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ABSTRACT 
Mineral precipitation reactions in porous media can change the porosity and 
permeability of the rock formations. Predicting the rate of reaction and 
impacts on formation properties is challenging due to a lack of understanding 
of mineral precipitation reaction kinetics and mechanisms in porous media. 
This is furthermore challenging due to the highly heterogeneous nature of 
natural porous media. Here, we aim to develop a novel experimental 
platform leveraging 3D printing to facilitate replicable mineral precipitation 
experiments in controlled, heterogenous porous media systems. This 
requires fundamental understanding of the kinetics of mineral precipitation 
on the polymer materials used to fabricate the 3D printed porous media. In 
this work, we manipulate (via sulfonation) material surfaces (high impact 
polystyrene, HIPS) to promote calcite precipitation from supersaturated 
solutions to inform the design of synthetic subsurface systems. Calcite 
precipitation on HIPS films of varied surface sulfonation is confirmed using X-
ray diffraction (XRD) analysis and weight-based precipitation experiments 
where increased precipitation with increased surface functionalization and 
solution saturation index are observed. This approach is then applied to 3D-
printed porous media to enhance understanding of geochemical reactions, 
specifically calcite precipitation. Three dimensional images of Bentheimer 
Sandstone are used as the basis for 3D-printed porous media samples. Two 
3D-printed samples were functionalized with acid to activate the surface and 
promote mineral precipitation. Functionalized and unfunctionalized samples 
underwent calcite precipitation core flooding experiments with 
oversaturated calcite solutions for 96 hours. Three dimensional X-ray micro-
CT imaging revealed calcite growth in functionalized samples, with a calcite 
volume fraction of approximately 2.6% and a substantial reduction in 
porosity. Unfunctionalized samples exhibited diminished calcite precipitation 
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and porosity changes. These findings demonstrate that reactive 3D-printed 
porous media can provide a versatile geochemical modeling and 
experimentation platform. Functionalizing 3D printed samples enhances 
reactivity, allowing investigations of mineral precipitation processes in 
complex porous media. This research highlights the potential for further 
exploration of 3D-printed media in various geochemical contexts. 
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Mineral precipitation, Surface functionalization, 3D printing, Porosity-
permeability evolution, X-ray CT imaging 
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1. INTRODUCTION 
Mineral precipitation and dissolution reactions are fundamental processes in various environmental 
systems, affecting natural weathering, surface and subsurface contamination, CO2 sequestration, 
radioactive waste disposal, hydrothermal circulation, and biomineralization (8, 14, 20, 22, 30, 32, 74, 77, 
79). These reactions alter the rock matrix by dissolving or precipitating minerals at fluid-mineral 
interfaces, which changes the pore shape, size, connectivity, and surface roughness (2, 7, 16, 76, 77, 101). 
Over time, such changes may significantly impact rock porosity and permeability, but understanding 
porosity-permeability evolution remains challenging due to the inherent heterogeneity of natural 
samples and the difficulty in replicating experiments (37, 99).  

Heterogeneity in porous media, including variations in physical structure, mineral composition, and 
chemical reactivity, can control fluid flow, mixing, residence times, and the rate and extent of mineral 
reactions (3, 12, 61, 67, 73, 96). These pore-scale variations create preferential flow pathways, uneven 
reaction fronts, and spatially localized zones of high or low geochemical activity, which eventually could 
complicate the accurate prediction of reactive transport in the subsurface. Numerous studies have also 
shown the importance of these heterogeneities in the development of anomalous dispersion behavior 
and non-Fickian solute transport (13, 18, 23, 33, 34, 62, 63, 83). These studies revealed how pore-scale 
variability influences macroscopic transport by providing important theoretical and computational 
insights into dispersion mechanisms, flow channeling, and deviations from classical Fickian transport. 
Despite these advances, many of these approaches are limited by the assumptions of simple or constant 
pore geometries, the absence of reaction-induced physical changes, and the lack of controlled 
experimental frameworks for validation. These limitations emphasize the need for alternative 
experimental systems to facilitate systematic investigations into the complex coupling between 
heterogeneity, fluid flow, and geochemical reactions. 

Additionally, the interplay between fluid flow and reactions controls mineral reactions, where reactions 
occur within individual pores and the larger pore network and associated impacts on permeability 
evolution (64, 69, 77). Ideally, one could conduct replicate experiments on the same sample to address 
the unpredictability in reaction rates and permeability evolution caused by natural heterogeneities. 
However, this is generally not feasible as reactions result in irreversible changes to the sample, and even 
replicate experiments on samples from the same location have shown inconsistent results in determining 
porosity-permeability evolution (52). 

Furthermore, pore network modeling (PNM) is a well-established and computationally efficient method 
for studying fluid flow, solute transport, geochemical reactions, and structural evolution in porous media. 
Pore network modeling allows researchers to evaluate how pore-scale heterogeneity, such as pore and 
throat size variations, connectivity, and mineral distribution, affects permeability evolution and localized 
reactions under different flow and geochemical conditions. Numerous studies have utilized PNM to 
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provide valuable insights into how spatially variable dissolution and precipitation influence the 
relationship between porosity and permeability (17, 84, 89). These studies have shown that changes in 
permeability are significantly influenced by the location and geometry of minerals rather than porosity 
alone.  

The use of PNM has been helpful in capturing phenomena such as wormhole formation and channel 
competition (47, 82), as well as understanding the impact of pore-throat distributions, coordination 
number and anisotropy on flow localization and reactivity (10, 36, 97). Additionally, PNM provides 
insights into scaling behaviors and the upscaling of geochemical reaction and adsorption rates from 
pore to continuum scales (53, 58, 59, 80), and it has helped quantify discrepancies between laboratory 
and field-scale predictions under transport-limited conditions (70). Recent advancements have 
incorporated pre-asymptotic shear dispersion effects into PNM frameworks, enhancing the simulation 
of non-Fickian transport and local mass transfer (34, 63).  

