupled approach. By discretizing and solving Equation 1 through the Newton- 
Raphson method, the primary variables, such as pressure and number of moles for each component, can be 
determined for each cell at each time step. Figure 2 depicts a three-dimensional (3D) anticline structure 
employed as the representative mesh model for this research, characterized by dimensions of 1500 m in 
length, 500 m in width, and 100 m in vertical thickness. The model is discretized using the corner-point grid 
consisting of 12,500 cells (50 × 25 × 10) and spans a depth range from 800 to 1040 m. The reservoir is 

 
a https://www.cmgl.ca/solutions/software/gem/  

 

Figure 2: Mesh of the reservoir simulation model illustrating water saturation (𝑺𝑺𝒘𝒘) during underground 
hydrogen storage in the 3D anticline formation. 
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assumed to be heterogeneous and 
anisotropic, with its side boundaries 
connecting to an infinite edge water 
aquifer. In particular, reservoir anisotropy is 
quantitatively characterized by per-
meability, where the permeabilities in the 
two horizontal directions are equal, and 
the ratio of vertical to horizontal 
permeability is set to 0.1. A central vertical 
well serves as both an injection and 
production well. To prevent water coning, 
only the first top layer is perforated. 

Regarding the rock-fluid interactions, the 
drainage and imbibition relative 
permeability curves of 𝐻𝐻2-𝐻𝐻2𝑂𝑂 (Fig. 3a) (9), 
as well as capillary pressure curve (Fig. 3b) 
(20), are accounted for. The maximum 
residual 𝐻𝐻2 saturation is set at 0.337. 

In this study, the hysteresis is incorporated 
in the relative permeability–saturation 
curves, but not in the capillary pressure–
saturation relationship. This modeling 
choice is based on the available 
experimental data for 𝐻𝐻2-𝐻𝐻2𝑂𝑂  systems, 
which exhibit hysteresis in relative 
permeability but not in capillary pressure. 
Similar modeling methods have been 
adopted in previous UHS studies (e.g. 9). In 
particular, the hysteresis behavior in this work is modeled using Land’s equation (30), which has been 
integrated in GEM. The detailed formulations are presented in Equation 6 to Equation 9. 

The gas relative permeability along the drainage-to-imbibition scanning curve for a given gas saturation, 𝑆𝑆𝑔𝑔, 
is expressed as (Eq. 6): 

𝐾𝐾𝑟𝑟𝑟𝑟�𝑆𝑆𝑔𝑔� = 𝐾𝐾𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑆𝑆𝑔𝑔𝑔𝑔� (6) 

where 𝑆𝑆𝑔𝑔𝑔𝑔 is the free gas saturation, calculated as (Eq. 7): 

𝑆𝑆𝑔𝑔𝑔𝑔 =
1
2
�𝑆𝑆𝑔𝑔 − 𝑆𝑆𝑔𝑔𝑔𝑔ℎ� +

1
2
��𝑆𝑆𝑔𝑔 − 𝑆𝑆𝑔𝑔𝑔𝑔ℎ�

2 +
4
𝐶𝐶
�𝑆𝑆𝑔𝑔 − 𝑆𝑆𝑔𝑔𝑔𝑔ℎ� 

(7) 

where 𝐶𝐶 is Land’s parameter; 𝑆𝑆𝑔𝑔𝑔𝑔ℎ is the residual gas saturation of imbibition process. These parameters are 
calculated as follows (Eq. 8, Eq. 9): 

𝐶𝐶 =
1

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
−

1
𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

 (8) 

𝑆𝑆𝑔𝑔𝑔𝑔ℎ =
𝑆𝑆𝑔𝑔ℎ

1 + 𝐶𝐶 ∗ 𝑆𝑆𝑔𝑔ℎ
 (9) 

a) 

 
b) 

 
Figure 3: Properties of rock-fluid interaction. a) Relative 
permeability curves; b) Capilary pressure.  
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where 𝑆𝑆𝑔𝑔ℎ  is the maximum gas saturation in drainage process; 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  is the maximum residual gas 
saturation; 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 1 − 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  ;  𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  and 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  are connate water saturation and irreducible oil 
saturation.  

During reservoir shut-in periods, it 
is assumed that water recharge 
from the infinite edge aquifer 
brings the reservoir to equilibrium 
prior to UHS operations. As 
illustrated in Figure 2, the water 
saturation (𝑆𝑆𝑤𝑤)  across the vertical 
layers ranges from 0.337 to 1.0, 
governed primarily by the 
equilibrium between gravitational 
and capillary forces. A transition 
zone is assumed near the gas-water 

contact (GWC). Under this equilibrium assumption, the initial reservoir pressure is modeled as hydrostatically 
balanced, while the initial reservoir temperature is determined using the reservoir depth and the geothermal 
gradient. Other major properties of the reservoir model used in this study can be found in Table 1.  

The initial reservoir gas components consist of 𝐶𝐶𝐶𝐶4, 𝐶𝐶2𝐻𝐻6, 𝐶𝐶𝐶𝐶2 and 𝑁𝑁2, with 𝐶𝐶2𝐻𝐻6 being a trace component 
that exhibits relatively low solubility. The initial global mole fraction of the reservoir gas components are 
detailed in Table 1. The ions present in the aqueous phase include 𝑁𝑁𝑎𝑎+, 𝐻𝐻+, 𝑂𝑂𝑂𝑂−, 𝐻𝐻𝐻𝐻𝐻𝐻3− and 𝐶𝐶𝐶𝐶32−, with 
initial concentrations (in molarity) of 10-1, 10-7, 10-7, 10-7, and 10-16, respectively. Additionally, molecular 
diffusion of 𝐻𝐻2, 𝑁𝑁2, 𝐶𝐶𝐶𝐶4 and 𝐶𝐶𝐶𝐶2 is considered in this study, whereas the diffusion of the chemical ions is 
neglected. The geochemical reactions involved in this study are (Eq. 10, Eq. 11, Eq. 12): 
𝐻𝐻2𝑂𝑂 → 𝐻𝐻+ + 𝑂𝑂𝑂𝑂− (10) 
𝐻𝐻+ + 𝐶𝐶𝐶𝐶32− → 𝐻𝐻𝐶𝐶𝐶𝐶3− (11) 
2𝐻𝐻+ + 𝐶𝐶𝐶𝐶32− → 𝐶𝐶𝐶𝐶2 + 𝐻𝐻2𝑂𝑂 (12) 

To address microbial-induced 𝐻𝐻2  loss (13), an Arrhenius-type reaction is incorporated to model  
methanation (36) resulting from micro-bio reactions (Eq. 13): 

𝐶𝐶𝐶𝐶2 + 4𝐻𝐻2 → 𝐶𝐶𝐻𝐻4 + 2𝐻𝐻2𝑂𝑂 (13) 

2.3. Surrogate modeling workflow 
The stochastic optimization of the UHS system through numerical modeling is often computationally 
intensive due to complex geological properties and dynamic well controls. To address this challenge, a deep 
learning model can be developed as an efficient surrogate to significantly accelerate the optimization 
process. These models are designed to map the high-dimensional decision parameters to the desired output 
space, leveraging the universal approximation capability of neural networks. This study introduces a novel 
surrogate model to predict the spatial evolution of the cumulative production of various gas components 
during UHS operations. The workflow for constructing the surrogate model is as follows: 

• Generating decision parameters using the Latin Hypercube Sampling (LHS) method; 
• Performing the numerical simulations in parallel and building a high-fidelity simulation dataset; 
• Training and testing the surrogate models, including hyper-parameter optimization; 
• Evaluating performance metrics to assess model accuracy and robustness. 

