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ABSTRACT 
Porous media beneath the Earth’s surface, including aquifers, oil and gas reservoirs, 
and geothermal systems, play a crucial role in various natural resource management 
and environmental engineering applications. The study of their physical properties, 
particularly thermo-physical properties like effective thermal conductivity (ETC), is 
essential for enhancing the efficiency of subsurface engineering technologies 
including nuclear waste disposal, geothermal energy utilization, and underground 
thermal energy storage. Traditionally, determining ETC has relied on either simplified 
empirical models, which often lack accuracy, or sophisticated laboratory 
experiments, which are time-consuming and resource intensive. The advent of three-
dimensional (3D) imaging technologies has enabled digital characterization of 
subsurface media, but direct numerical simulations of ETC remain computationally 
prohibitive. In response to these challenges, we introduce a novel machine learning 
framework that leverages transfer learning to enhance the prediction of ETC in digital 
rock samples. Our approach utilizes state-of-the-art convolutional neural networks 
(CNNs), pre-trained on extensive datasets, and applies them to various porous media 
samples, including Berea sandstone, Bentheimer sandstone, and Ketton limestone. 
By employing transfer learning, we demonstrate that our models can achieve high 
prediction accuracy with significantly reduced training time, computational power, 
and data requirements. This study highlights the potential of transfer learning to 
advance the efficiency and accuracy of digital rock analysis, offering a promising tool 
for the rapid and reliable characterization of subsurface properties. 
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1. INTRODUCTION 
Porous media beneath the Earth’s surface, including aquifers, oil and gas reservoirs, and geothermal 
systems, are integral to various natural resource and environmental management applications. The 
physical properties of these media have been extensively studied to elucidate their behavior and facilitate 
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the development of predictive models for flow and transport phenomena. Among these properties, 
thermo-physical characteristics, particularly the effective thermal conductivity (ETC)—which represents 
the thermal conductivity of the geological porous medium—are crucial in subsurface engineering 
technologies including nuclear waste disposal (29), geothermal energy utilization (35), underground 
thermal energy storage (61), and enhanced oil recovery (48). The thermal conductivity of the porous 
media is a critical parameter in evaluating the performance and safety of these subsurface 
technologies (69). Thermal conductivity is the measure of how efficiently heat passes through a material 
given a unit temperature difference across a unit area of the material with a unit thickness, under steady-
state conditions (44). In porous media, thermal conductivity is not a fixed value; it varies as a function of 
factors such as porosity, water saturation, mineralogical composition, and most notably, the pore 
microstructure and temperature of the medium (1). Consequently, the thermal conductivity of porous 
media, such as rocks, is termed effective thermal conductivity (2, 69). In the case of dry sedimentary 
rocks, the thermal conductivity of air (approximately 0.026 W/m · K) within the pores is significantly 
lower compared to that of the solid rock matrix (ranging from 0.4  to 7 W/m · K ). Therefore, the 
microstructure of the pores, including their volume, shape, and distribution, plays a fundamental role in 
determining the ETC of the rock samples (44). 

The determination of ETC of porous media includes conducting laboratory and field experiments as well 
as developing theoretical models. Experimental techniques, including needle probes (25, 74), guarded 
parallel plates (1), and optical scanning (55), are commonly employed to measure the ETC of porous 
media. However, these experimental methods are often costly, requiring specialized equipment, 
materials, and skilled personnel. Additionally, the experimental process is time-intensive, requiring 
extensive preparation, data collection, and analysis, which can impede the research progress and limit 
the number of experiments that can be feasibly conducted (83). To mitigate these challenges, analytical 
methods such as the Maxwell model and the weighted harmonic mean equation offer a more rapid 
approach to estimating the ETC. These methods provide simple analytical formulas that can predict the 
effective thermal conductivity of porous media using only the volume fraction of the sample (9, 35). 
However, despite their ease of use, these analytical models tend to oversimplify the complex structural 
characteristics of porous media, leading to limitations in their accuracy (21). The intricate pore structures 
and irregular pore distributions within porous media create significant challenges, and as a result, a 
universally accepted analytical relationship between ETC and geometric structural parameters remains 
elusive (81). 