Pore network modeling is limited by assuming idealized geometries (e.g., spherical pores, cylindrical 
throats), constant topology, and the assumption of uniformly reactive or inert pores (10, 59, 76, 97). 
These limitations restrict its ability to resolve pore-scale structural evolution and reaction heterogeneity. 
In contrast, high-resolution direct numerical simulations (DNS), such as Lattice Boltzmann or finite 
volume methods, can capture realistic geometries derived from micro-computed tomography (CT) 
imaging (93). However, they are computationally intensive and often confined to small domains. 
Considering all these limitations, 3D printing presents a promising experimental complement to PNM, 
allowing the design of porous media with modifying heterogeneity and reactive properties. This 
approach can help validate model predictions and investigate dynamic flow-reaction coupling under 
well-controlled conditions. 

Three dimensional printing shows significant potential for replicating the heterogeneous properties of 
natural rock samples, advancing the study of porous media. Researchers have utilized 3D printing to 
explore the hydraulic properties of soils, analyze changes in flow characteristics due to evolving pore 
networks, and investigate rock mechanics (55, 57, 78, 85, 86, 88). Song et al (88) assessed the ability of 
3D printing to replicate the intrinsic bulk properties of natural porous rocks, while Kong et al (55) 
demonstrated microstructural similarity between 3D-printed and natural Berea sandstone. Recent 
advancements include Oskolkov et al (78), who used fused filament fabrication (FFF) 3D printing with 
CT-guided designs to replicate sandstone cores, precisely tuning porosity and permeability through 
material flow and overlap adjustments. Similarly, Lee et al (57) employed material jetting 3D printing to 
fabricate high-resolution sandstone micromodels, validated using 3D X-ray micro-CT and microfluidic 
studies, confirming their accuracy and reproducibility. These studies collectively emphasize the potential 
of 3D-printed rocks to replicate natural samples, facilitating a deeper understanding of rock properties 
and the influence of pore structure variations on macroscopic behavior. 

Despite its potential, the use of 3D printing to understand mineral reactions and porosity-permeability 
evolution in porous media remains limited. The goal is for 3D printers to quickly produce multiple 
replicate samples with identical pore structures based on 3D X-ray micro-CT images of real porous media 
samples. This would offer significant advantages over natural geological samples, which cannot be 
identical even if they come from homogeneous formations. It should be noted, however, that porous 
media structures often must be substantially magnified so that features are larger than the 3D printer 
resolution.  

Geochemically reactive fabricated porous media have been explored to understand geochemical 
reactions in natural rocks (9, 85). Such studies considered the addition of a reactive mineral phase, calcite, 
to the filament or printing resin, but faced challenges in controlling the distribution of reactive particles 
within printed structures (9, 85). This study aimed to understand the feasibility of creating reactive 3D-
printed porous media via surface functionalization, and subsequently, using these samples to enhance 
understanding of mineral reaction rates in porous media. Towards this goal, the viability of surface 
functionalization of polymer films to enhance calcite precipitation was first explored, and the developed 
surface functionalization method was then applied to complex 3D printed porous media samples.  
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The mineral investigated in this study was calcium carbonate (CaCO3), one of the most abundant minerals 
on earth. It is commonly found in limestones and sandstones and occurs widely across the globe (6). 
Understanding calcium carbonate precipitation and calcium carbonate mineral growth kinetics is critical 
for predicting mineral weathering and geologic CO2 sequestration (15, 35, 46, 102). Calcium carbonate 
is also used in a wide range of additional applications where understanding calcite precipitation kinetics 
is necessary. These include its role as the primary component in cement production, as an abrasive in 
dental and surface polishing products, in agricultural soil treatments to enhance crop yields, and in 
calcium looping processes for CO2 sequestration. There have been recent developments in using 
polymers as biomaterial substitutes for joint implants, where understanding calcium carbonate 
deposition is vital for decreasing the chance of implant failures and other difficulties (27, 48, 95, 98). A 
recent report also found that the precipitation of calcium carbonate on microplastics when water is 
boiled can remove microplastics from drinking water due to the subsequent sedimentation of the 
precipitates (100).  

Crystal growth mechanisms are classified into two types, homogenous crystallization and heterogenous 
crystallization. Heterogenous nucleation is the process of growing a crystal on the surface of another 
solid (heterogenous nucleation crystallization), whereas homogenous nucleation crystallization takes 
place in the absence of a second phase (1, 11, 19, 60, 65). Crystallization typically takes place either due 
to supersaturation or supercooling of the liquid phase. Supersaturation is a state where the amount of 
dissolved solute (e.g., CaCO3) in a solvent (e.g., water) is greater than the equilibrium solubility. This 
makes the system thermodynamically out of equilibrium, and the system tries to return to a stable 
thermodynamic state by nucleating and growing crystals of the dissolved solute.  

Calcite growth and precipitation equilibria is described as (5, 38, 49, 50) (Eq. 1): 

  CO3
2- + Ca2+ ↔ CaCO3 (s)        (1) 

where calcium cations (Ca2+) and carbonate anions (CO3
2-) are present in the solution and combine to 

form solid calcium carbonate or calcite. Prior investigations of calcite crystallization have found that 
calcite nucleation and growth kinetics depend on the saturation index of the solution, pressure, nature 
of the reservoir rock, and flow conditions (4, 5, 29, 40, 49, 51, 66, 68, 71, 90).  