 

 

Table 1: Other major properties of the reservoir simulation model. 
Parameter Value Unit 
Pressure at z = 900 m 8920 𝑘𝑘𝑘𝑘𝑘𝑘 
Temperature at z = 900 m 55 °C 
Gas-water contact (GWC) 850 𝑚𝑚 
Initial global mole fraction of 𝑪𝑪𝑪𝑪𝟒𝟒 0.690 Dimensionless 
Initial global mole fraction of 𝑪𝑪𝟐𝟐𝑯𝑯𝟔𝟔 0.300 Dimensionless 
Initial global mole fraction of 𝑪𝑪𝑪𝑪𝟐𝟐 0.005 Dimensionless 
Initial global mole fraction of 𝑵𝑵𝟐𝟐 0.005 Dimensionless 
Initial global mole fraction of 𝑯𝑯𝟐𝟐 0.000 Dimensionless 
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a)  

 
b)  

Figure 4: Data preparation for inputs (well controls) and outputs (cumulative production of gas 
components). a) An example of the entire cycling schedule; b) cumulative production curves with 𝑁𝑁2 as 
the cushion gas.  
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2.3.1. Problem setting 
To recover the hydrogen from the depleted natural gas reservoir and account for the effect of cushion gas 
type on hydrogen recovery, the cycling schedule in this study starts with six months of cushion gas injection 
and six months of idle period, followed by five cycles of 𝐻𝐻2 injection, idle and production spanning five 
consecutive years, as shown in Figure 4a. Each month represents a single time step, resulting in a total of 
72 time steps over six years. It is assumed that the injection rate of 𝐻𝐻2 remains constant to simulate a steady 
injection of 𝐻𝐻2. To ensure a higher recovery efficiency of 𝐻𝐻2, decreasing BHPs are assumed throughout the 
entire cycle. In particular, a discretized, monotonically decreasing exponential decline curve (Eq. 14) is 
introduced to generate five decreasing BHP values corresponding to the five operational cycles. To meet the 
BHP constraint, the last value generated from the decline curve is set to be greater than the lower bound of 
BHP, as shown in Equation 10. 

 𝑦𝑦 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑒𝑒(−𝑘𝑘∗𝑥𝑥) (14) 
This approach reduces the five BHP values to two parameters: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑘𝑘, where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 follows the upper 
bound of BHP, and 𝑘𝑘 ranges between 0 and 1. 

Consequently, there are a total of six well controls: the injection rate of cushion gas, the injection rate of 𝐻𝐻2, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑘𝑘, the duration of well opening, and the duration of well shut-in. 

The optimization in this study aims to maximize the expected NPV, where geological uncertainty is 
introduced through variations in permeability across multiple realizations. A formal mathematical 
description of the optimization problem is presented in Section 2.4.1. 

2.3.2. Data preparation 
Latin Hypercube Sampling (LHS) (17) is used to generate a comprehensive dataset of decision variables and 
geological parameters, which follows a uniform distribution and covers a wide range of realistic scenarios 
for practical UHS projects. The decision parameters include the injection rate of cushion gas and 𝐻𝐻2, bottom 
hole pressure (BHP) of the production well, as well as the duration of well open-up and shut-in periods. 
Since porosity can be estimated from permeability, the geological parameter subject to uncertainty is 
permeability. The ranges for these parameters are shown in Table 2, with all parameters uniformly 
distributed within these specified ranges.  

Specifically, the 3D perme-
ability field is constructed 
utilizing the Dykstra-Parsons 
method (25), with the Dykstra-
Parsons coefficient of 0.6. The 
porosity field is then derived 
from the generated perme-
ability using the empirical 
equation outlined in Equation 
15 (60), where 𝜙𝜙 is porosity: 

𝜙𝜙 = 0.05 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐊𝐊) − 0.03 (15) 

After sampling and parameterizing these inputs shown in Figure 4a, we generate a comprehensive database 
of approximately 1000 simulation cases by executing CMG in parallel. The outcomes of these simulations 
include the cumulative production of four components: 𝐻𝐻2, 𝑁𝑁2,  𝐶𝐶𝐶𝐶4, and  𝐶𝐶𝐶𝐶2, as illustrated in Figure 4b. 
These production curves are used as outputs for training the surrogate models.  

Table 2: Ranges of geological parameters and well controls. 
Parameter Lower 

bound 
Upper 
bound 

Unit 

Permeability 100 5000 mD 
Injection rate of cushion gas 1.0 x 103 1.0 x 106 𝑚𝑚3/𝑑𝑑𝑑𝑑𝑑𝑑 
Injection rate of 𝑯𝑯𝟐𝟐 1.0 x 103 1.0 x 106 𝑚𝑚3/𝑑𝑑𝑑𝑑𝑑𝑑 
BHP of the production well 2.0 x 103 8.0 x 103 kPa 
Duration of injection 1 6 month 
Duration of production 1 6 month 
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2.3.3. Surrogate model development 
Based on the Pytorch library (43), we develop four surrogate models with identical architectures to separately 
predict the cumulative production of 𝐻𝐻2 , 𝑁𝑁2 ,  𝐶𝐶𝐶𝐶4 , and  𝐶𝐶𝐶𝐶2 . As shown in Figure 5, the CNN-BiLSTM-
Attention model is selected as the deep learning architecture of the surrogate model in this research, which 
combines the strengths of both CNN (31) and LSTM (21) to capture spatial-temporal dependencies and 
patterns in UHS systems. As an encoder, CNN (a dashed-line box with light green blocks in Fig. 5) transforms 
a 3D heterogeneous permeability field into one-dimensional (1D) vectors. These 1D vectors, later along with 
other 1D well controls, serve as inputs for the BiLSTM-Attention network to predict the cumulative 
production of each gas component. A BiLSTM network (light blue blocks in Fig. 5) is a type of recurrent 
neural network (RNN) designed to capture the order and time dependencies of the input data by processing 
it in both forward and backward directions. The attention mechanism (52) (a light orange block in Fig. 5) is 
integrated to emphasize key time steps, thereby improving the prediction accuracy. Finally, the output of 
the attention mechanism is then passed through a fully connected layer (dark gray block in Fig. 5) with a 
Rectified Linear Unit (ReLU) activation function to produce the final feature. Once trained, the model serves 
as an efficient surrogate for computationally expensive reservoir simulations, enabling rapid evaluation of 
various operational strategies and reservoir configurations. The architecture of the surrogate model is 
illustrated in Figure 5. 

Figure 6 depicts the dimen-
sionality reduction process for 
geological permeability using 
3D CNN. As described in 
Section 2.2, the initial 3D per-
meability field has dimensions 
of 50 × 25 × 10  corresponding 
to the depth, width, and 
thickness of the reservoir 
model. The dimensionality 
reduction is achieved through 
two sequential layers, each 
comprising a 3D CNN followed 
by a MAXPooling operation. 
The resulting tensor is then 

 

Figure 5: Architecture of convolutional neural network (CNN)-bi-directional long short-term memory 
(BiLSTM)-Attention model. 