In recent years, digital rock physics technology has been widely adopted for simulating the physical 
properties of porous media, thanks to its benefits in digitalization and visualization (49). Progress in 
imaging technologies, including X-ray micro-computed tomography (15), neutron tomography (51), and 
micro-positron tomography (80) have enabled the visualization of the three-dimensional (3D) internal 
structure of porous media that are otherwise opaque. These imaging techniques facilitate the digital 
characterization of the physical properties of porous media through numerical simulations (7, 8, 13). Two 
types of simulation approaches are commonly employed: pore network modeling and direct numerical 
modeling. Pore network models utilize simplified geometries, such as spheres and cylinders, to represent 
the pores and throats within porous media. In contrast, direct numerical models create meshes from 
digitized image blocks, offering a more precise representation of the complex microstructure in porous 
media (65). Direct numerical simulations, including those employing the finite element method (FEM) 
and the finite volume method (FVM), are developed based on physical modeling by solving partial 
differential equations and are effectively used for simulating flow and heat transfer within micro-CT 
images of digital rocks (19, 70). These simulation techniques allow for a more accurate and detailed 
analysis of the internal structure and properties of porous media (65), contributing to a deeper 
understanding of flow and heat transfer under various conditions (47). 

For example, Yang et al. (79) evaluated the effects of fracture parameters—such as length, aperture, and 
angle—on the thermal conductivity of digital rocks, using 50 × 50 × 50  cubic voxel samples 
reconstructed from a stack of 2D images of sandstone with varying fractures. Similarly, Dongxing et al. 
(21) developed a digital model of a homogeneous rock by performing a 3D reconstruction of its internal 
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structure using a series of micro-CT images. By generating high-quality meshes compatible with 
computational fluid dynamics (CFD) software, they calculated the ETC of rock samples of varying sizes in 
three directions through direct numerical simulation. The study concluded that digital rock analysis offers 
a feasible and reliable alternative for evaluating the thermal properties of rocks, grounded in the accurate 
characterization of the internal microscale structure of porous media. However, performing direct 
numerical simulations of thermal transport in 3D porous media remains computationally intensive, 
requiring significant computing power and memory resources (20). 

Recently, machine learning has emerged as a powerful tool for the digital characterization of subsurface 
porous media, offering significant advantages in terms of efficiency by reducing the time and 
computational costs associated with analyzing large datasets (52). Machine learning algorithms are 
particularly effective at identifying complex patterns and relationships within data, leading to accurate 
predictions of key properties, including the thermo-physical properties of porous media. For instance, 
Vaferi et al. (73) employed a two-layer artificial neural network (ANN) to estimate the ETC of dry and oil-
saturated sandstone under a wide range of environmental conditions. The predicted ETC values showed 
strong agreement with experimental thermal conductivity data, with absolute average relative deviation 
percentages of 2.73% and 3.81% for the overall experimental dataset of oil-saturated and dry sandstone, 
respectively. 

Fei et al. (25) utilized micro-CT images of four dry sand samples to predict their ETC using an artificial 
neural network (ANN) model with pre-calculated micro-structural parameters. In their approach, the 
sand is represented as a network composed of nodes (sand grains) and edges (inter-grain contacts or 
small gaps between neighboring grains). In particular, the weighted coordination number, which 
accounts for both particle connectivity and contact area, was identified as a particularly reliable predictor 
of ETC in dry materials. The model demonstrated good predictive capabilities, achieving a high 
correlation (𝑅𝑅2 = 0.97) between the predicted and actual ETC values obtained through thermal needle 
probe testing. Similarly, Wei et al. (75) employed pre-calculated features to predict the ETC of digital 
porous media by investigating structural characteristics that significantly impact thermal transport. To 
effectively describe the characteristics of porous media, they devised five structural descriptors: shape 
factor, bottleneck, channel factor, perpendicular non-uniformity, and dominant paths. These descriptors 
were then utilized in two conventional machine learning models—support vector regression (SVR) and 
Gaussian process regression (GPR)—to predict the ETC of porous media. Specifically, both models were 
trained on a dataset comprising 2,460 synthetic 2D porous media images, each 100 × 100 pixels in size, 
generated using the quartet structure generation set (QSGS) technique. The models were then tested on 
615 100 × 100 images. The predicted thermal conductivity values from the machine learning models 
were comparable to those estimated by FEM simulations, with most absolute relative prediction errors 
within a 30% range. 