At constant temperature, the saturation index (SI) plays a key role in crystal nucleation as given by 
Equation 2:  

  𝑆𝑆𝑆𝑆 = 𝛼𝛼𝐶𝐶𝐶𝐶
2+𝛼𝛼𝐶𝐶𝐶𝐶3

2−

𝐾𝐾𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3
˚  

(2) 

where 𝛼𝛼𝑖𝑖
𝑗𝑗 is the activity of the ion 𝑖𝑖 with charge 𝑗𝑗, and 𝐾𝐾𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3

˚  is the thermodynamic solubility product 

of the crystal at ambient conditions (50). Nucleation rate is dependent on the saturation index, where 
for an increasing saturation index, the rate of nuclei formation is higher than the rate of crystal growth, 
resulting in the formation of elongated crystals. Whereas for a lower saturation index, the interactions 
between the solution ions and the solvent (usually water) are reduced, resulting in the formation of platy 
crystals (26). For systems where there is flow, a higher volumetric flow rate of the supersaturated solution 
results in slower crystal formation (lower crystal yield over time) (87, 92). The above-mentioned factors 
of saturation index, pressure exerted by the formed crystal, and volumetric flow rates all play key roles 
in the precipitation behavior, and are thereby important factors to investigate in order to better 
understand and/or predict precipitation behavior in both simple single mineral systems and more 
complex natural systems. 

To precipitate and grow minerals on polymeric films, the energy barrier for mineral crystal growth must 
be overcome. In many cases, this requires surface modification to manipulate the surface energy 
associated with the polymeric surface (usually increase the surface energy). Prior studies of mineral 
growth on polymeric surfaces have included surface functionalization of poly(lactide-co-glycolide) 
towards mimicking the growth of bonelike mineral for understanding biomineralization (72) and apatite-
like mineral growth on high molecular weight polyethylene and polyurethane (PU) foams where the 
surface was modified by a calcium based precursor (81). A kinetic analysis of how polymers with different 
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functional groups influence the inhibition of mineral nucleation in gypsum was performed and reveals 
that polymers significantly affect the rate of gypsum crystal formation by altering crystallization process 
based on different functional groups in the polymers. They also observed that the role of polymers in 
the nucleation process, as interpreted through classical nucleation theory, is inconsistent and fails to 
provide a physically meaningful explanation for the observed effects (28, 75).  While there is existing 
literature on the induced crystallization kinetics caused by the addition of polymers, studies focusing on 
using polymer surfaces and modified polymeric surfaces to promote crystal growth are limited and 
require further investigation. 

Here, the impact of surface functionalization via sulfonation on the growth of calcite on high impact 
polystyrene (HIPS) films was investigated. High impact polystyrene is a common commercial 
thermoplastic polymer material that is easy to process and offers good mechanical properties (rigid, 
durable, stable environmentally, etc.) that can be readily sulfonated with sulfuric acid at ambient 
temperatures (42, 43, 94). In this work, HIPS films were sulfonated to varying degrees and used in flow-
through calcite precipitation experiments where precipitation kinetics were discerned by measuring the 
amount of calcite precipitation onto the films over time. In addition to the degree of sulfonation, the 
impact of saturation index was investigated for four different saturation indexes, towards better 
understanding of mineral growth kinetics over surface functionalized HIPS. Next, porous media samples 
based on 3D X-ray CT images of Bentheimer sandstone were printed, functionalized with acid, and used 
in calcite precipitation core flood experiments. Three dimensional X-ray micro-CT images of reacted 
samples were collected and used to observe calcite precipitation and discern changes in porosity. Results 
from functionalized and unfunctionalized core samples were compared to evaluate the potential of 
surface functionalization to support fabrication of 3D printed reactive porous media. 

2. MATERIALS AND METHODS 
2.1. Materials   
High impact polystyrene (HIPS) pellets and polylactic acid (PLA) pelletsa were used to prepare films for 
precipitation experiments. Sulfuric acid (98% pure)b was used for the functionalization of the HIPS films. 
Sodium bicarbonate and calcium chloride saltsc were used for preparing the solutions. Chloroform 
(CHCl3)c was used for the NMR spectroscopy. Peristaltic pumpsd were used for the flow experiments. UV 
Tough Resine was used for 3D printing the custom experimental flow chamber. A Bentheimer sandstone 
from the Valaginian formation was selected for printing 3D porous media. The sample was a ½ inch 
diameter x 1 inch length core sample predominantly composed of quartz with porosity and permeability 
of 23 to 26 % and 1500 to 3500 mDf, respectively. 

2.2. 2D HIPS film surface functionalization 
The HIPS pellets were fabricated into thin 2D films of uniform shape by compression molding on a 
heated pressg at 180°C. After cooling, the films were immersed in individual sulfuric acid baths (98% pure 
sulfuric acid diluted to 75% acid concentration with distilled water) at room temperature for varying time 
intervals. The films were removed and washed with deionized (DI) water and analyzed to confirm the 
presence of sulfuric acid groups using both Fourier-transform infrared (FTIR) spectroscopy and Proton 
nuclear magnetic resonance (¹H-NMR) spectroscopy. The HIPS films that were not exposed to the sulfuric 
acid bath were effectively a control for the impact of surface functionalization on subsequent 

 
a 3DXTech: https://www.3dxtech.com/  
b Fisher Scientific: https://www.thermofisher.com/  
c VWR BDH Chemicals: https://www.vwr.com/bdh  
d INTLLAB BT100: https://www.carousell.sg/p/intllab-bt100-variable-speed-peristaltic-pump-with-pump-head-
yz15-flow-rate-0-06-360-ml-min-0-1-100rpm-with-2-meter-17-tubing-c0035-1236302983/   
e Anycubic: https://www.anycubic.com/  
f Kocurek Industries INC.: https://kocurekindustries.com/  
g Carver (Model 4389): https://carverpress.com/presses-accessories/bench-top-manual-press/heated/  
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precipitation experiments. The film surface was also examined before and after acid treatment by optical 
microscopy for surface degradation, Figure S1 in the Supplementary Material (available online). 

2.3. Functionalized 2D film characterization 
Fourier-transform infrared spectroscopy was performed on the pressed films (both control HIPS film and 
functionalized HIPS films) using a spectrometerh equipped with attenuated total reflection (ATR) by 
placing the films in contact with the ATR assembly and acquiring the spectra. Proton nuclear magnetic 
resonance spectroscopy was performed by first dissolving the untreated HIPS films (control sample) and 
acid-treated HIPS samples in chloroform in separate NMR tubes, and once fully dissolved, 1H-NMR 
spectra were collected on a Benchtop Spectrophotometeri. A sessile drop goniometer was utilized to 
measure the contact angle of the functionalized 2D HIPS films in triplicate. Each film was subjected to a 
standard 10-second automated contact angle goniometer experiment, which determined the mean 
contact angle with the averages and standard deviation reported. 

