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ABSTRACT

Underground hydrogen storage (UHS) plays a vital role in global net-zero
energy systems, enabling the storage of excess renewable energy for future
use. However, physical reservoir model-based optimization for UHS system
design and operation is computationally expensive due to complex geological
properties and well-operational controls. This study developed a novel,
efficient framework for UHS stochastic optimization to address this
challenge, integrating advanced compositional reservoir simulation, accurate
surrogate modeling, and stochastic optimization techniques. First, a base
reservoir simulation model was developed to capture compositional fluid
flow, hydrogen methanation reactions, gravity segregation, hysteresis, and
capillary effects. To rapidly evaluate various well controls and reservoir
configurations, convolutional neural network (CNN)-bi-directional long short-
term memory (BiLSTM)-Attention models were trained as surrogate models
using a comprehensive dataset generated from reservoir simulations. The
CNN transforms three-dimensional (3D) geological fields into one-
dimensional (1D) vectors, effectively capturing spatial features. The BiLSTM
network learns the temporal evolution of the input features over time by
processing them in both forward and backward directions. Subsequently, the
attention mechanism enhances prediction accuracy by identifying and
emphasizing the most significant features at critical time steps. The well-
trained surrogate models were seamlessly integrated into the stochastic
optimization framework based on the genetic algorithm, aiming to maximize
the net present value (NPV) from UHS projects. The results demonstrate that
the surrogate model exhibits satisfactory performance in the context of
prediction accuracy, computational efficiency, and scalability. Notably, the
newly developed framework based on surrogate models achieves an
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approximate 4878-fold speedup compared to an approach relying solely on
reservoir simulation, while maintaining comparable accuracy. Overall, the
proposed framework offers a promising solution for UHS optimization,
providing valuable insights for the design and management of sustainable
energy infrastructure.

KEYWORDS
Underground hydrogen storage, Robust optimization, Surrogate modeling,
Deep learning

@@@@ This is an open access article published by InterPore under the terms of the Creative
BY NG ND Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND
@2025 The Authors 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).

1. INTRODUCTION

The vision of a low-carbon economy has driven the rapid development of renewable energy technologies,
primarily dominated by wind and solar energy. However, their short-term and rapid fluctuations challenge
the power grid's ability to respond effectively, thereby accelerating the development of various energy
storage technologies, as shown in Figure 1. Considering its long discharge time and high storage capacity,
Power-to-Gas (Hydrogen or Methane) becomes a viable solution for the long-term, large-scale storage of
electrical energy. In recent years, the growing global demand for renewable energy has sparked significant
interest in hydrogen as a clean and sustainable energy carrier (15, 39, 48).

Geological formations, such as depleted hydrocarbon reservoirs (DHR), salt caverns, and saline aquifers, are
promising options for seasonal and large-scale underground hydrogen storage (15). Among these, depleted
natural gas reservoirs (DGRs) present a viable solution for managing renewable power intermittency and
over-generation, ensuring a stable and scalable energy supply (23). The formation of DGRs has illustrated
their geological trapping ability on natural gas, sealed by impermeable overburden mudrock or salt layers
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Figure 1: Various energy storage technologies (see 44).
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and surrounded by bottom and edge water layers. Moreover, extensive operational expertise and long-term
production experience make these reservoirs well-characterized (42). This includes insights into reservoir
connectivity, caprock integrity, and related factors. Such understanding allows for accurate estimation of
reservoir storage capacity, reduces uncertainty, and mitigates leakage risks, thereby leading to significant
cost savings. As a result, DGRs offer lower capital and operating expenditures by reusing existing equipment
and wells after evaluation, ensuring the economic feasibility of underground hydrogen storage (UHS)
operations (3). While extensive experience exists in underground natural gas storage (UGS) (29), the
significant differences in the properties of hydrogen and methane present unique challenges when
attempting to directly apply UGS experience to UHS (46). Underground hydrogen storage operations in
DGRs are still in the research and exploration period. To gain deeper insights into hydrogen recovery in UHS
projects, reservoir simulation and optimization are essential to optimize decision parameters during
operations. In recent years, researchers have extensively explored UHS simulations using both commercial
and open-source simulators, such as CMG GEM (55), ECLIPS (22), DuMux* (22), COMSOL (47), and TOUGH2
(36). Key physics of focus include black-oil type simulations (24), compositional simulations with cushion gas
types (16, 27), cycling schedules (6, 38), caprock integrity (26, 37), microbial activity (14, 53), geochemical
reactions (18, 59), and rock-fluid behaviors (2, 19, 58). Although these studies have provided valuable insights
into various factors influencing UHS operations, they are often limited to specific scenarios and operational
conditions. To address this limitation, it is essential to develop a more comprehensive approach to UHS
optimization, exploring a broader and more generalized search space to identify optimal well controls. Such
an approach facilitates a deeper understanding of operational performance across a wider range of
conditions.

However, conducting physical reservoir model-based optimizations often requires extensive computational
resources, making the process time-consuming and resource-intensive. This limits their practicality for real-
time decision-making and UHS optimization. To overcome this challenge, researchers started to develop
surrogate models as efficient alternatives for various optimization problems (4, 45). These models
significantly accelerate the optimization process, mitigating the computational time constraints associated
with traditional methods (57). Despite this potential, the integration of deep learning (DL) based surrogate
models for UHS optimization remains underexplored, with only a few preliminary efforts reported in the
literature. For instance, Kanaani et al. (28) introduced a multi-objective co-optimization framework for UHS
and carbon dioxide storage using machine learning (ML) algorithms. They employed a multi-layer neural
network (MLNN) to predict multiple outputs simultaneously. Similarly, Sun et al. (51) proposed a framework
for UHS in saline aquifers, utilizing two Gaussian support vector machine (SVM) models as proxies to address
computational challenges in the optimization process. Further advancements include reduced-order models
(ROMs) based on deep neural networks (DNNs) developed to predict UHS performance in DGRs (40), and
to select optimal subsurface hydrogen storage sites in saline aquifers (7). Despite the growing interest in
surrogate model-based UHS optimization, significant research gaps remain. For instance, these optimization
studies ignore some critical physical processes in UHS, such as the impact of biochemically mediated
hydrogen loss (33, 50), which can significantly influence storage performance and recovery efficiency.
Additionally, stochastic optimization approaches, which quantify the effects of uncertainties in geological
parameters on project design and performance, have not yet been reported in the context of UHS
operations. Addressing these gaps is essential for developing more reliable and comprehensive stochastic
optimization frameworks for UHS applications.