 

Table 3: Summary of the 3D convolutional neural network block.  
Layer Kernel size Output size 
Input / (n, 1, 50, 25, 10) 
Conv3D-1, 32 filters of size, stride 1 10 × 5 × 2 (n, 32, 41, 21, 9) 
MAXPool-1 2 × 2 × 2 (n, 32, 20, 10, 4) 
Conv3D-2, 16 filters of size, stride 1 5 × 9 × 3 (n, 16, 16, 2, 2) 
MAXPool-2 2 × 2 × 2 (n, 16, 8, 1, 1) 
Flatten / (n, 128) 
FC-1 / (n, 64) 
FC-2 / (n, 8) 
Conv3D-1: 3D convolutional layer 1; Conv3D-2: 3D convolutional layer 2; 
MAXPool-1: Layer 1 of max pooling; MAXPool-2: Layer 2 of max pooling; FC: 
fully connected layer. 
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passed through a flattening layer and 
two fully connected (FC) layers, reducing 
its dimensionality from [n, 1, 50, 25, 10] 
to [n, 8]. Here, n denotes the batch size, 
and 1 represents the channel size. The 
architecture details of the 3D CNN are 
presented in Table 3. 

Although sequence-to-sequence mod-
eling with recurrence theoretically does 
not require explicit encoding of the time 
series, incorporating positional em-
beddings (11) can enhance model 
performance. Specifically, embedding 
the absolute positions of input features 
along the time axis equips the model 
with a good understanding of the order. 
This is particularly beneficial for 
capturing the strong periodic patterns 
(e.g., seasonal behavior) inherent in the 
UHS operations. Using a simple 
sequential index (e.g., t = 1, 2, ..., 72) to 
represent the position of a time step, 
however, poses a risk that the model may 
misinterpret them as linear features, 
thereby failing to capture the cyclic or 
seasonal nature of time. To address this, 
the time series are encoded using 
learned embeddings in this study, which can more effectively capture their periodicity and complex patterns.  

The well controls are preprocessed according to the cycling schedule, as illustrated in Figure 4a. To enhance 
the weights of well controls within the overall input parameters during the training of the surrogate model, 
these scalar values are converted into 1D vectors by repeating their values at each time step, matching the 
dimension of the 1D latent representation of permeability after the 3D CNN block. The processed 1D well 
controls are then concatenated with the 1D permeability latent and encoded time series along the feature 
dimension, forming the inputs for the subsequent BiLSTM layers. 

As illustrated in Figure 7a, the BiLSTM model consists of forward and backward layers. The forward LSTM 
processes the input sequence from the beginning (i.e., cell 1 or t=1) to the end (i.e., cell N or t=T), capturing 
how the UHS system evolves over time based on preceding conditions. Conversely, the backward LSTM 
processes the input sequence from the end (i.e., cell N or t=T) to the beginning (i.e., cell 1 or t=1), 
incorporating information from later states, such as cumulative production, to improve prediction accuracy. 
At each timestep, the outputs from both directions are concatenated to provide a more comprehensive 
prediction. By processing the time sequence in both directions, the BiLSTM effectively captures the 
dependencies in the data that span across timesteps, whether they occur earlier or later in the sequence. 
During prediction, the model proceeds in a step-by-step (autoregressive) manner, where only past 
information is available. Thus, the BiLSTM is applied to observed sequences during training to extract 
informative representations, while the final predictive model uses these learned features to generate 
forecasts in a strictly unidirectional manner. In other words, the backward LSTM becomes naturally inactive 

 

Figure 6: Workflow of convolutional neural network-based 
encoder. FC: fully connected; Conv3D-1: 3D convolutional 
layer 1; Conv3D-2: 3D convolutional layer 2; MAXPool-1: Layer 
1 of max pooling; MAXPool-2: Layer 2 of max pooling; FC: fully 
connected layer. 
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during prediction due to the absence of future production data as input. This dual perspective enhances the 
ability of the surrogate model to predict dynamic system behaviors. Figure 7b depicts the structure of a 
typical LSTM cell unit, including an input gate (𝑖𝑖𝑡𝑡), forget gate (𝑓𝑓𝑡𝑡), output gate (𝑜𝑜𝑡𝑡), and cell state (𝑐𝑐𝑡𝑡). The 
BiLSTM utilizes these gates to selectively memorize or forget past information while passing relevant details 
through hidden states. The mathematical equations of these gate mechanisms and the cell state are 
provided in Equations 16 to 19. 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑖𝑖[𝑦𝑦𝑡𝑡−1𝑑𝑑 , 𝑥𝑥𝑡𝑡𝑑𝑑] + 𝑏𝑏𝑖𝑖) (16) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑤𝑤𝑓𝑓[𝑦𝑦𝑡𝑡−1𝑑𝑑 , 𝑥𝑥𝑡𝑡𝑑𝑑] + 𝑏𝑏𝑓𝑓� (17) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑜𝑜[𝑦𝑦𝑡𝑡−1𝑑𝑑 , 𝑥𝑥𝑡𝑡𝑑𝑑] + 𝑏𝑏𝑜𝑜) (18) 

𝑐𝑐𝑡𝑡𝑑𝑑 = 𝑓𝑓𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡𝑑𝑑 + 𝑖𝑖𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑤𝑤𝑐𝑐[𝑦𝑦𝑡𝑡−1𝑑𝑑 , 𝑥𝑥𝑡𝑡𝑑𝑑] + 𝑏𝑏𝑐𝑐) (19) 

The output of LSTM (𝑦𝑦𝑡𝑡𝑑𝑑) can then be calculated by (Eq. 20): 

𝑦𝑦𝑡𝑡𝑑𝑑 = 𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑐𝑐𝑡𝑡𝑑𝑑) (20) 
where 𝑡𝑡 and 𝑑𝑑 represent time step and direction of LSTM, respectively; 𝑥𝑥𝑡𝑡 represents the inputs; 𝑖𝑖𝑡𝑡 , 𝑓𝑓𝑡𝑡 , and 𝑜𝑜𝑡𝑡 
are the outputs of the input, forget, and output gates, respectively; 𝑦𝑦𝑡𝑡−1𝑑𝑑  and 𝑐𝑐𝑡𝑡−1𝑑𝑑  denote the layer (or 
hidden) state and cell state at timestep 𝑡𝑡 − 1; 𝑦𝑦𝑡𝑡𝑑𝑑 and 𝑐𝑐𝑡𝑡𝑑𝑑 represent the layer (or hidden) state and cell state 
at time step 𝑡𝑡; the weights of the input, forget, and output gates, as well as the hidden state are denoted by 
𝑤𝑤𝑖𝑖 , 𝑤𝑤𝑓𝑓 , 𝑤𝑤𝑜𝑜, and 𝑤𝑤𝑐𝑐 , respectively; 𝑏𝑏𝑖𝑖 , 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑜𝑜, and 𝑏𝑏𝑐𝑐 are the corresponding biases. The activation functions are 
represented by 𝜎𝜎 and 𝑡𝑡𝑡𝑡𝑡𝑡ℎ, while ∗ is the convolution operator. 

A multi-head self-attention mechanism (10, 54) is then integrated after the BiLSTM layers to enhance the 
capability of the model to capture critical time steps and spatial relationships. It enables the model to 

a) 

 
b) 

 
Figure 7: Illustration of the bi-directional long short-term memory (BiLSTM) network according to (12, 
35). a) BiLSTM structure; b) a typical cell unit of the LSTM. 
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dynamically weigh different parts of the input sequence when making a prediction, rather than treating all 
past information equally. 