2.4. 2D Film Flow Precipitation Experiments 
A custom-made flow chamber was designed, and 3D printed to perform the flow experiments, schematic 
and photo are shown in Figure S2 (Supplementary Material, available online). The functionalized 2D 
HIPS films were placed inside the 3D printed flow chamber. Freshly prepared calcite stock solutions were 
mixed in equal volumes producing the desired saturation index of 3.15. The solution was then passed 
through the 2D film holder with the functionalized films using a peristaltic pumpd at a set flowrate and 
the effluent was collected at the other side. A series of flow precipitation experiments were then 
conducted on surface functionalized films. A saturation index (SI) of 3.15 was chosen. The flow rate was 
kept constant and as low as possible in our system (0.9 ± 0.1 ml/min for all experiments) to reduce 
impacts on the precipitated surface crystals due to bulk fluid flowing. The experimental design was 
conducted for non-functionalized films, as well as films functionalized for 24, 48, 96, 168, and 240 hours 
with precipitation times of 1, 2, 4, 8, and 24 hours. All experiments were performed in at least triplicate 
on independently prepared films. The weight of each 2D film was noted prior to the experiment. After 
precipitation, the 2D films were carefully patted dry, and their final weight was measured. The difference 
between the initial and the final weights represents the amount of mineral precipitation on the 
functionalized film. 

2.5. X-ray Diffraction Analysis 
X-ray diffraction (XRD) was performed on the precipitated mineral phase using a Proto manufacturing 
AXRD powder diffraction system with Cu Kα radiation (λ = 1.5418 Å). The precipitated calcite on the film 
surface was scraped off the film and loaded into the XRD as a powder. Additional XRD analyses, provided 
in the Supplementary Material (available online), were performed on both control and functionalized 
HIPS films by mounting the films  directly onto the XRD stage. Samples were scanned at a rate of 2.4°/min 
(Δ2θ = 0.0139°, with a dwell time = 5 s) from 15° to 40 ° (2θ) at 30 mA and 40 kV. 

2.6. Fabrication of 3D Printed Porous Media 
A 3D X-ray micro-CT image of the Bentheimer sample was acquired using a 3D X-ray microscopej at 
10.76 microns (Fig. 1). Three dimensional X-ray micro-CT images were manually segmented into grain 
and pore voxels using ImageJk. Prior to segmentation, images were filtered by the non-local means 
denoising filter (24) from the plugin in ImageJ to remove noise. Mesh files for 3D models were generated 
in Dragonflyl by selecting sub-regions from the segmented images of the sandstone sample. The mesh 
was then converted to a stereolithography (.stl) file to serve as the 3D printing mesh (Fig. 1). A cylindrical 

 
h Thermo Scientific Nicolet 6700 FTIR: https://www.thermofisher.com/de/de/home/industrial/spectroscopy-
elemental-isotope-analysis/molecular-spectroscopy/fourier-transform-infrared-spectroscopy.html  
i Oxford Instruments 60 MHz (1.4 T): 
https://nmr.oxinst.com/assets/uploads/MagRes/Brochures/MR_Pulsar_Brochure_8PP_2019_Web_March_2019.pdf  
j ZEISS Xradia 620 Versa:  https://www.zeiss.com/microscopy/en/products/x-ray-microscopy/versaxrm.html  
k ImageJ: https://imagej.net/ij/  
l  A 3D visualization and analysis application by Object Research Systems Inc.: https://dragonfly.comet.tech/  
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region of interest was selected from the 
mesh files of the sample and cropped to 
a uniform size. The cropped region of 
interest was 5 x 5 x 7 mm. The final mesh 
was then enlarged to such a 
magnification that the final size of printed 
samples was 22 x 22 x 31.5 mm. 

Samples were fabricated using high 
impact polystyrene (HIPS) 1.75 mm 
diameter filament m using a 3D printer n 
(Fig. 1). The extrusion temperature was 
set to 240°C. For the print bed, the 
temperature was maintained at 115°C for 
the first layer and 110°C for the remaining 
layers. The infill density was set at 100% 
with a rectilinear fill pattern, and the print 
speed was 50%. Prior to 3D printing, a 
thin layer of Kores glue was applied to the 
print bed to ensure sufficient adhesion 
and prevent warpage of the initial layers.  

Surface functionalization was employed 
on 3D-printed samples through 
sulfonation with sulfuric acid to enhance 
calcite precipitation. This process 
introduces sulfonic acid groups onto the 
HIPS film surface, increasing surface 
hydrophilicity and lowering surface 
energy, which promotes the seeding and 
growth of calcite crystals. An 11 M sulfuric 
acid solution (98% pure sulfuric acid 
diluted with distilled water at 75:25 
volume%) was used for sulfonation at 
room temperature for seven days. These 
conditions were based on the 2D film 
experiments for calcite precipitation on functionalized films described above.  

