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APPENDIX A: EOS OF PARTIALLY-MISCIBLE MCMP FLUIDS 
The volumetric behavior of the multi-component multiphase (MCMP) fluids system can be described by 
the cubic equation of state (EOS). The Peng-Robinson EOS (PR-EOS) is selected in this present work, 
which is more rigorous and accurate in modeling the hydrocarbon fluid pressure thermodynamic 
behaviors. For multi-component (MC) hydrocarbons, the PR-EOS, which is an analytical expression that 
provides functional relationships PVT of a fluid system, is proposed as (6) (Eq. A1):  

𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸(𝜌𝜌�) =
𝜌𝜌�𝑅𝑅𝑅𝑅

1 − 𝑏𝑏𝑚𝑚𝜌𝜌�
−

[𝑎𝑎𝑎𝑎(𝑅𝑅)]𝑚𝑚𝜌𝜌�2

1 + 2𝑏𝑏𝑚𝑚𝜌𝜌� − 𝑏𝑏𝑚𝑚2 𝜌𝜌�2
 

(A1) 

where 𝜌𝜌� is the molar density of the phase, which can be mathematically related to the mass density of 
the phase 𝜌𝜌 as (Eq. A2): 

𝜌𝜌� =
𝜌𝜌

∑ 𝑐𝑐𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖
 (A2) 

𝑐𝑐𝑖𝑖 and 𝑀𝑀𝑖𝑖 are the molar fraction and molar mass of the 𝑖𝑖th component in the mixture, respectively. 𝑅𝑅 is 
the universal gas constant, 𝑅𝑅 is the temperature, and [𝑎𝑎𝑎𝑎(𝑅𝑅)]𝑚𝑚 and 𝑏𝑏𝑚𝑚 are the attraction and co-volume 
coefficients of the mixture, which are defined as (6) (Eq. A3):  

[𝑎𝑎α(𝑅𝑅)]𝑚𝑚 = ��𝑐𝑐𝑖𝑖
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𝑗𝑗
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where 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 are the local molar fraction of 𝑖𝑖th component and 𝑗𝑗th component in the mixture. 𝜁𝜁𝑖𝑖𝑗𝑗 is the 
binary interaction coefficient between the 𝑖𝑖th and 𝑗𝑗th components. For hydrocarbon mixtures, since all 
components are essentially miscible in each phase, 𝜁𝜁𝑖𝑖𝑗𝑗 = 0  (1). 𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑖𝑖(𝑅𝑅), 𝑏𝑏𝑖𝑖 are  (Eq. A4):  

𝑎𝑎𝑖𝑖 = Ω𝑎𝑎𝑖𝑖𝑜𝑜
𝑅𝑅2𝑅𝑅𝑐𝑐𝑖𝑖2

𝑝𝑝𝑐𝑐𝑖𝑖
 𝑏𝑏𝑖𝑖 = Ω𝑏𝑏𝑖𝑖𝑜𝑜

𝑅𝑅𝑅𝑅𝑐𝑐𝑖𝑖
𝑝𝑝𝑐𝑐𝑖𝑖

 (A4) 

α𝑖𝑖(𝑅𝑅) = �1 + 𝑚𝑚𝑖𝑖�1 − �𝑅𝑅/𝑅𝑅𝑐𝑐𝑖𝑖��
2
  

where 𝑅𝑅𝑐𝑐𝑖𝑖 , 𝑝𝑝𝑐𝑐𝑖𝑖 are the critical temperature, and critical pressure of the ith component, Ω𝑎𝑎𝑖𝑖𝑜𝑜 = 0.45724 and 
Ω𝑏𝑏𝑖𝑖𝑜𝑜 = 0.0778 are constants (4, 5). Finally, 𝑚𝑚𝑖𝑖 is a function of the Pitzer’s acentric factor 𝜔𝜔𝑖𝑖 (6) (Eq. A5):  

𝑚𝑚𝑖𝑖 = �
0.374640 + 1.54226𝜔𝜔𝑖𝑖 − 0.26992𝜔𝜔𝑖𝑖

2 ,                                         𝜔𝜔𝑖𝑖 ≤ 0.49
0.379642 + 1.48503𝜔𝜔𝑖𝑖 − 0.164423𝜔𝜔𝑖𝑖

2 + 0.016666𝜔𝜔𝑖𝑖
3  , 𝜔𝜔𝑖𝑖 > 0.49

 (A5) 