Figure 8 illustrates the mechanism of multi-head attention. The output states from the BiLSTM layer are first 
linearly projected into multiple sets of Query (Q), Key (K), and Value (V) vectors, corresponding to each 
attention head. Each head independently computes attention scores by evaluating the similarity between 
queries and keys, allowing it to capture different types of temporal dependencies or spatial correlations. The 
resulting attention weights are then multiplied by the value vectors (see Eq. 21), highlighting the most 
relevant features in the input sequence. By using multiple attention heads, the model can jointly attend to 
information from different representation subspaces at different positions, which significantly enhances its 
ability to learn complex and multi-scale interactions. The outputs of all attention heads are then 
concatenated and passed through a linear transformation layer to form the final attended representation. 
These attention-enhanced features are subsequently used for prediction, allowing the model to selectively 
emphasize influential time steps (e.g., sharp changes in well controls or responses) and suppress less 
informative ones. This integration improves both the interpretability and accuracy of the production 
forecasts, particularly under highly dynamic well control scenarios.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑄𝑄𝑄𝑄𝑇𝑇

�𝑑𝑑𝑘𝑘
�𝑉𝑉 

(21) 

where 𝑄𝑄 denotes the query vector, representing the information we are seeking within the sequence; 𝐾𝐾 
stands for the key vector, which is used to compare against the query to assess the relevance of each part 
of the sequence; and 𝑉𝑉 is the value vector, which carries the actual information to be passed on after the 

query and key are compared. The symbol 𝑇𝑇 is the transpose operation, and �𝑑𝑑𝑘𝑘 is the scaling factor, where 

𝑑𝑑𝑘𝑘 is the dimensionality of the key vectors. The dot product of the query and key produces the raw scores, 
and the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 function converts these scores into probabilities. 

To increase the stability of the model training process, we implement a strategy where the monthly 
production rate is first predicted, and the cumulative production is then calculated by accumulating the 

 

Figure 8: Mechanism of the multi-head attention (after 54). 
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predicted monthly values. This approach is particularly effective since the production can be zero during well 
shut-in periods. Given that the output data spans several orders of magnitude (as shown in Fig. 9), a log 
transformation is applied to all production curves of the four gas components. Subsequently, both the input 
and output parameters are normalized using the min-max method to streamline the training and validation 
process of the surrogate model. In particular, the comprehensive dataset with around 1000 cases is divided 
into training, validation, and testing subsets in an 8:1:1 ratio. The CNN-BiLSTM-Attention model is trained 
on an NVIDIA RTX A6000 using the AdamW optimizer (34), mean square error (MSE) loss, and ReLU 
activation function. 

The Python-based, open-source OPTUNA library (1) is used to tune the hyperparameters, as outlined in 
Table 4. The optimized hidden size and number of attention heads for all models are 128 and 2, respectively. 
Specifically, the objective function minimized by OPTUNA is the MSE of the predicted production rate on 
the validation dataset during hyperparameter tuning. 

 

 

  
a) b) 

  
c) d) 
Figure 9: Data distributions of cumulative productions of all gas components. a) 𝐻𝐻2; b) 𝑁𝑁2; c) 𝐶𝐶𝐶𝐶4; d) 
𝐶𝐶𝐶𝐶2. 
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2.3.4. Performance metrics 
Two metrics are used to quantify the performance of the CNN-BiLSTM-Attention surrogate model. Mean 
Square Error is a commonly used evaluation metric. The MSE loss is calculated by Equation 22: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 
(22) 

where 𝑁𝑁 is the number of samples; 𝑦𝑦𝑖𝑖  and 𝑦𝑦�𝑖𝑖 are the ground truth and the surrogate model predictions, 
respectively. 

Additionally, 𝑅𝑅2 is another commonly used metric and is defined by Equation 23: 

𝑅𝑅2 = 1 −
∑ 𝑁𝑁
𝑖𝑖 = 1(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

∑ 𝑁𝑁
𝑖𝑖 = 1(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

 
(23) 

2.3.5. Performance of surrogate model 
Based on the comprehensive simulation dataset, we developed four surrogate models using CNN-BiLSTM-
Attention network to separately predict the production of  𝐶𝐶𝐶𝐶4, 𝑁𝑁2, 𝐻𝐻2, and  𝐶𝐶𝐶𝐶2. The temporal evolution of 
training and validation losses for four surrogate models is illustrated in Figure 10. All models demonstrate 
consistent convergence in terms of MSE loss, initiating from approximately 10−1 and descending to 
10−3−10−4. The 𝐻𝐻2 model exhibits mild oscillations during training while maintaining convergence, reaching 
stability at approximately 80 epochs. The 𝑁𝑁2 model displays a smoother convergence trajectory, requiring 
an extended training duration of 130 epochs to achieve optimal performance. Notably, the  𝐶𝐶𝐶𝐶4  model 
demonstrates the most stable convergence, with minimal divergence between training and validation losses, 
completing training within 90 epochs. The  𝐶𝐶𝐶𝐶2 model takes the longest training period (180 epochs) and 
shows moderate fluctuations in validation loss, though ultimately achieving stable convergence. The close 
alignment between training and validation losses across all models indicates effective generalization without 
significant overfitting, suggesting robust model architectures suitable for their respective prediction tasks. 

Figure 11 presents parity plots comparing model predictions against ground truth values for the four 
surrogate models. The 𝐻𝐻2  model achieves exceptional performance with an 𝑅𝑅2  value of 0.999, 
demonstrating nearly perfect alignment along the parity line and minimal scatter in predictions. The 𝑁𝑁2 
model yields an 𝑅𝑅2 value of 0.972, exhibiting good correlation despite showing increased scatter at higher 
values. The  𝐶𝐶𝐶𝐶4  model maintains strong predictive capability with an 𝑅𝑅2  of 0.984, displaying consistent 
performance across the prediction range with moderate scatter at elevated values. The  𝐶𝐶𝐶𝐶2 model, while 
achieving a respectable 𝑅𝑅2 of 0.960, shows the most pronounced deviation from the parity line, particularly 
in the higher value regions, and exhibits distinct clustering patterns in its predictions. All models maintain 
𝑅𝑅2  values above 0.960, indicating strong overall predictive capabilities, though with varying degrees of 
accuracy and consistency. 

Table 4: Optimized hyperparameters for the four surrogate models. 
Surrogate 
model 

Batch 
size 

Learning rate No. of 
BiLSTM 
layers 

Dropout 
size 

Weight decay 

 𝑪𝑪𝑪𝑪𝟒𝟒  32 7.21 ×  10−4 3 0.1 7.32 ×  10−4 
 𝑪𝑪𝑪𝑪𝟐𝟐 8 9.83 ×  10−5 2 0.3 1.17 ×  10−4 
𝑯𝑯𝟐𝟐 8 4.30 ×  10−4 2 0.4 1.45 ×  10−4 
𝑵𝑵𝟐𝟐 8 2.90 ×  10−4 2 0.3 1.44 ×  10−4 
BiLSTM: bi-directional long short-term memory. 
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The performances demonstrate that the CNN-BiLSTM-Attention architecture successfully captures the 
underlying patterns in all four different produced gas components, with particularly outstanding 
performance in predicting 𝐻𝐻2  behavior. The varying levels of prediction accuracy across different fluid 
components may inform future model refinements and applications in similar chemical systems. 