This study proposes a novel stochastic optimization framework for UHS in DGRs, leveraging accurate and
efficient surrogate models that capture the dynamic behavior of UHS systems under various operating
conditions. We develop an advanced reservoir simulation model to account for compositional fluid flow, gas
component diffusion, bio-reaction (i.e., methanation), gravity segregation, relative permeability (drainage
and hysteresis), and capillary effects. Based on the comprehensive dataset generated from these simulations,
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we build the surrogate models for time-series sequence-to-sequence prediction problems based on a
convolutional neural network (CNN), a bi-directional long short-term memory (BiLSTM) network, and an
attention mechanism. In particular, BiLSTM is designed to capture dependencies in time-sequential data by
processing it in both forward and backward directions. This capability makes BiLSTMs particularly effective
for tasks where understanding both past (preceding) and future (succeeding) contexts is crucial. The CNN-
BiLSTM-Attention model is rigorously validated for accuracy, efficiency, and reliability. Subsequently, the
validated surrogate model is seamlessly integrated into a genetic algorithm (GA) based stochastic
optimization workflow, aiming at maximizing net present value (NPV).

The rest of the paper is structured as follows: Section 2 details the governing equations for two-phase
compositional fluid flow, the development of the physical reservoir simulation model, the construction and
performance evaluation of the surrogate models, and the stochastic optimization workflow. Section 3
provides an in-depth analysis of the reservoir simulation results and the stochastic optimization outcomes.
Section 4 summarizes the key findings of this study.

2. METHODOLOGY

This section describes the key steps involved in developing the stochastic optimization framework based on
the proposed surrogate model for the UHS system. First, the governing equations underlying the physical
processes are introduced, followed by a detailed description of the numerical simulation model and the
generation of a high-fidelity dataset. Next, the architecture and components of the proposed CNN-BiLSTM-
Attention model are presented. Finally, the formulation of the objective function and the optimization
algorithm are discussed, enabling the quantitative evaluation of NPV.

2.1. Governing equations

To capture the dynamic behavior of hydrogen injection into depleted natural gas reservoirs, as well as the
influence of cushion gas type, we consider a two-phase (gaseous and aqueous) and multi-component
(H,, N,, CH,, CO,) fluid flow in subsurface porous media. By incorporating the advection and molecular
diffusion mechanisms, the governing equation of mass conservation for each component is given as (Eq. 1):

] . . . . . (M

= (Z ¢ sapaxa> +7- ) (patiaXs = $S.DEV(peXY) = ¢
a a

where a and i denote phase and component, respectively; ¢ and Sa are porosity and saturation,

respectively; p, is mole density; X} is mole fraction of component i in phase a; u, is Darcy's velocity; D}, is

diffusion coefficient; g is source or sink term. Darcy's velocity is expressed as (Eq. 2):

_Kkyq )

Uy = (VDa — PagV2)

a

where K is the absolute permeability; k,, is the relative permeability of phase «; u, is phase viscosity; p,, is
phase pressure; g is gravitational acceleration; and z is depth.

Moreover, the capillary effect is integrated into the pressure term through the inclusion of capillary pressure,
as expressed by (Eq. 3):

Pc = Pnw — Pw (3)
where p,,, P, and p, are the pressures of the wetting phase (water), non-wetting phase (gas), and the
capillary pressure, respectively.
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The flash splitting calculation is utilized to calculate the mole fraction and density with the assumption of
local thermodynamic equilibrium. The equation governing phase equilibrium is the equivalence of the
fugacities of the component in both the gaseous and aqueous phases (Eq. 4):

fig = fiw 4)

where f;, and f;,, are fugacities of component i in the gaseous and aqueous phase, respectively.

In particular, this study incorporates the Soave-Redlich-Kwong (SRK) Equation of State (EOS) (49) to
effectively model the phase behavior of H, and other gas components (23), while Henry's law is applied to
estimate the solubility of these gas components in the aqueous phase, where f;,, is given as (32) (Eq. 5):

fiw = Xiw * Hi (5)
where x;,, is mole fraction of component i in aqueous phase; H; is Henry's law constant.

2.2. Reservoir simulation model

A comprehensive reservoir model is developed to facilitate multi-phase compositional simulations for UHS
operations in DGR by using the commercial reservoir simulator GEM? from the Computer Modeling Group
(CMG) (8). This model utilizes the finite difference method for spatial discretization, along with an adaptive
implicit scheme for simulating multi-phase multi-component flow with phase and bio-geochemical
equilibrium using a fully coupled approach. By discretizing and solving Equation 1 through the Newton-
Raphson method, the primary variables, such as pressure and number of moles for each component, can be
determined for each cell at each time step. Figure 2 depicts a three-dimensional (3D) anticline structure
employed as the representative mesh model for this research, characterized by dimensions of 1500 m in
length, 500 m in width, and 100 m in vertical thickness. The model is discretized using the corner-point grid
consisting of 12,500 cells (50 x 25 x 10) and spans a depth range from 800 to 1040 m. The reservoir is
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Figure 2: Mesh of the reservoir simulation model illustrating water saturation (S,,) during underground
hydrogen storage in the 3D anticline formation.

a https://www.cmgl.ca/solutions/software/gem/
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Figure 3: Properties of rock-fluid interaction. a) Relative
permeability curves; b) Capilary pressure.

which  exhibit hysteresis in relative
permeability but not in capillary pressure.
Similar modeling methods have been
adopted in previous UHS studies (e.g. 9). In
particular, the hysteresis behavior in this work is modeled using Land's equation (30), which has been
integrated in GEM. The detailed formulations are presented in Equation 6 to Equation 9.

The gas relative permeability along the drainage-to-imbibition scanning curve for a given gas saturation, S,
is expressed as (Eq. 6):

Krg(Sg) = K5 (Sor) (6)

where S is the free gas saturation, calculated as (Eq. 7):

1 1 2 4 (7)
Sgf = 2 (Sg - Sgrh) + 2 (Sg - Sgrh) + C (Sg - Sgrh)

where C is Land’s parameter; S;,, is the residual gas saturation of imbibition process. These parameters are
calculated as follows (Eq. 8, Eq. 9):
1 1
C = - 8)
Sgrmax ngax

¢ __ S )
I T 14 C xSy
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where Sy, is the maximum gas saturation in drainage process; Sjmax is the maximum residual gas
saturation; Sgrmax = 1 — Sweon + Soirg + Sweon @Nd Spirg are connate water saturation and irreducible oil
saturation.

During reservoir shut-in periods, it

Table 1: Other major properties of the reservoir simulation model. is assumed that water recharge
Parameter Value  Unit from the infinite edge aquifer
Pressure atz=900m 8920 kPa brings the reservoir to equilibrium
Temperature atz=900 m 55 °C prior to UHS operations. As
Gas-water contact (GWC) 850 m illustrated in Figure 2, the water
Initial global mole fraction of CH,  0.690 Dimensionless saturation (S,,) across the vertical
Initial global mole fraction of C,Hg 0.300 Dimensionless layers ranges from 0.337 to 1.0,
Initial global mole fraction of C0,  0.005 Dimensionless governed  primarily by  the

Initial global mole fraction of N, 0.005 Dimensionless

equilibrium between gravitational
Initial global mole fraction of H, 0.000 Dimensionless

and capillary forces. A transition
zone is assumed near the gas-water
contact (GWC). Under this equilibrium assumption, the initial reservoir pressure is modeled as hydrostatically
balanced, while the initial reservoir temperature is determined using the reservoir depth and the geothermal
gradient. Other major properties of the reservoir model used in this study can be found in Table 1.