2.7. Calcite Precipitation Experiments 
A custom core flooding experimental setup (Fig. 2) was used to carry out precipitation experiments in 
3D-printed samples. A resin-manufactured core holder was designed and printed to contain the 3D-
printed core sample. The core holder was printed in two parts to facilitate the insertion of the porous 
media. Before placing the core sample inside the core holder, a heat shrink tube was wrapped around 
the sample to minimize the gap between the sample and the core holder, encouraging the fluids to flow 
exclusively through the sample. Despite this, some space remained between the heat-shrink-covered 
sample and the core holder due to the rough surface of the sample. To address this, an epoxy adhesive 
(a mixture of epoxy resin and hardener) was used to fill the remaining gaps, preventing free flow through 
the surrounding void areas and securing the two parts of the core holder together. During the flow 
experiments, a needle valve was used downstream to create back pressure (~ 3 psi), which helped to 
saturate the samples with fluid by removing trapped air from the porous media. 

 
m  Gizmodorks, 3DXTech: 
https://gizmodorks.com/?srsltid=AfmBOooUoOeJP25UML6WroLgLWvIqXKrxMWA4IGcc1-YNBwss6DX9C14  
n Prusa Research, MK3S+ Prusa FFF: https://www.prusa3d.com/de/kategorie/original-prusa-i3-mk3s-2/  

 

Figure 1 a) 3D X-ray micro-CT image of Bentheimer sandstone;  
b) 3D X-ray micro-CT image slice of Bentheimer sandstone;  
c) cropped and meshed image of Bentheimer sandstone; d) 3D 
X-ray micro-CT image of 3D-printed sample and e) 3D X-ray 
micro-CT image slice of the 3D-printed sample. 
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Four replicated precipitation 
experiments were conducted 
using two unfunctionalized 
samples (U-1 and U-2) and 
two functionalized samples 
(F-1 and F-2). Fluids were 
injected using a variable-
speed peristaltic pump. 
Samples were first saturated 
with water before injecting a 
calcite supersaturated solu-
tion. A solution comprised of 
0.04 M NaHCO3 and 0.02 M 
CaCl2 was used to promote 
calcite growth in the sample. 
The calcite solution was 
injected at a flow rate of 
~1.3±0.04 ml/min, and the experiments were run for 96 hours at room temperature and pressure. The 
saturation index of the solution was 3.15, suggesting the solution is oversaturated with respect to calcite. 
This saturation index (SI) was selected from 2D film calcite precipitation experiments to promote rapid 
calcite precipitation within a manageable experimental timeframe. Additional experimental data under 
identical experimental conditions (such as functionalization time and porosity), have been provided in 
the supplementary information Table S1 in the Supplementary Material (available online). 

Three dimensional X-ray micro-CT images of the reacted samples were taken at the end of the 
precipitation experiments to determine the porosity changes and observe the calcite growth. Image 
acquisition properties are given in Table 1. Images were processed by selecting a region of interest and 
cropping the associated selection from the 3D X-ray micro-CT images of the reacted samples using 
ImageJ. The non-local means denoising filter from the plugin in ImageJ was used to filter the images 
and remove noise. Images were then manually segmented into grain, water, pore, and calcite voxels 
using ImageJ. Segmented images containing only grain, water, pore, and calcite voxels were saved. Then, 
these individual images were combined using a MATLAB code. After the segmentation, there was still 
some noise evident from the image segmentation process. This was corrected by identifying small, 

connected voxel regions with bwconncomp in MATLAB and then flipping the labels to agree with the 
surrounding bulk phase.  

Calcite precipitation and the evolution of the printed sample properties were determined from 
quantitative image processing. Images were analyzed to determine the porosity before and after the 
core-flooding experiments, connected and unconnected porosity, and calcite volume fractions. The 
connected was identified using a burning algorithm to identify connected pore voxels and unconnected 
porosity inferred by comparison with the total porosity. The percentage of calcite and sample porosity 
were calculated by voxel counting using MATLAB, and the distribution of calcite throughout the porous 
media was considered. The percentage of calcite was computed using Equation 3: 

 

Figure 2: Core-flooding experimental setup for the calcite 
precipitation experiments. 

 

 

Table 1: 3D X-ray CT image acquisition properties for the functionalized (F-1, F-2) and 
unfunctionalized (U-1, U-2) core sample experiments. 
Sample FOV (µm) Voxel size 

(µm) 
Scanning 
voltage 

Exposure 
time (s) 

Number of 
projections 

Bentheimer 11080 x 11080 10.76 70 1.5 3200 
F-1 23552 x 23552 23 50 2.5 3200 
F-2 21508 x 21508 21 50 4 3200 
U-1 24091 x 24091 23.53 50 4 3200 
U-2 24090 x 24090 23.53 50 4 3200 
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  𝜙𝜙𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑁𝑁𝑐𝑐𝑡𝑡𝑐𝑐𝐶𝐶𝑐𝑐

 (3) 

where 𝜙𝜙𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 is the percentage of the calcite (%), 𝑁𝑁𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 is the total number of the calcite voxels in the 
image and 𝑁𝑁𝑐𝑐𝑡𝑡𝑐𝑐𝐶𝐶𝑐𝑐 is the total number of the voxels in the image. Then, the mass of the precipitated calcite 
was determined by using Equations 4 and 5: 

𝑉𝑉𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐= 𝜙𝜙𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 x 𝑉𝑉𝑐𝑐𝑡𝑡𝑐𝑐𝐶𝐶𝑐𝑐 (4) 

𝑀𝑀𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 =  𝑉𝑉𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 x 𝜌𝜌𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 (5) 

where 𝑉𝑉𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 is the total volume of the calcite (cm3), 𝑉𝑉𝑐𝑐𝑡𝑡𝑐𝑐𝐶𝐶𝑐𝑐 is total volume of the porous media (cm3), 
𝑀𝑀𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 is the mass of the calcite (g) and 𝜌𝜌𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 is the bulk density of the calcite (2.71gcm-3). 

3. RESULTS AND DISCUSSION 
To understand calcite precipitation onto polymer surfaces, the following sections detail our investigation 
of the impact of polymer surface functionalization and solution saturation index on calcite precipitation 
kinetics. First, the results of polymer film characterization before and after surface functionalization with 
sulfuric acid for varied times are presented, followed by the results of calcite precipitation experiments. 
Subsequently, 3D printed cores were fabricated from X-ray CT images of a real Bentheimer sandstone 
sample, and the impact of surface functionalization on calcite precipitation was evaluated via core-
flooding experiments and X-ray CT image analysis. 