Unlike ANNs that rely on pre-calculated features as input, convolutional neural networks (CNNs) 
represent a more advanced deep learning method that enables end-to-end predictions by accepting 2D 
and 3D images directly as input. Convolutional neural networks have been extensively utilized in various 
computer vision applications, such as face recognition (36, 38) and object detection (26, 84), due to their 
ability to automatically extract relevant features from input images. Similarly, CNNs have been widely 
employed in digital porous media studies to automatically extract internal microstructural features and 
determine their relationship with the effective properties being analyzed (22, 23, 37, 78). In the context 
of ETC prediction, Wei et al. (76) introduced a machine learning framework incorporating SVR, GPR, and 
CNN models to investigate heat transport in digital porous media and found that they yielded more 
accurate predictions compared to traditional analytical models, such as the Maxwell-Eucken and 
Bruggeman models. Furthermore, they concluded that, given a sufficiently robust training dataset, 
machine learning techniques offer a valuable and efficient means for predicting the ETC of porous media. 
In another study, Rong et al. (57) explored the application of 2D and 3D CNNs for predicting the ETC of 
digital porous media. They generated a synthetic 3D porous media dataset using particle-packing and 
QSGS techniques, creating a training dataset of 2,000 100 × 100 × 100 sub-volumes with a fixed solid 
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volume fraction of 0.35, for which the ETC was simulated using the FEniCS softwarea. Initially, they trained 
a 2D CNN based on the AlexNet (42) architecture to predict the ETC of the 3D samples. Subsequently, 
they investigated the use of a 3D CNN for training on the dataset. However, due to the high 
computational demands of training 3D CNNs, they were required to reduce the dataset size to 800 
samples and simplify the 3D CNN architecture to just three convolutional layers. While the CNN models 
produced results comparable to those obtained from numerical simulations and achieved low mean 
absolute error (MAE) and root mean square error (RMSE) values, both below 5%, the training process 
was still time-consuming, taking six days on a single CPU. 

Traditionally, training deep learning models such as CNNs require a vast amount of training data, which 
poses a significant challenge in practical applications where available datasets are often limited and 
sparse. This limitation restricts the broader use of deep learning in various domains. To address this 
issue, a new branch of machine learning known as Transfer Learning has emerged. Transfer learning is a 
powerful machine learning technique, enabling models to leverage pre-trained knowledge to improve 
performance on new tasks with limited data (3, 66). It works by transferring knowledge acquired by a 
model trained on one task or domain to enhance performance on a related but distinct task (77). By 
reusing the weights of pre-trained models, transfer learning accelerates training, improves predictive 
accuracy, and reduces reliance on large datasets (24). This approach has been successfully applied across 
numerous fields. In medical imaging, for example, fine-tuning pre-trained models on domain-specific 
datasets has significantly improved cancer detection and neurological disorder classification (5, 64). 
Architectures such as ResNet and VGGNet have shown strong performance by reducing training time 
and addressing class imbalances (41, 60). In natural language processing (NLP), models like BERT and 
GPT leverage transfer learning to achieve superior results in tasks such as text classification and machine 
translation, benefiting from the efficiency of transformer-based architectures (10, 58). Autonomous 
driving systems also employ transfer learning to bridge the gap between simulation and real-world 
environments, improving collision avoidance and domain adaptation through deep reinforcement 
learning and federated transfer learning (40, 45, 72). In materials science and geophysics, transfer 
learning enables accurate property predictions from limited data, with cross-property deep transfer 
learning often outperforming traditional approaches (30, 31). These diverse applications underscore the 
versatility of transfer learning, accelerating discovery and improving computational efficiency across 
disciplines. 

Convolutional neural networks models such as VGG (63), Inception (67), and ResNet (32), all trained on 
the ImageNet dataset, have proven highly effective in transfer learning applications. Their pre-trained 
architecture provides robust feature extraction capabilities, making them invaluable in scenarios where 
acquiring large-scale labeled datasets is challenging or costly, such as medical image analysis. 
Consequently, many studies in the medical field have reported the successful application of transfer 
learning techniques (17, 34, 68). For example, Michał Byra et al. (18) utilized a pre-trained Inception-
ResNet-v2 CNN, originally trained on the ImageNet dataset, to extract high-level features from liver B-
mode ultrasound images. These extracted features were then used by a support vector machine (SVM) 
algorithm to categorize images with fatty liver, a clinically relevant step in determining the grade of liver 
steatosis. In the context of digital rock analysis, Liu et al. (46) applied transfer learning to estimate the 
effective permeability of digital rocks. Specifically, they employed the VGG pre-trained model to extract 
salient features from micro-CT images of sandstone and carbonate samples that are most sensitive to 
permeability. The predicted permeabilities using this approach were consistent with direct numerical 
simulation results while significantly reducing computational time and memory requirements compared 
to traditional direct numerical simulations. 