The initial reservoir gas components consist of CH,, C,H,, CO, and N,, with C,Hg being a trace component
that exhibits relatively low solubility. The initial global mole fraction of the reservoir gas components are
detailed in Table 1. The ions present in the aqueous phase include Na*, H*, OH~, HCO3 and C0O%~, with
initial concentrations (in molarity) of 10", 107, 107, 107, and 1078, respectively. Additionally, molecular
diffusion of H,, N,, CH, and CO, is considered in this study, whereas the diffusion of the chemical ions is
neglected. The geochemical reactions involved in this study are (Eq. 10, Eq. 11, Eq. 12):

H,0 - H" + OH~ (10)
H* 4+ C0% - HCO; (11)
2H* + €05~ - CO, + H,0 (12)

To address microbial-induced H, loss (13), an Arrhenius-type reaction is incorporated to model
methanation (36) resulting from micro-bio reactions (Eq. 13):

CO, + 4H, - CH, + 2H,0 (13)

2.3. Surrogate modeling workflow

The stochastic optimization of the UHS system through numerical modeling is often computationally
intensive due to complex geological properties and dynamic well controls. To address this challenge, a deep
learning model can be developed as an efficient surrogate to significantly accelerate the optimization
process. These models are designed to map the high-dimensional decision parameters to the desired output
space, leveraging the universal approximation capability of neural networks. This study introduces a novel
surrogate model to predict the spatial evolution of the cumulative production of various gas components
during UHS operations. The workflow for constructing the surrogate model is as follows:

* Generating decision parameters using the Latin Hypercube Sampling (LHS) method;

«  Performing the numerical simulations in parallel and building a high-fidelity simulation dataset;
« Training and testing the surrogate models, including hyper-parameter optimization;

« Evaluating performance metrics to assess model accuracy and robustness.
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Figure 4: Data preparation for inputs (well controls) and outputs (cumulative production of gas
components). a) An example of the entire cycling schedule; b) cumulative production curves with N, as
the cushion gas.
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2.3.1. Problem setting

To recover the hydrogen from the depleted natural gas reservoir and account for the effect of cushion gas
type on hydrogen recovery, the cycling schedule in this study starts with six months of cushion gas injection
and six months of idle period, followed by five cycles of H, injection, idle and production spanning five
consecutive years, as shown in Figure 4a. Each month represents a single time step, resulting in a total of
72 time steps over six years. It is assumed that the injection rate of H, remains constant to simulate a steady
injection of H,. To ensure a higher recovery efficiency of H,, decreasing BHPs are assumed throughout the
entire cycle. In particular, a discretized, monotonically decreasing exponential decline curve (Eq. 14) is
introduced to generate five decreasing BHP values corresponding to the five operational cycles. To meet the
BHP constraint, the last value generated from the decline curve is set to be greater than the lower bound of
BHP, as shown in Equation 10.

y = coeff -e(*F®) (14)
This approach reduces the five BHP values to two parameters: coef f and k, where coef f follows the upper
bound of BHP, and k ranges between 0 and 1.

Consequently, there are a total of six well controls: the injection rate of cushion gas, the injection rate of H,,
coeff, k, the duration of well opening, and the duration of well shut-in.

The optimization in this study aims to maximize the expected NPV, where geological uncertainty is
introduced through variations in permeability across multiple realizations. A formal mathematical
description of the optimization problem is presented in Section 2.4.1.

2.3.2. Data preparation

Latin Hypercube Sampling (LHS) (17) is used to generate a comprehensive dataset of decision variables and
geological parameters, which follows a uniform distribution and covers a wide range of realistic scenarios
for practical UHS projects. The decision parameters include the injection rate of cushion gas and H,, bottom
hole pressure (BHP) of the production well, as well as the duration of well open-up and shut-in periods.
Since porosity can be estimated from permeability, the geological parameter subject to uncertainty is
permeability. The ranges for these parameters are shown in Table 2, with all parameters uniformly
distributed within these specified ranges.

Specifically, the 3D perme-

.. . . Table 2: Ranges of geological parameters and well controls.
ability field is constructed

L Parameter Lower Upper Unit
utilizing the Dykstra-Parsons bo‘:.lvnd bESnd !
method (25), with the Dykstra- Permeability 100 5000 mD
Parsor.1$ c<'3eff|c'|ent of 0.6. 'The Injection rate of cushiongas  1.0x 10° 1.0x10° m3/day
porosity field is then derived |pjection rate of H, 1.0x10°  1.0x10°  m?*/day
from the generated perme-  pppofthe productionwell  2.0x10°  8.0x10°  kPa
ability using the empirical Duration of injection 1 6 month
equation outlined in Equation Duration of production 1 6 month
15 (60), where ¢ is porosity:

¢ = 0.05 * log,,(K) — 0.03 (15)

After sampling and parameterizing these inputs shown in Figure 4a, we generate a comprehensive database
of approximately 1000 simulation cases by executing CMG in parallel. The outcomes of these simulations
include the cumulative production of four components: H,, N,, CH,, and CO,, as illustrated in Figure 4b.
These production curves are used as outputs for training the surrogate models.
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Figure 5: Architecture of convolutional neural network (CNN)-bi-directional long short-term memory
(BiLSTM)-Attention model.

2.3.3. Surrogate model development

Based on the Pytorch library (43), we develop four surrogate models with identical architectures to separately
predict the cumulative production of H,, N,, CH,, and CO,. As shown in Figure 5, the CNN-BiLSTM-
Attention model is selected as the deep learning architecture of the surrogate model in this research, which
combines the strengths of both CNN (31) and LSTM (21) to capture spatial-temporal dependencies and
patterns in UHS systems. As an encoder, CNN (a dashed-line box with light green blocks in Fig. 5) transforms
a 3D heterogeneous permeability field into one-dimensional (1D) vectors. These 1D vectors, later along with
other 1D well controls, serve as inputs for the BiLSTM-Attention network to predict the cumulative
production of each gas component. A BiLSTM network (light blue blocks in Fig. 5) is a type of recurrent
neural network (RNN) designed to capture the order and time dependencies of the input data by processing
it in both forward and backward directions. The attention mechanism (52) (a light orange block in Fig. 5) is
integrated to emphasize key time steps, thereby improving the prediction accuracy. Finally, the output of
the attention mechanism is then passed through a fully connected layer (dark gray block in Fig. 5) with a
Rectified Linear Unit (ReLU) activation function to produce the final feature. Once trained, the model serves
as an efficient surrogate for computationally expensive reservoir simulations, enabling rapid evaluation of
various operational strategies and reservoir configurations. The architecture of the surrogate model is
illustrated in Figure 5.