3.1. Surface functionalization of 2D HIPS films 
Here in this section, we have investigated surface functionalization of HIPS and characterized the change 
in surface energy with functionalization time via contact angle measurements. Contact angles give a 
relative measure of surface energy. A higher contact angle represents a more hydrophobic surface and 
a lower surface energy, whereas a lower contact angle represents a more hydrophilic surface and a higher 
surface energy. Here, we manipulate the surface energy through surface functionalization with sulfuric 
acid. Sulfonation of HIPS films was caried out using sulfuric acid (98% purity), diluted to a 75:25 volume 
ratio with distilled water. Films were treated for varying time intervals to produce surfaces with differing 
concentrations of sulfonic acid groups, which increase with longer sulfonation times. This surface 
modification was intended to enhance polymer hydrophilicity (through increased surface charge) and 
promote calcite nucleation on the polymer surface. First, whether the acid treatment degraded the 
polymer film or substantially altered the surface character was investigated. Following acid treatment, 
films were weighed and there was no detectable change in film weight. The film surfaces were also 
examined via optical microscopy (Fig. S1, Supplemtary Material, available online), where no change in 

 

Figure 3: A) FTIR spectrum of HIPS film (blue) and acid treated HIPS film (violet), B) NMR spectrum of 
HIPS (red), and acid treated HIPS (green). 
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the surface character was observed. Acid treated films (2 days functionalized) were characterized using 
ATR-FTIR and 1H-NMR spectroscopy to confirm the presence of sulfonic acid groups. The FTIR spectra 
showed a weak absorption of the sulfonic acid group (O=S=O) and stretching vibration of SO2 (-SO2-O) 
around 1023 cm-1 and 1175 cm-1 respectively (Fig. 3A). These peaks in the FTIR spectra are due to the 
partial sulfonation of the HIPS films on sulfuric acid treatment. The 1H-NMR spectra shows the sulfonated 
HIPS shoulder peak at 7.07 ppm which confirms the partial sulfonation of the benzene ring in HIPS owing 
to surface functionalization (Fig. 3B) (87). 

Indeed, as shown in Figure 4, the surface energy of the HIPS films increases with increasing surface 
functionalization. The change in surface charge was analyzed by performing contact angle 
measurements and the increase in surface functionalization was observed with an increase in time given 
for functionalization (Fig. 4). The contact angle decreases with an increase in functionalization time and 

reaches a plateau after 9 days, indicating maximum threshold for functionalization. Thus, we limited 
calcite precipitation experiments, as discussed in the next section, to 10 days of surface functionalization. 

To better understand the impact of surface functionalization of the 2D films, a relation based on Young’s 
equation was used as follows (39, 44, 45) (Eq. 6), 

 𝛾𝛾𝑠𝑠𝑠𝑠 = 𝛾𝛾𝑠𝑠𝑐𝑐 + 𝛾𝛾𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (6) 

where, 𝛾𝛾𝑠𝑠𝑠𝑠 represents the surface energy of the solid, 𝛾𝛾𝑠𝑠𝑐𝑐 represents the interfacial tension between the 
liquid and the solid, 𝛾𝛾𝑐𝑐𝑠𝑠  represents the surface tension of the liquid (deionized water) and 𝑐𝑐 is the contact 
angle of the liquid on the solid surface (polymer film). The reported surface energies of calcite ~57 mJ/m2 

- 58 mJ/m2 (25) and the non-functionalized films had no measurable precipitation due lower surface 
energy (58.47 mJ/m2). The unfunctionalized HIPS films need to overcome the minimum energy barrier 
required for calcite to nucleate over the substrate. With an increase in surface functionalization, surface 
energy increases and thus helps the calcite mineral to nucleate and precipitate over the 2D reactive 
surface. Surface energies corresponding to the measured contact angles were calculated using Young's 

 

Figure 4: A) Schematic of de-ionized water contact angle measurement and B) measured water contact 
angle versus functionalization time on the sulfonated polystyrene films and contact angle 
measurement after functionalizing HIPS after C) 1 day and D) 10 days.  
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equation. The results (Fig. 5) showed 
that surface energy (mJ/m²) increased 
with longer functionalization times, 
eventually plateauing after 9–10 days. 
Notably, the surface energy of the 
unfunctionalized HIPS film was close to 
the threshold required for calcite 
precipitation, whereas the function-
alized HIPS films exhibited significantly 
higher surface energies, easily 
surpassing the energy barrier 
necessary for precipitation. Further 
experiments related to these findings 
are detailed in Section 3.2.  

3.2. Calcite growth on 
surface functionalized 2D 
films 
The 2D films, both unfunctionalized 
and functionalized for different 
durations, were subjected to calcite 

precipitation reactions by flowing calcium carbonate solutions across them in a custom-built flow 
chamber (Fig. S2, available online). A saturation index (SI) of 3.15 was selected to ensure precipitation 
occurred within our desired experimental time frame based off of literature reports for which 
precipitation occurs over longer time frames for a saturation index of 1.42 (77). Thus, the increased SI of 
3.15 was chosen to promote precipitation in shorter experimental times.  

X-ray diffraction (XRD) was performed on the functionalized HIPS films before and after calcite 
precipitation, and the results compared to the XRD pattern for bulk calcite powder as a reference sample 
(Fig. 6A). Bulk calcite shows a characteristic calcite peak at 29.5 (2θ) and this characteristic calcite peak 
is present for the precipitated calcite scraped off the functionalized HIPS films after calcite precipitation 
experiments confirming the precipitated mineral to be calcite (3). This is an important confirmation as 
calcium carbonate can also precipitate into two other polymorphs (aragonite and vaterite). Note, this 
calcite peak is not observed in the spectra for either the control or functionalized HIPS films prior to the 
precipitation experiments (Fig. S4 in the Supplementary Material, available online). Scanning electron 
microscopy (SEM) was also performed to examine the crystal morphology (Fig. 6B) revealing that the 

 

Figure 5: Surface energies of HIPS films over time given for 
functionalization. The red dash line indicates the HIPS 
control sample value (0 day functionalized). 