2.4. Stochastic optimization 
Optimization is commonly used to explore the search space of the simulated model, providing a deeper 
understanding of the problem and identifying the optimal values for decision parameters. This process 
involves addressing challenges, such as local optima, computational cost, and uncertainties (41). Stochastic 
optimization (56) aims to find optimal solutions that exhibit minimal variability in response to probable 
uncertainties in reservoir model parameters. Given the unavoidable uncertainties in geological properties 
and varying operational variables, developing stochastic optimization is essential to quantitatively assess 
these uncertainties and provide reliable estimates for their impact on UHS operations. In this context, the 
aforementioned well-designed surrogate models are seamlessly integrated into the stochastic optimization 
workflow, providing the effectiveness of the optimized well controls in a probabilistic form with variations in 
model inputs. Genetic Algorithm (GA) is used for the UHS optimization problem due to its key advantages, 
including its non-gradient descent formulation and its ability to effectively handle the complexities of real-

  
a) b) 

  
c) d) 
Figure 10: Training and validation loss of the four surrogate models. a) 𝐻𝐻2; b) 𝑁𝑁2; c) 𝐶𝐶𝐶𝐶4; d) 𝐶𝐶𝐶𝐶2. 
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world problems. The primary objective of this optimization process is to maximize the Net Present Value 
(NPV), ensuring economically viable and reliable operational strategies under uncertain conditions. 

2.4.1. Optimization problem of UHS 
In this work, the optimization problem focuses on estimating the well controls that maximize the NPV of the 
UHS in a depleted natural gas reservoir. The NPV is defined as (Eq. 24): 

𝐉𝐉(𝑚𝑚𝑖𝑖 ,𝑢𝑢) = ��
1

(1 + 𝑅𝑅)2 � � �𝑞𝑞𝐻𝐻2,𝑗𝑗
𝑡𝑡 × 𝑃𝑃𝐻𝐻2,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑐𝑐𝑐𝑐,𝑗𝑗

𝑡𝑡 × 𝑃𝑃𝑐𝑐𝑐𝑐 − 𝑞𝑞𝑤𝑤,𝑗𝑗
𝑡𝑡 × 𝑃𝑃𝑤𝑤�

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑗𝑗=1

𝑁𝑁𝑡𝑡

𝑡𝑡=1

− � �𝑞𝑞𝐻𝐻2,𝑘𝑘
𝑡𝑡 × 𝑃𝑃𝐻𝐻2,𝑏𝑏𝑏𝑏𝑏𝑏�

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘=1

�� − 𝑄𝑄𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑐𝑐𝑐𝑐 + �𝑄𝑄𝐶𝐶𝐶𝐶2,𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑄𝑄𝐶𝐶𝐶𝐶2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� × 𝐵𝐵𝐶𝐶𝐶𝐶2

− 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 

(24) 

where 𝑚𝑚𝑖𝑖 is the 𝑖𝑖-th realization of the reservoir model; 𝑢𝑢 is an 𝑁𝑁𝑢𝑢-dimensional column vector that contains 
all the well controls at all wells during the UHS operations; 𝑡𝑡 denotes the 𝑡𝑡-th timestep of the reservoir 
simulation; 𝑁𝑁𝑡𝑡 is the total number of timesteps; 𝑅𝑅 is the annual discount rate; 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represent the 
total number of injection and production wells, respectively; the variables 𝑞𝑞𝐻𝐻2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡 ,  𝑞𝑞𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡 , 𝑞𝑞𝑤𝑤,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡  denote 

  
a) b) 

  
c) d) 
Figure 11: Parity plot of test datasets in the four surrogate models. a) 𝐻𝐻2; b) 𝑁𝑁2; c) 𝐶𝐶𝐶𝐶4; d) 𝐶𝐶𝐶𝐶2. 
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the production rate of 𝐻𝐻2, cushion gas and water in 𝐶𝐶𝐶𝐶2/𝑑𝑑𝑑𝑑𝑑𝑑, respectively; 𝑞𝑞𝐻𝐻2,𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡  denotes the injection rate 

of 𝐻𝐻2  in 𝑚𝑚3/𝑑𝑑𝑑𝑑𝑑𝑑 ; 𝑄𝑄𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡  is the total injection of cushion gas in 𝑚𝑚3 ; 𝑄𝑄𝐶𝐶𝐶𝐶2,𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡  and 𝑄𝑄𝐶𝐶𝐶𝐶2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡  are the total 

injection (as cushion gas) and production amount of 𝐶𝐶𝐶𝐶2 in 𝑚𝑚3 respectively; the prices 𝑃𝑃𝐻𝐻2,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑃𝑃𝐻𝐻2,𝑏𝑏𝑏𝑏𝑏𝑏 
represent the selling and buying price of 𝐻𝐻2 in $/𝑘𝑘𝑘𝑘; 𝑃𝑃𝑐𝑐𝑐𝑐 is the cost of cushion gas in $/𝑘𝑘𝑘𝑘; 𝑃𝑃𝑤𝑤 is the disposal 
cost associated with water in  $/𝑘𝑘𝑘𝑘 ; 𝐵𝐵𝐶𝐶𝐶𝐶2  is the bonus received for storing 𝐶𝐶𝐶𝐶2  in $/𝑘𝑘𝑘𝑘 . The bonus is 
calculated based on the effective accumulated storage of 𝐶𝐶𝐶𝐶2 in the subsurface reservoir, rather than being 
accounted for on a daily basis. Additionally, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 denote the capital and operating expenditure, 
respectively, both measured in $. For the examples considered in this work, we neglect the disposal costs 
associated with the separation of produced gas mixtures. However, we account for fluctuations in the market 
price of 𝐻𝐻2 while assuming a fixed price for the cushion gas. The cost of purchasing cushion gas is separated 
from the daily calculations as the cushion gas is injected only once at the beginning of each cycling schedule 
with a fixed amount, and no additional cushion gas is injected during the subsequent cycles. Moreover, the 
water-related terms are set to zero, as no water is produced. 

To determine the optimal well controls 𝑢𝑢  for UHS operations, stochastic optimization is employed to 
maximize the reservoir performance metric, while accounting for uncertainties in the geological parameters, 
denoted by 𝑚𝑚𝑖𝑖 . Due to these uncertainties, an ensemble of stochastic forward models is evaluated, resulting 
in a corresponding ensemble of 𝐉𝐉 values. Consequently, the expected value of 𝐉𝐉 is used as the objective 
function in the stochastic optimization and is defined as (Eq. 25): 

𝐉𝐉𝐸𝐸(𝑢𝑢) =
1
𝑁𝑁𝑤𝑤

�𝐉𝐉(𝑚𝑚𝑖𝑖,𝑢𝑢)
𝑁𝑁𝑒𝑒

𝑖𝑖=1

 
(25) 

where 𝐉𝐉𝐸𝐸(𝑢𝑢) denotes the approximated expectation of NPV across all geological realizations under well 
control strategy 𝑢𝑢 ; 𝑁𝑁𝑒𝑒  is the number of geological model realizations used to characterize reservoir 
uncertainty. In this study, 100 equally probable permeability fields were used to assess the impact of 
geological uncertainty on NPV during the optimization process. 