Figure 6 depicts the dimen-

sionality reduction process for Table 3: Summary of the 3D convolutional neural network block.
geological permeability using Layer Kernel size Output size

3D CNN. As described in Input / (n, 1, 50, 25, 10)
Section 2.2, the initial 3D per- Conv3D-1, 32 filters of size, stride1 10X 5 x 2 (n, 32,41,21,9)
meability field has dimensions MAXPool-1 2X2X2 (n, 32,20, 10, 4)
of 50 X 25 x 10 corresponding Conv3D-2, 16filters of size, stride1 5X9 X3 (n, 16,16, 2, 2)
to the depth, width, and MAXPool-2 2X2X%X2 (n,16,8,1,1)
thickness of the reservoir  Flatten / (n, 128)

model. The dimensionality FC-1 / (n, 64)

FC-2 / (n, 8)
Conv3D-1: 3D convolutional layer 1; Conv3D-2: 3D convolutional layer 2;
MAXPool-1: Layer 1 of max pooling; MAXPool-2: Layer 2 of max pooling; FC:
fully connected layer.

reduction is achieved through
two sequential layers, each
comprising a 3D CNN followed
by a MAXPooling operation.
The resulting tensor is then

InterPore Journal, Vol. 2, Issue 3, 2025 https://doi.org/10.69631/ipj.v2i3nr69


https://doi.org/10.69631/ipj.v2i3nr69

Han et al. Page 11 of 32

two fully connected (FC) layers, reducing
its dimensionality from [n, 1, 50, 25, 10]
to [n, 8]. Here, n denotes the batch size, I

. 4 N\ 4 2\
and 1 represents the channel size. The Conv3D-1 Conv3D-2
architecture details of the 3D CNN are (kernel: 10x5x2) (kernel: 5x9x3)
presented in Table 3. ~ g ~

(n, 1, 50, 25, 10)
I

passed through a flattening layer and [ Input ]

A

MAXPool-1 | [ MAXPool -2

(kernel: 2x2x2) ) L (kernel: 2x2x2)
[

Although sequence-to-sequence mod-
eling with recurrence theoretically does
not require explicit encoding of the time
series, incorporating positional em- v
beddings (11) can enhance model Flatten
performance. Specifically, embedding (n, 128)

the absolute positions of input features I

along the time axis equips the model { FC-1 1 ( FC-2 }

with a good understanding of the order.

This is particularly beneficial for (Dense) (De?se)
capturing the strong periodic patterns +

(e.g., seasonal behavior) inherent in the Output

UHS operations. Using a simple (n, 8)

sequential index (e.g., t =1, 2, .., 72) to
represent the position of a time step, | Figure 6: Workflow of convolutional neural network-based
however, poses a risk that the model may | encoder. FC: fully connected; Conv3D-1: 3D convolutional
misinterpret them as linear features, | layer 1; Conv3D-2: 3D convolutional layer 2; MAXPool-1: Layer
thereby failing to capture the cyclic or | 1 of max pooling; MAXPool-2: Layer 2 of max pooling; FC: fully
seasonal nature of time. To address this, | connected layer.

the time series are encoded using
learned embeddings in this study, which can more effectively capture their periodicity and complex patterns.

The well controls are preprocessed according to the cycling schedule, as illustrated in Figure 4a. To enhance
the weights of well controls within the overall input parameters during the training of the surrogate model,
these scalar values are converted into 1D vectors by repeating their values at each time step, matching the
dimension of the 1D latent representation of permeability after the 3D CNN block. The processed 1D well
controls are then concatenated with the 1D permeability latent and encoded time series along the feature
dimension, forming the inputs for the subsequent BiLSTM layers.

As illustrated in Figure 7a, the BiLSTM model consists of forward and backward layers. The forward LSTM
processes the input sequence from the beginning (i.e., cell 1 or t=1) to the end (i.e., cell N or t=T), capturing
how the UHS system evolves over time based on preceding conditions. Conversely, the backward LSTM
processes the input sequence from the end (i.e., cell N or t=T) to the beginning (i.e, cell 1 or t=1),
incorporating information from later states, such as cumulative production, to improve prediction accuracy.
At each timestep, the outputs from both directions are concatenated to provide a more comprehensive
prediction. By processing the time sequence in both directions, the BIiLSTM effectively captures the
dependencies in the data that span across timesteps, whether they occur earlier or later in the sequence.
During prediction, the model proceeds in a step-by-step (autoregressive) manner, where only past
information is available. Thus, the BILSTM is applied to observed sequences during training to extract
informative representations, while the final predictive model uses these learned features to generate
forecasts in a strictly unidirectional manner. In other words, the backward LSTM becomes naturally inactive
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Figure 7: Illustration of the bi-directional long short-term memory (BiLSTM) network according to (12,
35). a) BiLSTM structure; b) a typical cell unit of the LSTM.

during prediction due to the absence of future production data as input. This dual perspective enhances the
ability of the surrogate model to predict dynamic system behaviors. Figure 7b depicts the structure of a
typical LSTM cell unit, including an input gate (i;), forget gate (f,), output gate (o,), and cell state (c;). The
BiLSTM utilizes these gates to selectively memorize or forget past information while passing relevant details
through hidden states. The mathematical equations of these gate mechanisms and the cell state are
provided in Equations 16 to 19.

ip = o(W'lydy, {1 + b)) (16)
fe= a(wf[yg_l,xg] + bf) (17)
or = o(w°[yf 1, xf1+ b,) (18)
cff = foxcf + i x tanh(weyf s, xf] + b.) (19)

The output of LSTM (y{) can then be calculated by (Eq. 20):

yi = o, * tanh(cf) (20)
where t and d represent time step and direction of LSTM, respectively; x; represents the inputs; i;, f;, and o,
are the outputs of the input, forget, and output gates, respectively; y& ; and ¢ ;denote the layer (or
hidden) state and cell state at timestep t — 1; y? and ¢ represent the layer (or hidden) state and cell state
at time step t; the weights of the input, forget, and output gates, as well as the hidden state are denoted by
w;, Wy, W, and w, respectively; b;, by, b,, and b, are the corresponding biases. The activation functions are
represented by o and tanh, while * is the convolution operator.

A multi-head self-attention mechanism (10, 54) is then integrated after the BIiLSTM layers to enhance the
capability of the model to capture critical time steps and spatial relationships. It enables the model to

InterPore Journal, Vol. 2, Issue 3, 2025 https://doi.org/10.69631/ipj.v2i3nr69


https://doi.org/10.69631/ipj.v2i3nr69

Han et al. Page 13 of 32

Linear

o \
[ MatMul ] Concat
SoftMax
‘ L Scaled Dot-Product Attention .«%‘ h
L .
Scale
//’/ Ff Jas A
MatMul [ Linear ﬂ_] [’ _ Linear ﬂj [} Linear UJ
/// J J J
Q K Vv =
Q K \%

Figure 8: Mechanism of the multi-head attention (after 54).

dynamically weigh different parts of the input sequence when making a prediction, rather than treating all
past information equally.