 

 

 

Figure 6: A) X-ray diffraction spectra of bulk calcite powder (reference) and representative XRD spectra 
of scraped off calcite grown on a 2 day functionalized HIPS film. B) SEM image of a surface 
functionalized 2D HIPS film (10 days) depicting calcite precipitation. 
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precipitated calcite crystals ex-
hibited the characteristic rhom-
bohedral-like shapes expected for 
calcite (21, 91). 

As shown in Figure 7, the amount 
of calcite precipitate on the 2D 
films increased with increasing 
functionalization time. Note that 
precipitation on the unfunction-
alized film (yellow square, lower 
right) had no measurable calcite 
precipitate after 24 hours. Given 
the increase in precipitation with 
functionalization time, we con-
clude that surface modification of 
the 2D HIPS films via sulfonation 
promotes calcite precipitation. 
The precipitation of calcite over 
the functionalized films is due to 
the presence of sulfuric acid 
moieties after surface function-
alization. These sulfonic acid 
moieties act as seeding sites for calcite to precipitate. Further, increasing the degree of surface 
sulfonation, and thereby increasing the surface energy, promotes increasing calcite precipitation, likely 
by reducing the energy barrier for calcite crystal nucleation and growth.  

To better understand how the surface energy (as characterized by contact angle) impacts calcite growth 
in general, a series of contact angle experiments and calcite precipitation experiments were performed 
using two other commercial polymeric materials poly(styrene-b-butadiene-b-styrene) (SBS) and 
poly(lactic acid) (PLA). Films of SBS and PLA were prepared, their contact angle measured, and analogous 
calcite precipitation experiments (SI = 3.15) were performed (Fig. 8). As shown in Figure 8B, SBS—due 
to its significant polystyrene content—exhibits a contact angle similar to that of HIPS, though slightly 

 

Figure 7: Weight based precipitation of calcite growth on surface 
functionalized 2D films. 

 

 

 

Figure 8: A) Average weight of calcite precipitated as a function of surface functionalization time, 
showing a corresponding decrease in contact angle of the functionalized HIPS films. B) Relationship 
between surface energy (represented by contact angle) and the average weight of calcite precipitated 
on unfunctionalized HIPS, SBS PLA, and functionalized HIPS films.  
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higher on average. In contrast, PLA displays a lower contact angle, comparable to that of HIPS films 
functionalized for 10 days. Notably, the resulting amount of calcite precipitation is clearly tied to the 
contact angle as the amounts of calcite precipitate are similar for these pairs with similar contact angle; 
HIPS and SBS versus PLA and 10-day functionalized HIPS.  

As noted in the introduction, the saturation index played a significant role in precipitation, with increased 
precipitation observed with increasing saturation indices (31, 41). To confirm this behavior here, and 
enable prediction of calcite precipitation for varied saturation indices on surface functionalized HIPS, 
calcite precipitation experiments were performed on the 10-day functionalized HIPS films for varying 
saturation indices (1.42, 2, 2.5, 2.72 and 3.15) for a precipitation time of 24 hours. While no precipitation 
was observed for the films with a SI of 2.0 after 24 hours, the amount of precipitation steadily increased 
with an increasing SI; Table 2. 

Given the promising results above for manipulating the precipitation of calcite on HIPS surfaces, four 3D 
printed HIPS cores were fabricated, of which two were then functionalized using sulfuric acid (F-1 and F-
2) and two were left unfunctionalized (U-1 and U-2). These cores were then used in core-flooding calcite 
precipitation experiments and imaged using X-ray CT. The properties of the analyzed 3D X-ray micro-CT 
images are given in Table 3. A region of interest, 1.22 x 1.22 x 2.05 cm, was selected for each sample for 
consistency in the image analysis. The printed sample porosities, overall, are consistent: 29.0%, 31.2%, 
and 30.0% for U-1, F-1, and F-2, respectively (standard deviation of 0.9%). However, the porosity for U-
2 is slightly larger than the others (33.5%). This is likely due to some printing defects within the complex 
heterogeneous pore structure. The unconnected porosity of the samples was also determined via 
analysis of the segmented images of the samples, which was ~0.4%, suggesting minimal inter-layer 
defects from the printing process. 

Calcite precipitation is evident in 3D X-ray micro-CT images of the reacted samples (Fig. 9). In 
functionalized samples, analysis of the segmented images shows a uniform distribution of calcite 
precipitates throughout the entire sample. This corresponds to a decrease in post-experiment porosity 
throughout the samples. The volume fraction of calcite precipitated in the functionalized samples is 
approximately 2.6% which corresponds to a mass of approximately 0.21 g of calcite for the porous media 
volume of 3.05 cm³. In contrast, only a small amount of calcite precipitation is evident in unfunctionalized 
samples, <1.1%, with a corresponding mass of approximately less than 0.09 g. As such, there are only 

Table 2: Weight based precipitation of calcite growth on surface 
functionalized 2D films (24 hours experiment) with varying saturation index. 
Saturation Index Average weight of calcite precipitated (mg) 
1.42 No measurable precipitation 
2.0 No measurable precipitation 
2.5 1.63 ± 0.30 
2.72 2.67 ± 0.15 
3.15 6.83 ± 1.14 

 

Table 3: Sample properties extracted from 3D X-ray micro-CT image of 3D-printed samples. 
Printed 
sample 

Properties Functionalized Samples Unfunctionalized Samples 
F-1 F-2 U-1 U-2 

Initial, 
unreacted 
sample 

Connected 
porosity (%) 

29.8 29.7 28.6 33.1 

Unconnected 
porosity (%) 

0.4 0.3 0.4 0.4 

Total porosity 
(%) 

31.2 30.0 29.0 33.5 

Reacted 
sample 

Calcite volume 
fraction (%) 

2.6 2.5 1.1 0.6 

Final porosity (%)  28.6 27.5 27.9 32.9 
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small changes in porosity. The significant difference in calcite growth between functionalized and 
unfunctionalized samples demonstrates the importance of surface functionalization in promoting 
mineral precipitation. By manipulating the 3D printed porous media surface through functionalization, 
the precipitation of calcite within the porous media can be manipulated, and this is therefore a promising 
platform for geochemical reaction studies.  