As introduced in Section 2.3.1, the well control strategy is parameterized by 𝑁𝑁𝑢𝑢  =  6 decision variables, 
including the coefficient 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and exponential index 𝑘𝑘 of the decline curve used to constrain the BHPs. 
These variables are subject to simple bound constraints, with their respective lower and upper bounds 
denoted as 𝑢𝑢𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑖𝑖

𝑢𝑢𝑢𝑢. The stochastic optimization problem is therefore formulated as follows (Eq. 26): 

minimize -𝐉𝐉𝐸𝐸(𝑢𝑢)𝑢𝑢𝑢𝑢𝑅𝑅𝑁𝑁𝑢𝑢  (26) 
subject to 𝑔𝑔𝑗𝑗(𝑢𝑢) = 𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐5𝑡𝑡ℎ − 𝐵𝐵𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙 ≥ 0 ,   𝑗𝑗 = 1, 2, 3, … ,𝑁𝑁𝑒𝑒  
 𝑢𝑢𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑢𝑢𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖

𝑢𝑢𝑢𝑢,   𝑖𝑖 = 1, 2, 3, … ,𝑁𝑁𝑢𝑢  

where 𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐5𝑡𝑡ℎ  is the BHP during the final well-open period, as determined by the exponential decline of 
BHP;  𝐵𝐵𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙 is the lower bound of BHP, set to 2000 psia as shown in Table 2; 𝑔𝑔𝑗𝑗 denotes the 𝑗𝑗-th inequality 
constraint, which is explicitly enforced during optimization to ensure that the BHP during the final well-open 
period remains above 2000 psia. 

2.4.2. Genetic algorithm 
The optimization process integrates the objective function with a genetic algorithm (GA) (41), as illustrated 
in Figure 12. The workflow begins with generating an initial population by sampling from the search space. 
Each generation consists of 60 individuals, where each individual is a vector representing well controls across 
72 time steps. The CNN-BiLSTM-Attention surrogate models are then utilized to compute the objective 
function (F), serving as a computationally efficient surrogate for the numerical simulator. In parallel, a hard 
constraint (G) is defined to ensure that the BHP during the final well-open period remains above its specified 
lower bound. Both the objective function (F) and the constraint (G) are passed to the optimizer, which 
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internally handles constraint feasibility during the selection process. After evaluating the current generation, 
the GA checks the termination criteria. If these criteria are not satisfied, the algorithm applies a series of 
evolutionary operators to generate the next generation. First, individuals are selected using the binary 
tournament method combined with crowding distance sorting, ensuring diversity among the selected 
solutions. Next, crossover is applied to generate offspring by recombining two parent solutions, typically 
using single-point or double-point crossover methods. This operator primarily exploits the search space by 
combining promising solutions. Mutation introduces small alterations to one or more genes in the offspring 
to maintain genetic diversity and enhance global exploration. These steps produce a new generation, and 
the process repeats until the termination condition is met, such as reaching the maximum number of 
generations. The maximum generation size in this study is 40. This structured approach balances global and 
local search, leveraging crossover for exploitation and mutation for exploration, ultimately converging 
toward optimal solutions.  

As discussed in Section 2.3.1, to satisfy the constraints on BHP and enhance hydrogen recovery efficiency, a 
monotonically decreasing discrete exponential decline curve is introduced to generate five decreasing BHP 
values corresponding to the five cycles. To meet the BHP constraint, the last value of the decline curve is set 
to be greater than the lower bound of BHP, serving as a constraint within the optimization algorithm. This 
approach reduces the five BHP values to two parameters: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑘𝑘. 

The optimization algorithm is implemented based on the open-source library pymoo (5). The 
hyperparameters of the optimization algorithm are detailed in Table 5. 

 

 

 

 

 

 

Figure 12: Workflow of the genetic algorithm-based optimization. 

 

Table 5: Hyperparameters of the genetic algorithm 
Parameter Value 
Generation size 40 
Population size 60 
Offspring size 60 
Crossover method Stimulated binary 
Crossover probability 0.9 
Mutation method Polynomial 
Mutation probability 0.1 
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3. RESULTS AND ANALYSIS 
3.1. Reservoir simulation results 

3.1.1. Sensitivity analysis 
In this section, we conduct a sensitivity analysis to evaluate the effects of microbial reaction and cushion gas 
type on 𝐻𝐻2 production during UHS operations. The six scenarios considered are summarized in Table 6. 

Figure 13 presents the results, illustrating cumulative 𝐻𝐻2 production over time for the six cases. The figure 
highlights the interplay of microbial activity and cushion gas selection. Case 1, serving as the base model, 
exhibits a consistent stepwise increase in 𝐻𝐻2 production and acts as the benchmark. Introducing microbial 
reaction (Case 2) results in a slight reduction of 𝐻𝐻2 production, approximately 1.7% at the final timestep. This 
decrease is attributed to the methanation reaction, where 𝐻𝐻2 is consumed by the microbes to form 𝐶𝐶𝐶𝐶4. 
Cases 3 and 5 explore the use of 𝐶𝐶𝐶𝐶2 and 𝑁𝑁2 as cushion gases, respectively, without considering microbial 
reactions. Initially, 𝐻𝐻2 production in Case 3 is lower than in Case 5, but this trend reverses after 2005. This 
behavior is likely due to the higher solubility of 𝐶𝐶𝐶𝐶2 than that of 𝑁𝑁2, as 𝐶𝐶𝐶𝐶2 dissolves in the aqueous phase 
initially and remains in the gaseous state once saturation is reached. Another possible reason is that 𝑁𝑁2 is 
much more compressible than 𝐶𝐶𝐶𝐶2 . Cases 4 and 6 incorporate microbial reactions into Cases 3 and 5, 
respectively. The combination of 𝐶𝐶𝐶𝐶2 and microbial reactions (Case 4) results in a substantial decrease in 𝐻𝐻2 
production, as 𝐶𝐶𝐶𝐶2  reacts 
with 𝐻𝐻2  to form 𝐶𝐶𝐶𝐶4 . This 
exacerbates the effect of 
microbial activity, yielding 
the lowest performance 
among all cases. In 
contrast, adding microbial 
reactions to 𝑁𝑁2 as a cushion 
gas (Case 6) leads to 
slightly lower 𝐻𝐻2  pro-
duction than Case 5, 
reflecting losses due to 
microbial activity, but the 
impact is much less severe 
compared to 𝐶𝐶𝐶𝐶2 -related 
cases. The comparison 
between Case 5, 6 and Case 
1 further highlights the 
suitability of 𝑁𝑁2  as a 
cushion gas. The inset 

Table 6: Designed cases for sensitivity analysis 
Case Description 
Case 1 Includes heterogeneity, anisotropy, relative permeability and cycling 

schedule, without cushion gas injection or micro-bio reactions 
Case 2 Built on case 1 by adding microbial reaction (methanation) 
Case 3 Built on case 1 by adding 𝐶𝐶𝐶𝐶2 as cushion gas 
Case 4 Built on case 3 by adding microbial reaction (methanation) 
Case 5 Built on case 1 by adding 𝑁𝑁2 as cushion gas 
Case 6 Built on case 5 by adding microbial reaction (methanation) 

 

 

Figure 13: Results of the sensitivity analysis. 
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boxes in the figure emphasize critical intervals, magnifying the differences between cases, particularly 
highlighting the distinctive variation features of 𝐶𝐶𝐶𝐶2-related cases. Overall, the analysis demonstrates that 
𝑁𝑁2  is the optimal cushion gas for maximizing 𝐻𝐻2  recovery, while the combination of 𝐶𝐶𝐶𝐶2  and microbial 
activity poses significant challenges that must be addressed. 