Figure 8 illustrates the mechanism of multi-head attention. The output states from the BiLSTM layer are first
linearly projected into multiple sets of Query (Q), Key (K), and Value (V) vectors, corresponding to each
attention head. Each head independently computes attention scores by evaluating the similarity between
queries and keys, allowing it to capture different types of temporal dependencies or spatial correlations. The
resulting attention weights are then multiplied by the value vectors (see Eq. 21), highlighting the most
relevant features in the input sequence. By using multiple attention heads, the model can jointly attend to
information from different representation subspaces at different positions, which significantly enhances its
ability to learn complex and multi-scale interactions. The outputs of all attention heads are then
concatenated and passed through a linear transformation layer to form the final attended representation.
These attention-enhanced features are subsequently used for prediction, allowing the model to selectively
emphasize influential time steps (e.g., sharp changes in well controls or responses) and suppress less
informative ones. This integration improves both the interpretability and accuracy of the production
forecasts, particularly under highly dynamic well control scenarios.

21)

, (QK T)
Attention = softmax %4
Jax

where Q denotes the query vector, representing the information we are seeking within the sequence; K
stands for the key vector, which is used to compare against the query to assess the relevance of each part
of the sequence; and V is the value vector, which carries the actual information to be passed on after the
query and key are compared. The symbol T is the transpose operation, and \/d_k is the scaling factor, where
dy, is the dimensionality of the key vectors. The dot product of the query and key produces the raw scores,
and the softmax function converts these scores into probabilities.

To increase the stability of the model training process, we implement a strategy where the monthly
production rate is first predicted, and the cumulative production is then calculated by accumulating the
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Figure 9: Data distributions of cumulative productions of all gas components. a) H,; b) N,; ¢) CH,; d)
CO,.

predicted monthly values. This approach is particularly effective since the production can be zero during well
shut-in periods. Given that the output data spans several orders of magnitude (as shown in Fig. 9), a log
transformation is applied to all production curves of the four gas components. Subsequently, both the input
and output parameters are normalized using the min-max method to streamline the training and validation
process of the surrogate model. In particular, the comprehensive dataset with around 1000 cases is divided
into training, validation, and testing subsets in an 8:1:1 ratio. The CNN-BiLSTM-Attention model is trained
on an NVIDIA RTX A6000 using the AdamW optimizer (34), mean square error (MSE) loss, and RelLU
activation function.

The Python-based, open-source OPTUNA library (1) is used to tune the hyperparameters, as outlined in
Table 4. The optimized hidden size and number of attention heads for all models are 128 and 2, respectively.
Specifically, the objective function minimized by OPTUNA is the MSE of the predicted production rate on
the validation dataset during hyperparameter tuning.

InterPore Journal, Vol. 2, Issue 3, 2025 https://doi.org/10.69631/ipj.v2i3nr69


https://doi.org/10.69631/ipj.v2i3nr69

Han et al. Page 15 of 32

Table 4: Optimized hyperparameters for the four surrogate models.
Surrogate Batch Learningrate No. of Dropout Weight decay

model size BiLSTM size

layers
CH, 32 7.21 x 107* 3 0.1 7.32 x 107*
co, 8 9.83 x 1075 2 0.3 1.17 x 107*
H, 8 430 x 107* 2 0.4 1.45 x 107*
N, 8 290 x 107* 2 0.3 1.44 x 1074

BiLSTM: bi-directional long short-term memory.

2.3.4. Performance metrics

Two metrics are used to quantify the performance of the CNN-BIiLSTM-Attention surrogate model. Mean
Square Error is a commonly used evaluation metric. The MSE loss is calculated by Equation 22:

s - L ST (22)
N;yl Yi

where N is the number of samples; y; and J; are the ground truth and the surrogate model predictions,

respectively.

Additionally, R? is another commonly used metric and is defined by Equation 23:

N -
_ 1(J’i —-9)?

N
i =

(23)

R?=1-—t
1(3’i —¥i)?

2.3.5. Performance of surrogate model

Based on the comprehensive simulation dataset, we developed four surrogate models using CNN-BIiLSTM-
Attention network to separately predict the production of CH,, N,, H,, and CO,. The temporal evolution of
training and validation losses for four surrogate models is illustrated in Figure 10. All models demonstrate
consistent convergence in terms of MSE loss, initiating from approximately 10~" and descending to
10-3-107% The H, model exhibits mild oscillations during training while maintaining convergence, reaching
stability at approximately 80 epochs. The N, model displays a smoother convergence trajectory, requiring
an extended training duration of 130 epochs to achieve optimal performance. Notably, the CH, model
demonstrates the most stable convergence, with minimal divergence between training and validation losses,
completing training within 90 epochs. The €O, model takes the longest training period (180 epochs) and
shows moderate fluctuations in validation loss, though ultimately achieving stable convergence. The close
alignment between training and validation losses across all models indicates effective generalization without
significant overfitting, suggesting robust model architectures suitable for their respective prediction tasks.

Figure 11 presents parity plots comparing model predictions against ground truth values for the four
surrogate models. The H, model achieves exceptional performance with an R? value of 0.999,
demonstrating nearly perfect alignment along the parity line and minimal scatter in predictions. The N,
model yields an R? value of 0.972, exhibiting good correlation despite showing increased scatter at higher
values. The CH, model maintains strong predictive capability with an R? of 0.984, displaying consistent
performance across the prediction range with moderate scatter at elevated values. The €0, model, while
achieving a respectable R? of 0.960, shows the most pronounced deviation from the parity line, particularly
in the higher value regions, and exhibits distinct clustering patterns in its predictions. All models maintain
R? values above 0.960, indicating strong overall predictive capabilities, though with varying degrees of
accuracy and consistency.
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Figure 10: Training and validation loss of the four surrogate models. a) H,; b) N,; ¢) CH,; d) CO,.

The performances demonstrate that the CNN-BiLSTM-Attention architecture successfully captures the
underlying patterns in all four different produced gas components, with particularly outstanding
performance in predicting H, behavior. The varying levels of prediction accuracy across different fluid
components may inform future model refinements and applications in similar chemical systems.

2.4. Stochastic optimization

Optimization is commonly used to explore the search space of the simulated model, providing a deeper
understanding of the problem and identifying the optimal values for decision parameters. This process
involves addressing challenges, such as local optima, computational cost, and uncertainties (41). Stochastic
optimization (56) aims to find optimal solutions that exhibit minimal variability in response to probable
uncertainties in reservoir model parameters. Given the unavoidable uncertainties in geological properties
and varying operational variables, developing stochastic optimization is essential to quantitatively assess
these uncertainties and provide reliable estimates for their impact on UHS operations. In this context, the
aforementioned well-designed surrogate models are seamlessly integrated into the stochastic optimization
workflow, providing the effectiveness of the optimized well controls in a probabilistic form with variations in
model inputs. Genetic Algorithm (GA) is used for the UHS optimization problem due to its key advantages,
including its non-gradient descent formulation and its ability to effectively handle the complexities of real-
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Figure 11: Parity plot of test datasets in the four surrogate models. a) H,; b) N,; ¢) CH,; d) CO,.

world problems. The primary objective of this optimization process is to maximize the Net Present Value
(NPV), ensuring economically viable and reliable operational strategies under uncertain conditions.