Through defining a compressibility factor 𝑍𝑍 = 𝑝𝑝/(𝜌𝜌�𝑅𝑅𝑅𝑅), the PR-EOS in Equation A1 can be recast as a 
cubic equation (Eq. A6): 

𝑍𝑍3 + (𝐵𝐵 − 1)𝑍𝑍2 + (𝐴𝐴 − 2𝐵𝐵2 − 2𝐵𝐵)𝑍𝑍 − (𝐴𝐴𝐵𝐵 − 𝐵𝐵2 − 𝐵𝐵) = 0 (A6) 

where (Eq. A7): 

𝐴𝐴 = ��𝑐𝑐𝑖𝑖

𝑛𝑛𝑐𝑐

𝑗𝑗

𝑛𝑛𝑐𝑐

𝑖𝑖

𝑐𝑐𝑗𝑗𝐴𝐴𝑖𝑖𝑗𝑗  𝐴𝐴𝑖𝑖𝑗𝑗 = �𝐴𝐴𝑖𝑖𝐴𝐴𝑗𝑗�1 − ζ𝑖𝑖𝑗𝑗� (A7) 

𝐴𝐴𝑖𝑖 = Ω𝑎𝑎𝑖𝑖𝑜𝑜
𝑝𝑝𝑟𝑟𝑖𝑖
𝑅𝑅𝑟𝑟𝑖𝑖

�1 + 𝑚𝑚𝑖𝑖�1 −�𝑅𝑅𝑟𝑟𝑖𝑖��
2
 

𝐵𝐵 = �𝑐𝑐𝑖𝑖

𝑖𝑖

𝑖𝑖

𝐵𝐵𝑖𝑖 
𝐵𝐵𝑖𝑖 = Ω𝑏𝑏𝑖𝑖𝑜𝑜

𝑝𝑝𝑟𝑟𝑖𝑖
𝑅𝑅𝑟𝑟𝑖𝑖

  

𝑝𝑝𝑟𝑟𝑖𝑖  =  𝑝𝑝/𝑝𝑝𝑐𝑐𝑖𝑖 , 𝑅𝑅𝑟𝑟𝑖𝑖  =  𝑅𝑅/𝑅𝑅𝑐𝑐𝑖𝑖  are the reduced pressure and reduced temperature of the 𝑖𝑖th  component, 
respectively. This form is used more frequently in lattice Boltzmann (LB) implementation. For example, 
when imposing the pressure boundary condition, with a given pressure 𝑝𝑝∗ , a constant prevailing 
temperature 𝑅𝑅, and a known molar composition 𝑐𝑐𝑖𝑖 , the compressibility factor 𝑍𝑍 can be solved from the 
cubic (Eq. A6). The results could end in either one real root or as many as three real roots of 𝑍𝑍. In the 
latter case, the middle root is always discarded, and the remaining root that results in the smaller Gibbs 
energy is picked.  The Gibbs energy difference 𝑑𝑑𝑑𝑑 between the largest root 𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚  and the smallest root 
𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 is computed as (Eq. A8). 

𝑑𝑑𝑑𝑑
𝑅𝑅𝑅𝑅

= (𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛) + ln �
𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 − 𝐵𝐵
𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚 − 𝐵𝐵

� +
𝐴𝐴

2√2𝐵𝐵
ln �

�𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 + �1 + √2�𝐵𝐵��𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚 + �1 − √2�𝐵𝐵�
�𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 + �1 − √2�𝐵𝐵��𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚 + �1 + √2�𝐵𝐵�

� 
(A8) 

When 𝑑𝑑𝑑𝑑 >  0, 𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚 is selected, otherwise 𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 is selected. With the selected compressibility factor, the 
molar density of the phase 𝜌𝜌� , the phase mass density 𝜌𝜌 and the cell-volume densities �̅�𝜌𝑖𝑖  of the 𝑖𝑖th 
component are related as shown in Equation A9.  