To highlight the effects of microbial reaction and cushion gas types on 𝐻𝐻2 production, we replot Figure 13 
as Figure 14. This figure shows the differences in cumulative 𝐻𝐻2 production between Cases 2–6 and the base 
case (Case 1), evaluated at the beginning of each year from 2001 to 2008. The values represent the positive 
or negative impacts on 𝐻𝐻2  production. The green bars confirm that 𝐻𝐻2  production decreases when the 
microbial reaction is considered and exhibits an overall increasing trend. The orange bars further emphasize 
this finding, showing that adding 𝐶𝐶𝐶𝐶2 as a cushion gas intensifies the negative effect. On the other hand, 
the red and blue bars demonstrate that adding cushion gases can enhance 𝐻𝐻2 production. Specifically, when 
𝑁𝑁2 is used as a cushion gas, 𝐻𝐻2 production still increases even in the presence of microbial reaction (as 
depicted by the light blue bars). However, the magnitude of this increase is reduced compared to the 
scenario without microbial activity. 

3.1.2. A comprehensive case study 
Using 𝑁𝑁2 as an example of cushion gas, Figure 15 illustrates the cyclical evolution of the 𝑁𝑁2 mole fraction in 
the gas phase. Given that the density of 𝑁𝑁2 is higher than that of 𝐶𝐶𝐶𝐶4 and less than that of 𝐻𝐻2𝑂𝑂, the injected 
𝑁𝑁2 descends toward the interface of natural gas and water, as shown in Figure 15a-c. Due to the combined 
effects of buoyancy and diffusion, the 𝑁𝑁2 plume transitions from a near-symmetric shape around the well to 
an irregular shape, as observed in Figure 15a,b. During the following hydrogen injection and production, a 
significant amount of 𝑁𝑁2 is also produced by comparing Figure 15b and d. By comparing the Figure 15a 

 

Figure 14: Effects of the microbial reaction and cushion gas type. 
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and d, the affected area of the injected 𝑁𝑁2 progressively expands as it is displayed by the advancing 𝐻𝐻2 
plume. 

The cyclical evolution of gaseous 𝐻𝐻2 mole fraction in transverse and longitudinal directions is depicted in 
Figure 16a and b, respectively. This simulation provides insights into the transport behavior of gaseous 𝐻𝐻2 
during UHS operations. As mentioned above, five hydrogen injection, idle, and production cycles are 
simulated in this study. Figure 16a presents the results for the first, third, and fifth cycles of case 504 in the 
top reservoir layer. Each cycle in this figure includes the contours of gaseous 𝐻𝐻2 at key stages: injection start, 
injection end, idle end, and production end. Taking the first cycle as an example, the gaseous 𝐻𝐻2 plume 
expands in an irregular shape during the injection period. After a four-month idle, the plume area increases 
further. In the production period, the plume near the well takes on distinct shapes, leaving behind residual 
gaseous 𝐻𝐻2. The evolution of the 𝐻𝐻2 plume is mainly due to the heterogeneity of the reservoir. During the 
well idle period, the 𝐻𝐻2 plume undergoes significant evolution due to potential forces, such as diffusion, 
capillary pressure, and other mechanisms. By comparing the three different cycles, the footprint of the 𝐻𝐻2 
plume progressively enlarges with successive cycles, indicating the accumulation of trapped 𝐻𝐻2  in the 
reservoir. Notably, a significant amount of residual 𝐻𝐻2 remains after each cycle for this specific case. Figure 
16b illustrates the vertical evolution of gaseous 𝐻𝐻2 plume after the injection period. Due to gravity, the 𝐻𝐻2 
plume remains concentrated near the top of the reservoir. The mole fraction of gaseous 𝐻𝐻2 peaks near the 
wellbore and decreases horizontally with the distance away from the well. The affected area of the injected 
𝐻𝐻2 continues to expand with repeated injections, underscoring the cumulative nature of the storage process. 

 

 

 

 

Figure 15: Cyclical evolution of the mole fraction of 𝑁𝑁𝟐𝟐. 
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Figure 17 shows the cyclic evolution of gas components through two complementary plots: instantaneous 
rates (a) and cumulative quantities (b) from January 1, 2000 (i.e., the first timestep) to January 1, 2006 (i.e., 
the last timestep). Figure 17a presents the injection and production rates for various gases throughout the 
study period. The injection of 𝐻𝐻2 (green dashed line) demonstrates a distinct cyclic pattern, characterized by 
sharp rectangular pulses reaching approximately 4.0 × 107 moles/day. Similarly, 𝑁𝑁2 (blue dashed line) shows 
injection rates with less pronounced variations. The production rates of 𝐻𝐻2 (solid green line) exhibit a strong 
response to the injection cycles, with peak rates reaching approximately 2.0 × 107 moles/day following each 
injection event. With an increasing number of cycles, the 𝐻𝐻2 production rate rises due to reservoir pressure 
buildup. In contrast, the production rates of 𝑁𝑁2 , 𝐶𝐶𝐶𝐶4  and 𝐶𝐶𝐶𝐶2  are lower and consistently decrease 
throughout the cycles. Figure 17b illustrates the cumulative quantities of injected and produced gases. After 
5 years (2006), the cumulative injected 𝐻𝐻2  reaches approximately 1.9 × 1010  moles, following a stepwise 
increase aligned with the cyclic injection strategy. In comparison, the cumulative injection of 𝑁𝑁2 plateaus 
early at around 3.2 × 109 moles. The cumulative production profiles reveal that 𝐻𝐻2 (solid green line) shows 
the most substantial growth among the produced gases, reflecting its significant recovery over time. 𝑁𝑁2 and 
other produced gases exhibit more modest cumulative increases. Together, the figures highlight the 
effectiveness of a cyclic injection strategy, particularly for 𝐻𝐻2, in achieving distinct operational periods and 
demonstrate the system’s dynamic response in both short-term production rates and long-term material 
balance. 

 

 
a) 

 
b) 
Figure 16: Cyclical evolution of the mole fraction 𝐻𝐻2. a) Transverse section; b) longitudinal section. 
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a) 

 
b) 
Figure 17: Cyclical evolution of the mole fraction of the gas components. a) Curves of the gas injection 
and production rates; b) cumulative injection and production curves. 
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3.2. Optimization results 

3.2.1. Deterministic optimization for a specific permeability field 
To validate the optimization results obtained using surrogate models, we compare them with those derived 
from the simulator, both initialized with the same well controls for a specific permeability field. Figure 18 
shows the NPV values throughout the optimization process. The optimization result from the surrogate 
model-based method is labeled as NPV_optimal_DL (solid red line with triangles), while the optimization 
result based on the physical simulation-based method is denoted as NPV_optimal_sim (dotted blue line with 
diamonds). Additionally, NPVs are computed using the physical simulator by directly inputting the well 
control decision vectors obtained at each generation of the DL-based optimization. This result is referred to 
as NPV_calc_sim and illustrated as a dotted blue line with stars. Initially, NPV_optimal_sim demonstrates a 
steeper improvement in NPV, rapidly approaching near-optimal solutions within fewer generations. In 
contrast, NPV_optimal_DL exhibits a slower rate of improvement at early generations but ultimately 
converges to a slightly higher NPV. The trend of NPV calc sim initially follows NPV_optimal_DL, and 
subsequently aligns with NPV_optimal_sim. Eventually, the NPVs from all three methods converge to a 
similar level of objective function values, with final optimal NPVs of 1.43 × 108 $ , 1.32 × 108 $  and  
1.28 × 108 $, respectively. This comparison supports the validity and reliability of the surrogate model-based 
optimization strategy. 