2.4.1. Optimization problem of UHS
In this work, the optimization problem focuses on estimating the well controls that maximize the NPV of the
UHS in a depleted natural gas reservoir. The NPV is defined as (Eq. 24):

N¢ 1 Nprod (24)
](mi'u) = Z (1+—R)2 z (qltiz,j X PHz,sell + qgg,j X ch - q\fv,j X Pw)
t=1 j=1
Ninj

t
- Z (QHz’k X PHZ,buy) - ch,inj X ch + (QCOz,inj - QCOz,prod) X BCOZ
k=1

— CapEx — OpEx

where m; is the i-th realization of the reservoir model; u is an N, -dimensional column vector that contains
all the well controls at all wells during the UHS operations; t denotes the t-th timestep of the reservoir
simulation; N, is the total number of timesteps; R is the annual discount rate; N;,,; and N,,,.,4 represent the
total number of injection and production wells, respectively; the variables qf, ,roa: 4égproas G proa de€NOte
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the production rate of H,, cushion gas and water in CO,/day, respectively; qﬁ,zinj denotes the injection rate
of H, in m?®/day; Q¢ :,; is the total injection of cushion gas in m3; Q¢o, im; and Qfo,proa are the total
injection (as cushion gas) and production amount of CO, in m? respectively; the prices Py, .y and Py, pyy
represent the selling and buying price of H, in $/kg; P., is the cost of cushion gas in $/kg; P,, is the disposal
cost associated with water in $/kg; B¢y, is the bonus received for storing CO, in $/kg. The bonus is
calculated based on the effective accumulated storage of CO, in the subsurface reservoir, rather than being
accounted for on a daily basis. Additionally, CapEx and OpEx denote the capital and operating expenditure,
respectively, both measured in $. For the examples considered in this work, we neglect the disposal costs
associated with the separation of produced gas mixtures. However, we account for fluctuations in the market
price of H, while assuming a fixed price for the cushion gas. The cost of purchasing cushion gas is separated
from the daily calculations as the cushion gas is injected only once at the beginning of each cycling schedule
with a fixed amount, and no additional cushion gas is injected during the subsequent cycles. Moreover, the
water-related terms are set to zero, as no water is produced.

To determine the optimal well controls u for UHS operations, stochastic optimization is employed to
maximize the reservoir performance metric, while accounting for uncertainties in the geological parameters,
denoted by m;. Due to these uncertainties, an ensemble of stochastic forward models is evaluated, resulting
in a corresponding ensemble of J values. Consequently, the expected value of J is used as the objective
function in the stochastic optimization and is defined as (Eq. 25):

N,
o (25)
Je(w) = N—Wzlumi,u)

where Jz(u) denotes the approximated expectation of NPV across all geological realizations under well
control strategy u; N, is the number of geological model realizations used to characterize reservoir
uncertainty. In this study, 100 equally probable permeability fields were used to assess the impact of
geological uncertainty on NPV during the optimization process.

As introduced in Section 2.3.1, the well control strategy is parameterized by N, = 6 decision variables,
including the coefficient coeff and exponential index k of the decline curve used to constrain the BHPs.
These variables are subject to simple bound constraints, with their respective lower and upper bounds

denoted as u{®” and u;”. The stochastic optimization problem is therefore formulated as follows (Eq. 26):

minimize  -Jg(W)yegNu (26)
subjectto  g;(u) = BHPS! —BHP"Y >0, j=1,2,3,..,N,
u <w; <u?, i=1,23,.,N,

where BHPZ!! is the BHP during the final well-open period, as determined by the exponential decline of
BHP; BHP'"" is the lower bound of BHP, set to 2000 psia as shown in Table 2; g; denotes the j-th inequality
constraint, which is explicitly enforced during optimization to ensure that the BHP during the final well-open
period remains above 2000 psia.

2.4.2. Genetic algorithm

The optimization process integrates the objective function with a genetic algorithm (GA) (41), as illustrated
in Figure 12. The workflow begins with generating an initial population by sampling from the search space.
Each generation consists of 60 individuals, where each individual is a vector representing well controls across
72 time steps. The CNN-BiLSTM-Attention surrogate models are then utilized to compute the objective
function (F), serving as a computationally efficient surrogate for the numerical simulator. In parallel, a hard
constraint (G) is defined to ensure that the BHP during the final well-open period remains above its specified
lower bound. Both the objective function (F) and the constraint (G) are passed to the optimizer, which
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Figure 12: Workflow of the genetic algorithm-based optimization.

internally handles constraint feasibility during the selection process. After evaluating the current generation,
the GA checks the termination criteria. If these criteria are not satisfied, the algorithm applies a series of
evolutionary operators to generate the next generation. First, individuals are selected using the binary
tournament method combined with crowding distance sorting, ensuring diversity among the selected
solutions. Next, crossover is applied to generate offspring by recombining two parent solutions, typically
using single-point or double-point crossover methods. This operator primarily exploits the search space by
combining promising solutions. Mutation introduces small alterations to one or more genes in the offspring
to maintain genetic diversity and enhance global exploration. These steps produce a new generation, and
the process repeats until the termination condition is met, such as reaching the maximum number of
generations. The maximum generation size in this study is 40. This structured approach balances global and
local search, leveraging crossover for exploitation and mutation for exploration, ultimately converging
toward optimal solutions.

As discussed in Section 2.3.1, to satisfy the constraints on BHP and enhance hydrogen recovery efficiency, a
monotonically decreasing discrete exponential decline curve is introduced to generate five decreasing BHP
values corresponding to the five cycles. To meet the BHP constraint, the last value of the decline curve is set
to be greater than the lower bound of BHP, serving as a constraint within the optimization algorithm. This
approach reduces the five BHP values to two parameters: coeff and k.

The optimization algorithm is implemented based on the open-source library pymoo (5). The
hyperparameters of the optimization algorithm are detailed in Table 5.

Table 5: Hyperparameters of the genetic algorithm

Parameter Value
Generation size 40

Population size 60

Offspring size 60

Crossover method Stimulated binary
Crossover probability 0.9

Mutation method Polynomial
Mutation probability 0.1
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3. RESULTS AND ANALYSIS
3.1. Reservoir simulation results

3.1.1. Sensitivity analysis

In this section, we conduct a sensitivity analysis to evaluate the effects of microbial reaction and cushion gas
type on H, production during UHS operations. The six scenarios considered are summarized in Table 6.