𝜌𝜌� =
𝑝𝑝

𝑍𝑍𝑅𝑅𝑅𝑅
 𝜌𝜌 = 𝜌𝜌��𝑐𝑐𝑖𝑖

𝑖𝑖

𝑀𝑀𝑖𝑖  �̅�𝜌𝑖𝑖 = 𝜌𝜌
𝑐𝑐𝑖𝑖𝑀𝑀𝑖𝑖

∑ 𝑐𝑐𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖
 (A9) 

 

APPENDIX B: DERIVATION OF THE FORCE-SPLIT COEFFICIENT AT 
SINGLE-PHASE CONDITION 
To derive the force-split coefficient at single-phase condition, recall the hydrostatic balance for each 
component, such that (Eq. B1): 

−∇(𝑐𝑐𝑠𝑠2�̅�𝜌𝑖𝑖) + 𝜅𝜅𝑖𝑖𝑭𝑭 = 0 (B1) 
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Therefore, the ratio of force split coefficients 𝜅𝜅𝑖𝑖 in Equation B1 is equal to the ratio of derivatives of cell-
volume densities (Eq. B2): 

𝜅𝜅1
𝜅𝜅2

=
∂�̅�𝜌1
∂�̅�𝜌2

 (B2) 

For the single-phase region, compositions 𝑐𝑐1 and 𝑐𝑐2 can be assumed to be uniform. The fractions in 
Equation 8 (main text) are therefore constant for both components. Accordingly, when taking derivatives 
in Equation B2, the ratio between 𝜅𝜅1 and 𝜅𝜅2 is calculated as follows (Eq. B3):  

𝜅𝜅1
𝜅𝜅2

=
𝑐𝑐1𝑀𝑀1

𝑐𝑐2𝑀𝑀2
 (B3) 

combined with the last equation in Equation 6 (original text), which means (Eq. B4): 

𝜅𝜅1 =
𝑐𝑐1𝑀𝑀1

𝑐𝑐1𝑀𝑀1 + 𝑐𝑐2𝑀𝑀2
 𝜅𝜅2 =

𝑐𝑐2𝑀𝑀2

𝑐𝑐1𝑀𝑀1 + 𝑐𝑐2𝑀𝑀2
 (B4) 

This is essentially equivalent to 𝛾𝛾1 = 𝛾𝛾2 = 1, which means the components have the same tendency to 
escape from the current phase and to form the other phase. The definition of 𝜅𝜅𝑖𝑖 takes similar forms 
under single-phase and multiphase conditions. Grouping these two scenarios, the generic piecewise 
definition of 𝛾𝛾𝑖𝑖 can then be obtained, such that (Eq. B5): 

𝛾𝛾1 = �
1                                 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠(𝜌𝜌�𝜄𝜄 𝜌𝜌�𝜐𝜐⁄ ) − 𝑠𝑠𝑠𝑠𝐾𝐾1
𝑠𝑠𝑠𝑠(𝜌𝜌�𝜄𝜄 𝜌𝜌�𝜐𝜐⁄ ) − 𝑠𝑠𝑠𝑠𝐾𝐾2

  𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑠𝑠  
(B5) 

𝛾𝛾2 = 1  

  

APPENDIX C: THE SCALING SYSTEM OF MCMP AT THE PORE SCALE 
VIA LBM 
To establish thermodynamically correct scales in LB simulations, it essentially involves determining five 
fundamental independent units. These units correspond to length (𝐿𝐿), time (𝑚𝑚), temperature (𝑅𝑅), mass 
(𝑀𝑀), and amount of substance (𝑁𝑁). To ensure each unit has its unique scale between LB and physical, five 
independent physical variables in the LB simulation need to be selected for scaling. The following five 
variables can be considered: three parameters in the EOS, which are the attraction parameter 𝑎𝑎𝑎𝑎, co-
volume parameter 𝑏𝑏 (defined in Eq. A4), and universal gas constant 𝑅𝑅; the molecular weight 𝑀𝑀𝑀𝑀 of the 
component; and the interfacial tension (IFT, or 𝜎𝜎) (3). Li & Luo (2) proposed a scheme to tune the IFT 
value in LB units, and this scheme can be therefore leveraged to control the scaling system (7).  

Five aforementioned independent physical variables, if represented by the combinations of 𝜒𝜒𝑀𝑀 , 𝜒𝜒𝐿𝐿 , 𝜒𝜒𝑡𝑡 , 
𝜒𝜒𝑁𝑁 , 𝜒𝜒𝑇𝑇 are formulated as Equation C1:  