Figure 10 shows the calcite precipitation percentage in each slice of the 3D X-ray micro-CT images for 
all samples. Overall, greater extents of calcite precipitation are evident in functionalized samples as 
compared to unfunctionalized samples. Higher percentages of calcite precipitation can be found near 
the inlet for all samples. In the unfunctionalized samples, precipitation predominantly occurred near the 
inlet, with little precipitation throughout the rest of the sample. In the functionalized samples, the calcite 
precipitation was more uniform throughout the sample, albeit there were higher concentrations near the 
inlet, particularly for F-1.  

Critically, the functionalized samples exhibited consistent and substantial calcite deposition within the 
porous media, indicating that surface functionalization not only enhances the reactivity of 3D-printed 
porous media, but also influences the spatial distribution of calcite precipitation. Notably, calcite 
precipitation in the functionalized porous media samples also  reduces the porosity, suggesting this 
approach may be valuable in discerning changes in petrophysical properties, such as porosity evolution, 
that occur during reactions in porous media samples.  

 

Figure 9: a) Calcite distribution in the functionalized sample (F-2), b) Reacted slice of functionalized 
sample (F-2), c) calcite distribution in unfunctionalized sample (U-2), and d) reacted slice of 
unfunctionalized sample (U-2). 
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The successful use of functionalized 3D-printed porous media in these experiments underscores the 
potential of this approach for precisely manipulating pore structure and surface properties. Unlike 
natural rock samples, which often exhibit significant variability in composition and structure, 3D-printed 
functionalized media provide a more reproducible and systematic platform for studying mineral 
precipitation and reactive transport processes. Moreover, the proposed 3D printing method with 
functionalized material surfaces offers significant advantages over conventional 3D printing techniques 
by enabling targeted surface modifications without altering the bulk properties of the printed structures. 
Unlike traditional approaches that rely on mixing reactive particles within the material (54, 56), surface 
functionalization enhances mineral precipitation by directly modifying the chemical reactivity of the 
exposed surfaces. While calcite growth in a 2D film study demonstrates greater control over precipitation 
kinetics by functionalizing the surface area, functionalized 3D-printed porous media shows more uniform 
mineral growth in replicable experimental conditions in comparison to unfunctionalized 3D-printed 
porous media.  

Functionalized 3D-printed porous media also have a unique application potential in CO2 sequestration, 
groundwater remediation, geochemical modeling, and engineered biomineralization. This approach 
contributes to advancements in subsurface engineering, environmental sustainability, and mineral-based 

 

Figure 10: Percentage of calcite precipitation in each 3D X-ray micro-CT image slice of 3D-printed 
porous media for the functionalized samples F-1 and F-2 (top) and unfunctionalized samples U-1 and 
U-2 (bottom). 
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material design by providing a scalable and customizable platform for studying reactive mechanisms 
and transport processes. 

4. CONCLUSION 
In this research, the surface functionalization of HIPS films and the impact of surface functionalization 
and saturation index on the calcite precipitation was first investigated. While FTIR and 1H NMR 
spectroscopy confirms the partial surface functionalization of the HIPS films, there was no discernable 
surface degradation due to the acid treatment observed with optical microscopy or gravimetric analysis. 
Increasing the sulfonation time led to decreasing surface contact analysis and ultimately increased calcite 
precipitation in flow through precipitation experiments. From this, the hypothesis that the 
functionalization of the HIPS surface with sulfonic acid groups will promote the precipitation of calcite 
was confirmed. We attribute this phenomenon to the presence of sulfonic moieties which lower the 
surface energy facilitating the precipitation of calcite crystals by lowering the energy barrier for crystal 
nucleation and promoting crystal growth. More broadly, this surface functionalization approach has 
potential for enhancing the precipitation of other mineral phases or even preferential precipitation of 
mineral phases from solution onto polymer surfaces. Critically, this enabled the fabrication of replicate 
porous media using HIPS and filament-based 3D printing (fused filament fabrication) where the impact 
of surface functionalization on precipitation of calcite was then evaluated.  

Core flooding experiments of unfunctionalized and functionalized 3D printed cores revealed significant 
calcite growth and porosity reduction in functionalized samples, while unfunctionalized samples showed 
little calcite precipitation and minimal porosity change. Three dimensional X-ray micro-CT imaging 
provided visual confirmation of these findings, highlighting the uniform distribution of calcite deposits 
in functionalized samples. Controlling pore structure and surface properties with 3D-printed porous 
media offers a potentially reproducible and systematic approach to studying geochemical reactions. The 
functionalization of these samples enhances their reactivity, enabling detailed investigations of mineral 
precipitation processes. The observed reduction in porosity due to calcite precipitation in functionalized 
samples suggests a promising way for elucidating the behavior of natural geochemical processes, 
underscoring the potential of 3D-printed media to mimic both the chemical and physical aspects of 
rock-fluid interactions. 

The fabrication of such replicate porous media would enable better understanding of mineral 
precipitation and the impact of mineral precipitation on porosity and permeability, the focus of a future 
study. Beyond porous media, the ability to promote and control mineral precipitation is broadly 
important for other applications such as biomedical implants and water purification, and requires a 
better understanding of the structure property relationships between the polymer materials, solution 
character, and precipitation phenomena such as that investigated here. 

The implications of this study are significant for geochemical modelling and experimentation. 3D-printed 
samples provide an effective and customizable platform for various applications, allowing researchers to 
tailor samples for specific reactions and conditions. This research paves the way for further exploration 
of 3D-printed porous media in various geochemical contexts, offering a promising tool for advancing 
our understanding of mineral reactions and other geochemical processes. 
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