Although the simulator-based optimization converges faster, it is also essential to compare the CPU time 
required for the optimization process. To search for the global optimum of NPV, the optimizer requires a 
large number of simulation evaluations using forward models. As described in Section 2.4.2, the population 
size is set to 60, meaning that each generation (or iteration) involves 60 simulation runs. With a maximum 
of 40 generations, this results in a total of 2400 simulation runs for the GA optimization process. The 
computational cost of forward simulations based on the physical reservoir model is quite high due to the 
complex physics involved. From our numerical experiments, the average CPU time for a single CMG 
simulation for one specific permeability field is approximately 210 seconds. Assuming an optimistic scenario 
where all 60 CMG simulations in each GA generation can run in parallel, the total time required per 
generation would still be 210 
seconds. However, this 
means a total of 140 
minutes, considering 40 
generations. Furthermore, 
this estimate is optimistic, as 
parallel computing for 
coupled simulation models 
is often constrained by 
practical memory limitations 
and license availability. In 
contrast, the surrogate 
model, which can be 
evaluated efficiently in a 
graphics processing unit 
(GPU) environment using 
batch processing, offers 
significant computational 
advantages. The total 
average CPU time for a 
single prediction of the four 

 

Figure 18: Iteration process of optimization. NPV: net present value; DL: 
deep learning; calc: calculated;  sim = simulation. 
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components with the surrogate model is only 4.3 × 10−2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Considering its low memory occupation 
and efficient batch processing, the surrogate model requires just 2.87 × 10−2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (1.722 seconds) for 
each optimization task (40 iterations). This makes the GA optimization using the surrogate model 
approximately 4878 times faster than the physics-based reservoir simulator. Consequently, the developed 
surrogate model provides a highly efficient and viable alternative for intensive optimization tasks, 
significantly reducing computational costs while maintaining accuracy. 

3.2.2. Stochastic optimization considering uncertainties in permeability fields 
In this section, the GA-based optimization framework is coupled with the surrogate models based on the 
CNN-BiLSTM-Attention architecture and generalized to account for the uncertainty in permeability fields for 
UHS operations in depleted natural gas reservoirs. We select 100 equally probable permeability fields to 
quantify the uncertainty of the 
geological model during the 
stochastic optimization. Figure 
19a illustrates the stochastic 
optimization process for these 
permeability fields. In this 
figure, the solid red line 
represents the evolution of 
optimal NPV over one 
generation, while the dashed 
blue line denotes the evolution 
of the average NPV across the 
same generation. As the 
number of generations increa-
ses, both the optimal and 
average values of the NPV 
converge and gradually sta-
bilize. The zoomed-in inset 
indicates that the optimal value 
remains unchanged, stopping 
optimization after reaching the 
maximum generations (i.e., 40). 
The final optimal NPV value is 
1.208 × 108 $ . Figure 19b 
depicts the well controls 
corresponding to the optimal 
NPV. The injection rates of 
cushion gas and hydrogen are 
8.368 × 104 𝑚𝑚3/𝑑𝑑𝑑𝑑𝑑𝑑  and 
5.259 × 105 𝑚𝑚3/𝑑𝑑𝑑𝑑𝑑𝑑 , respect-
tively. The BHPs decrease from 
2297.85 𝑘𝑘𝑘𝑘𝑘𝑘  to 2004.64 𝑘𝑘𝑘𝑘𝑘𝑘 . 
The well injection and 
production periods last for 4 
months and 6 months, 
respectively. 

 
a) 

 
b) 
Figure 19: Results of the stochastic optimization. a) Iteration process 
of optimization; b) the optimized well controls (cushion gas is 𝑁𝑁2). 
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Using the 100 equal-probable uncertain permeability fields, the optimized well controls shown in Figure 
19b are applied to generate 100 cases. These cases are then evaluated using the surrogate models to predict 
the cumulative production of the four components, as illustrated in Figure 20. The light blue lines represent 
individual predictions from the ensemble model, illustrating variability across 100 realizations of permeability 
fields. The red dashed lines denote the P50 (median) predictions, while the green and blue dashed lines 
correspond to the P10 (10th percentile) and P90 (90th percentile), respectively. Specifically, the problem of 
maximizing NPV is reformulated as minimizing-NPV for our actual optimization implementation. The results 
show the uncertainty range of predictions, with the spread between P10 and P90 providing a measure of 
confidence. 

  
a) b) 

  
c) d) 
Figure 20: Uncertainty analysis of the predicted cumulative production curves. a) 𝐻𝐻2; b) 𝑁𝑁2; c) 𝐶𝐶𝐶𝐶4; d) 
𝐶𝐶𝐶𝐶2. 
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The prediction of 𝐻𝐻2  exhibits minimal variability, with tightly clustered percentile bands indicating high 
prediction consistency. In contrast, 𝑁𝑁2 and 𝐶𝐶𝐶𝐶4 demonstrate wider uncertainty bands, suggesting greater 
variability across the ensemble. The production of 𝐶𝐶𝐶𝐶2 is the lowest among the four fluid components, with 
percentile bands reflecting its unique production dynamics. The step-like increments in production curves 
correspond to the designed well-cycling schedule. This visualization highlights the predictive uncertainty 
inherent in the ensemble model for different gases under identical production scenarios. 

4. CONCLUSION 
We develop an efficient approach for robust UHS optimization by integrating a CNN-BiLSTM- Attention 
surrogate model into a genetic algorithm optimizer tailored for depleted natural gas reservoirs. These 
surrogate models, trained on comprehensive reservoir simulation datasets, deliver fast and accurate 
predictions of UHS performance across various geological and operational conditions. The workflow 
introduced in this study enables rapid and precise evaluation of UHS performance, thereby facilitating the 
development of effective UHS projects in depleted natural gas reservoirs. The key conclusions are as follows: 

1. An advanced reservoir simulation model is developed to capture the complexities of a depleted natural 
gas reservoir, including heterogeneous permeability fields, relative permeability (drainage and 
hysteresis), capillary effects, compositional fluid flow, gas diffusion, bio-reactions (e.g., methanation), 
and gravity segregation. This model provided a rich dataset for training surrogate models. 
 

2. The CNN-BiLSTM-Attention surrogate model demonstrates excellent performance in time-series 
prediction tasks for UHS applications. The BiLSTM effectively captures temporal dependencies in both 
forward and backward directions, providing a comprehensive understanding of time-sequential data. 
The model shows high prediction accuracy overall, with an 𝑅𝑅2  score of at least 0.960 for all four 
components. However, the performance for 𝐶𝐶𝐶𝐶2 predictions is relatively lower, as evidenced by a lower 
𝑅𝑅2 value. This is mainly due to the higher variability in 𝐶𝐶𝐶𝐶2 production across different permeability 
realizations, which presents a greater challenge for accurate prediction. 
 
Despite this limitation, the model offers a significant advantage in computational efficiency, with an 
average CPU time per prediction of just 4.3 × 10−2 approximately 4878 times faster than traditional 
physics-based reservoir simulation models. This work also highlights the value of the developed 
optimization framework, including uncertainty quantification and the use of the genetic algorithm, which 
remains highly relevant for future applications. Further improvements to surrogate models, such as 
exploring alternative architectures, may enhance performance, particularly for gases like 𝐶𝐶𝐶𝐶2. 
 

3. A novel stochastic optimization workflow is developed by integrating the surrogate model into a genetic 
algorithm-based optimizer. The optimizer refines operational parameters to maximize the NPV, ensuring 
optimal performance of UHS operations. 
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