Table 6: Designed cases for sensitivity analysis

Case Description

Case 1 Includes heterogeneity, anisotropy, relative permeability and cycling
schedule, without cushion gas injection or micro-bio reactions

Case 2 Built on case 1 by adding microbial reaction (methanation)

Case 3 Built on case 1 by adding CO, as cushion gas

Case 4 Built on case 3 by adding microbial reaction (methanation)

Case 5 Built on case 1 by adding N, as cushion gas

Case6 Built on case 5 by adding microbial reaction (methanation)

Figure 13 presents the results, illustrating cumulative H, production over time for the six cases. The figure
highlights the interplay of microbial activity and cushion gas selection. Case 1, serving as the base model,
exhibits a consistent stepwise increase in H, production and acts as the benchmark. Introducing microbial
reaction (Case 2) results in a slight reduction of H, production, approximately 1.7% at the final timestep. This
decrease is attributed to the methanation reaction, where H, is consumed by the microbes to form CH,.
Cases 3 and 5 explore the use of C0, and N, as cushion gases, respectively, without considering microbial
reactions. Initially, H, production in Case 3 is lower than in Case 5, but this trend reverses after 2005. This
behavior is likely due to the higher solubility of CO, than that of N,, as CO, dissolves in the aqueous phase
initially and remains in the gaseous state once saturation is reached. Another possible reason is that N, is
much more compressible than C0,. Cases 4 and 6 incorporate microbial reactions into Cases 3 and 5,
respectively. The combination of C0O, and microbial reactions (Case 4) results in a substantial decrease in H,
production, as CO, reacts

with H, to form CH,. This 2 256409

exacerbates the effect of —— Case 1

microbial activity, yielding o 2809 —— Case2

the lowest performance [ —— Case 3

among all cases. In i 16et0g| ~ -~ Case4
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cushion gas. The inset | Figure 13: Results of the sensitivity analysis.

InterPore Journal, Vol. 2, Issue 3, 2025 https://doi.org/10.69631/ipj.v2i3nr69


https://doi.org/10.69631/ipj.v2i3nr69

Han et al. Page 21 of 32

boxes in the figure emphasize critical intervals, magnifying the differences between cases, particularly
highlighting the distinctive variation features of CO,-related cases. Overall, the analysis demonstrates that
N, is the optimal cushion gas for maximizing H, recovery, while the combination of CO, and microbial
activity poses significant challenges that must be addressed.

To highlight the effects of microbial reaction and cushion gas types on H, production, we replot Figure 13
as Figure 14. This figure shows the differences in cumulative H, production between Cases 2-6 and the base
case (Case 1), evaluated at the beginning of each year from 2001 to 2008. The values represent the positive
or negative impacts on H, production. The green bars confirm that H, production decreases when the
microbial reaction is considered and exhibits an overall increasing trend. The orange bars further emphasize
this finding, showing that adding €0, as a cushion gas intensifies the negative effect. On the other hand,
the red and blue bars demonstrate that adding cushion gases can enhance H, production. Specifically, when
N, is used as a cushion gas, H, production still increases even in the presence of microbial reaction (as
depicted by the light blue bars). However, the magnitude of this increase is reduced compared to the
scenario without microbial activity.
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Figure 14: Effects of the microbial reaction and cushion gas type.

3.1.2. Acomprehensive case study

Using N, as an example of cushion gas, Figure 15 illustrates the cyclical evolution of the N, mole fraction in
the gas phase. Given that the density of N, is higher than that of CH, and less than that of H,0, the injected
N, descends toward the interface of natural gas and water, as shown in Figure 15a-c. Due to the combined
effects of buoyancy and diffusion, the N, plume transitions from a near-symmetric shape around the well to
an irregular shape, as observed in Figure 15a,b. During the following hydrogen injection and production, a
significant amount of N, is also produced by comparing Figure 15b and d. By comparing the Figure 15a
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Figure 15: Cyclical evolution of the mole fraction of N,.

and d, the affected area of the injected N, progressively expands as it is displayed by the advancing H,
plume.

The cyclical evolution of gaseous H, mole fraction in transverse and longitudinal directions is depicted in
Figure 16a and b, respectively. This simulation provides insights into the transport behavior of gaseous H,
during UHS operations. As mentioned above, five hydrogen injection, idle, and production cycles are
simulated in this study. Figure 16a presents the results for the first, third, and fifth cycles of case 504 in the
top reservoir layer. Each cycle in this figure includes the contours of gaseous H, at key stages: injection start,
injection end, idle end, and production end. Taking the first cycle as an example, the gaseous H, plume
expands in an irregular shape during the injection period. After a four-month idle, the plume area increases
further. In the production period, the plume near the well takes on distinct shapes, leaving behind residual
gaseous H,. The evolution of the H, plume is mainly due to the heterogeneity of the reservoir. During the
well idle period, the H, plume undergoes significant evolution due to potential forces, such as diffusion,
capillary pressure, and other mechanisms. By comparing the three different cycles, the footprint of the H,
plume progressively enlarges with successive cycles, indicating the accumulation of trapped H, in the
reservoir. Notably, a significant amount of residual H, remains after each cycle for this specific case. Figure
16b illustrates the vertical evolution of gaseous H, plume after the injection period. Due to gravity, the H,
plume remains concentrated near the top of the reservoir. The mole fraction of gaseous H, peaks near the
wellbore and decreases horizontally with the distance away from the well. The affected area of the injected
H, continues to expand with repeated injections, underscoring the cumulative nature of the storage process.
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Figure 16: Cyclical evolution of the mole fraction H,. a) Transverse section; b) longitudinal section.

Figure 17 shows the cyclic evolution of gas components through two complementary plots: instantaneous
rates (a) and cumulative quantities (b) from January 1, 2000 (i.e., the first timestep) to January 1, 2006 (i.e.,
the last timestep). Figure 17a presents the injection and production rates for various gases throughout the
study period. The injection of H, (green dashed line) demonstrates a distinct cyclic pattern, characterized by
sharp rectangular pulses reaching approximately 4.0 x 107 moles/day. Similarly, N, (blue dashed line) shows
injection rates with less pronounced variations. The production rates of H, (solid green line) exhibit a strong
response to the injection cycles, with peak rates reaching approximately 2.0 x 107 moles/day following each
injection event. With an increasing number of cycles, the H, production rate rises due to reservoir pressure
buildup. In contrast, the production rates of N,, CH, and CO, are lower and consistently decrease
throughout the cycles. Figure 17b illustrates the cumulative quantities of injected and produced gases. After
5 years (2006), the cumulative injected H, reaches approximately 1.9 x 101° moles, following a stepwise
increase aligned with the cyclic injection strategy. In comparison, the cumulative injection of N, plateaus
early at around 3.2 x 10° moles. The cumulative production profiles reveal that H, (solid green line) shows
the most substantial growth among the produced gases, reflecting its significant recovery over time. N, and
other produced gases exhibit more modest cumulative increases. Together, the figures highlight the
effectiveness of a cyclic injection strategy, particularly for H,, in achieving distinct operational periods and
demonstrate the system'’s dynamic response in both short-term production rates and long-term material
balance.
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Figure 17: Cyclical evolution of the mole fraction of the gas components. a) Curves of the gas injection
and production rates; b) cumulative injection and production curves.