𝜒𝜒𝑎𝑎 = (𝜒𝜒𝑀𝑀)(𝜒𝜒𝐿𝐿)5(𝜒𝜒𝑡𝑡)−2(𝜒𝜒𝑁𝑁)−2 (C1) 
𝜒𝜒𝑏𝑏 = (𝜒𝜒𝐿𝐿)3(𝜒𝜒𝑁𝑁)−1  

𝜒𝜒𝑅𝑅 = (𝜒𝜒𝑀𝑀)(𝜒𝜒𝐿𝐿)2(𝜒𝜒𝑡𝑡)−2(𝜒𝜒𝑇𝑇)−1(𝜒𝜒𝑁𝑁)−1  

𝜒𝜒𝑀𝑀𝑀𝑀 = (𝜒𝜒𝑀𝑀)(𝜒𝜒𝑁𝑁)−1  

𝜒𝜒𝜎𝜎 = (𝜒𝜒𝑀𝑀)(𝜒𝜒𝑡𝑡)−2  

In the scales, 𝜒𝜒 is defined as the ration between variables in physical units and in LB units. Therefore, for 
the random variable ξ, the scale is defined as such (Eq. C2): 

𝜒𝜒𝜉𝜉 =
ξ𝑝𝑝ℎ𝑦𝑦
ξ𝐿𝐿𝐿𝐿

 (C2) 
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Equation C3 can be obtained by rewriting Equation C1. The process essentially involves solving a system 
of equations of five unknowns. The scaling system is calculated as: 

𝜒𝜒𝐿𝐿 = (𝜒𝜒𝜎𝜎)(𝜒𝜒𝑏𝑏)2(𝜒𝜒𝑎𝑎)−1 (C3) 

𝜒𝜒𝑡𝑡 = (𝜒𝜒𝑀𝑀𝑀𝑀)
1
2(𝜒𝜒σ)(𝜒𝜒𝑏𝑏)

5
2(𝜒𝜒𝑎𝑎)−

3
2  

𝜒𝜒𝑀𝑀 = (𝜒𝜒𝑀𝑀𝑀𝑀)(𝜒𝜒𝜎𝜎)3(𝜒𝜒𝑏𝑏)5(𝜒𝜒𝑎𝑎)−3  

𝜒𝜒𝑁𝑁 = (𝜒𝜒σ)3(𝜒𝜒𝑏𝑏)5(𝜒𝜒𝑎𝑎)−3  

𝜒𝜒𝑇𝑇 = (𝜒𝜒𝑅𝑅)−1(𝜒𝜒𝑏𝑏)−1(𝜒𝜒𝑎𝑎)  

REFERENCES 
1. Danesh, A (Ed). (1998). PVT and Phase Behaviour of Petroleum Reservoir Fluids (1st Ed., Vol. 47). Elsevier. 

Hardback ISBN: 9780444821966; eBook ISBN: 9780080540054.  
2. Li, Q., & Luo, K. H. (2013). Achieving tunable surface tension in the pseudopotential lattice Boltzmann 

modeling of multiphase flows. Physical Review E, 88(5), 053307. https://doi.org/10.1103/PhysRevE.88.053307 
3. Li, Q., Yu, Y., & Luo, K. H. (2019). Implementation of contact angles in pseudopotential lattice Boltzmann 

simulations with curved boundaries. Physical Review E, 100(5), 053313. 
https://doi.org/10.1103/PhysRevE.100.053313  

4. McCain Jr, W. D. (2017). Properties of Petroleum Fluids (3rd Ed). PennWell Corporation. ISBN-10:  
9781593703738, ISBN-13:  978-1593703738. 

5. Pedersen, K. S., Christensen, P. L., Shaikh, J. A., & Christensen, P. L. (2006). Phase Behavior of Petroleum 
Reservoir Fluids (1st Ed). CRC press. eBook ISBN: 9780429120855. https://doi.org/10.1201/9781420018257  

6. Peng, D.-Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering 
Chemistry Fundamentals, 15(1), 59–64. https://doi.org/10.1021/i160057a011  

7. Wang, Z. W. (2022). Pore-Scale Study on Partially Miscible Multiphase Transport in Hydrocarbon Reservoirs 
Using the Lattice Boltzmann Method  [Ph.D. Thesis, The Pennsylvania State University]. 
https://etda.libraries.psu.edu/catalog/22154zxw161  

https://doi.org/10.69631/ipj.v1i1nr7
https://doi.org/10.1103/PhysRevE.88.053307
https://doi.org/10.1103/PhysRevE.100.053313
https://doi.org/10.1201/9781420018257
https://doi.org/10.1021/i160057a011
https://etda.libraries.psu.edu/catalog/22154zxw161

	Appendix A: EOS of partially-miscible MCMP fluids
	Appendix B: Derivation of the force-split coefficient at single-phase condition
	Appendix C: The scaling system of MCMP at the pore scale via LBM
	References