InterPore Journal, Vol. 2, Issue 3, 2025 https://doi.org/10.69631/ipj.v2i3nr69


https://doi.org/10.69631/ipj.v2i3nr69

Han et al. Page 25 of 32

3.2. Optimization results

3.2.1. Deterministic optimization for a specific permeability field

To validate the optimization results obtained using surrogate models, we compare them with those derived
from the simulator, both initialized with the same well controls for a specific permeability field. Figure 18
shows the NPV values throughout the optimization process. The optimization result from the surrogate
model-based method is labeled as NPV_optimal_DL (solid red line with triangles), while the optimization
result based on the physical simulation-based method is denoted as NPV_optimal_sim (dotted blue line with
diamonds). Additionally, NPVs are computed using the physical simulator by directly inputting the well
control decision vectors obtained at each generation of the DL-based optimization. This result is referred to
as NPV_calc_sim and illustrated as a dotted blue line with stars. Initially, NPV_optimal_sim demonstrates a
steeper improvement in NPV, rapidly approaching near-optimal solutions within fewer generations. In
contrast, NPV_optimal_DL exhibits a slower rate of improvement at early generations but ultimately
converges to a slightly higher NPV. The trend of NPV calc sim initially follows NPV_optimal_DL, and
subsequently aligns with NPV_optimal_sim. Eventually, the NPVs from all three methods converge to a
similar level of objective function values, with final optimal NPVs of 1.43 x 10®$, 1.32 x 108 $ and
1.28 x 108 $, respectively. This comparison supports the validity and reliability of the surrogate model-based
optimization strategy.

Although the simulator-based optimization converges faster, it is also essential to compare the CPU time
required for the optimization process. To search for the global optimum of NPV, the optimizer requires a
large number of simulation evaluations using forward models. As described in Section 2.4.2, the population
size is set to 60, meaning that each generation (or iteration) involves 60 simulation runs. With a maximum
of 40 generations, this results in a total of 2400 simulation runs for the GA optimization process. The
computational cost of forward simulations based on the physical reservoir model is quite high due to the
complex physics involved. From our numerical experiments, the average CPU time for a single CMG
simulation for one specific permeability field is approximately 210 seconds. Assuming an optimistic scenario
where all 60 CMG simulations in each GA generation can run in parallel, the total time required per
generation would still be 210

seconds. However, this «» 160

means a total of 140 IS

minutes, considering 40 5 140 » P Pt
generations.  Furthermore, 120 TR AR I IR R IR IR IHHAIHINHK

this estimate is optimistic, as
parallel  computing  for 100
coupled simulation models

&
is often constrained by | = gg
practical memory limitations %
and license availability. In 60
contrast, the surrogate
model, which can be 40 ——NPV_optimal_DL
evaluated efficiently in a e
graphics processin}gl; unit 20 ::::EEz_Zaplt;m:ilr;SIm
(GPU) environment using 0 = =
batch processing, offers 0 10 20 30 40
significant ~ computational Generations

advantages.  The  total
average CPU time for a Figure 18: Iteration process of optimization. NPV: net present value; DL:

single prediction of the four deep learning; calc: calculated; sim =simulation.
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components with the surrogate model is only 4.3 x 1072 seconds. Considering its low memory occupation
and efficient batch processing, the surrogate model requires just 2.87 x 1072 minutes (1.722 seconds) for
each optimization task (40 iterations). This makes the GA optimization using the surrogate model
approximately 4878 times faster than the physics-based reservoir simulator. Consequently, the developed
surrogate model provides a highly efficient and viable alternative for intensive optimization tasks,
significantly reducing computational costs while maintaining accuracy.

3.2.2. Stochastic optimization considering uncertainties in permeability fields

In this section, the GA-based optimization framework is coupled with the surrogate models based on the
CNN-BILSTM-Attention architecture and generalized to account for the uncertainty in permeability fields for
UHS operations in depleted natural gas reservoirs. We select 100 equally probable permeability fields to

quantify the uncertainty of the
geological model during the 2160
stochastic optimization. Figure 2 140 —NPV_optimal
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Using the 100 equal-probable uncertain permeability fields, the optimized well controls shown in Figure
19b are applied to generate 100 cases. These cases are then evaluated using the surrogate models to predict
the cumulative production of the four components, as illustrated in Figure 20. The light blue lines represent
individual predictions from the ensemble model, illustrating variability across 100 realizations of permeability
fields. The red dashed lines denote the P50 (median) predictions, while the green and blue dashed lines
correspond to the P10 (10th percentile) and P90 (90t percentile), respectively. Specifically, the problem of
maximizing NPV is reformulated as minimizing-NPV for our actual optimization implementation. The results
show the uncertainty range of predictions, with the spread between P10 and P90 providing a measure of

confidence.
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Figure 20: Uncertainty analysis of the predicted cumulative production curves. a) H,; b) N,; ¢) CH,; d)
CO,.
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The prediction of H, exhibits minimal variability, with tightly clustered percentile bands indicating high
prediction consistency. In contrast, N, and CH, demonstrate wider uncertainty bands, suggesting greater
variability across the ensemble. The production of CO, is the lowest among the four fluid components, with
percentile bands reflecting its unique production dynamics. The step-like increments in production curves
correspond to the designed well-cycling schedule. This visualization highlights the predictive uncertainty
inherent in the ensemble model for different gases under identical production scenarios.

4. CONCLUSION

We develop an efficient approach for robust UHS optimization by integrating a CNN-BiLSTM- Attention
surrogate model into a genetic algorithm optimizer tailored for depleted natural gas reservoirs. These
surrogate models, trained on comprehensive reservoir simulation datasets, deliver fast and accurate
predictions of UHS performance across various geological and operational conditions. The workflow
introduced in this study enables rapid and precise evaluation of UHS performance, thereby facilitating the
development of effective UHS projects in depleted natural gas reservoirs. The key conclusions are as follows:

1. An advanced reservoir simulation model is developed to capture the complexities of a depleted natural
gas reservoir, including heterogeneous permeability fields, relative permeability (drainage and
hysteresis), capillary effects, compositional fluid flow, gas diffusion, bio-reactions (e.g., methanation),
and gravity segregation. This model provided a rich dataset for training surrogate models.

2. The CNN-BIiLSTM-Attention surrogate model demonstrates excellent performance in time-series
prediction tasks for UHS applications. The BiLSTM effectively captures temporal dependencies in both
forward and backward directions, providing a comprehensive understanding of time-sequential data.
The model shows high prediction accuracy overall, with an R, score of at least 0.960 for all four
components. However, the performance for CO, predictions is relatively lower, as evidenced by a lower
R, value. This is mainly due to the higher variability in CO, production across different permeability
realizations, which presents a greater challenge for accurate prediction.

Despite this limitation, the model offers a significant advantage in computational efficiency, with an
average CPU time per prediction of just 4.3 x 1072 approximately 4878 times faster than traditional
physics-based reservoir simulation models. This work also highlights the value of the developed
optimization framework, including uncertainty quantification and the use of the genetic algorithm, which
remains highly relevant for future applications. Further improvements to surrogate models, such as
exploring alternative architectures, may enhance performance, particularly for gases like CO,.

3. Anovel stochastic optimization workflow is developed by integrating the surrogate model into a genetic
algorithm-based optimizer. The optimizer refines operational parameters to maximize the NPV, ensuring
optimal performance of UHS operations.
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