Here, we introduce a novel approach to characterize the ETC of digital porous media by leveraging 
transfer learning. Our machine learning framework employs four pre-trained CNN models as feature 
extractors for 3D images of digital rocks, significantly expediting the training process, reducing the need 
for large datasets, and minimizing computational resource demands while maintaining high accuracy. 

 
a https://fenicsproject.org/  
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We anticipate that the use of transfer learning has the potential to revolutionize the digital 
characterization of porous media, particularly in cases where 3D image datasets are scarce. Even when 
large datasets of 3D images become available, training complex deep learning models from scratch 
requires substantial computational resources, both in terms of processing power (e.g., multiple GPUs) 
and time (e.g., training that can extend to days or even weeks). Consequently, this approach paves the 
way for more efficient prediction, analysis, and understanding of porous media properties (e.g., 
permeability, electrical resistivity, elastic modulus) using machine learning with fewer resources and at 
greater speeds. 

2. METHODOLOGY 
2.1. Data Preparation and Processing 
We created our machine learning models using a dataset of 3D images of various digital porous media 
samples, which are publicly accessible (Table 1). These images were originally obtained by researchers 
at Imperial College London using synchrotron X-ray beamlines or micro-CT scanners. This dataset has 
been employed in prior studies to examine different pore-scale flow and transport processes in digital 
porous media (15, 50). 

The dataset is stored and made publicly accessible through an online portal (14). We utilized three sets 
of 3D scans from cores of Bentheimer sandstone, Berea sandstone, and Ketton limestone. The 3D images 
of Bentheimer sandstone and Ketton limestone consist of 1000×1000×1000 cubic voxels with a 
resolution of 3 μm/voxel, while the Berea sandstone core measures 400×400×400 cubic voxels with a 
resolution of 5.3 μm/voxel. To maintain consistency in the scale of all samples in our study, we rescaled 
the Berea sandstone images to 712×712×712 cubic voxels, ensuring that each voxel corresponds to a 
physical dimension of 3 μm (Fig. 1). The rescaling procedure was validated by comparing the porosity 
of the rescaled sample to that of the original, revealing a variation of less than 2%, which confirmed the 
effectiveness of the rescaling technique. Then, we extracted subvolumes from the 3D images using a 
sliding cube of 150×150×150 cubic voxels, with an overlapping stride of either 25 or 50 voxels (Table 1, 
Fig. 1). 

We employed OpenFOAM b, an open-source suite of CFD solvers (33), to numerically simulate the 
thermal conductivity of the extracted subvolumes. OpenFOAM simulates heat conduction by solving 
Fourier’s law (Eq. 1), where 𝑞𝑞 is the heat flux, 𝜆𝜆 is the thermal conductivity, and ∇𝑇𝑇 is the temperature 
gradient. 

𝑞𝑞 = −𝜆𝜆∇𝑇𝑇 (1) 

We simulated heat conduction along each of the principal axis (i.e., 𝑥𝑥, 𝑦𝑦, 𝑧𝑧) of the porous media samples. 
Specifically, a fixed heat flux was applied at the heat input surface, and a fixed temperature was 
maintained at the heat output surface. The laplacianFOAM algorithm was then employed to compute 
the temperature at the inlet surface. Finally, the thermal conductivity of the porous media sample was 

 
b https://www.openfoam.com/  

Table 1: Digital rock samples used for training and testing the machine learning methods. 
Rock type Size 

(mm) 
Resolution 
(µm/voxel) 

Porosity 
(−) 

Stride 
(voxel) 

Number of 
subvolumes 
(−) 

Number of 
labelled ETC 
(−) 

Bentheimer 
sandstone 

3 3 0.22 50 4,877 14,631 

Ketton 
limestone 

3 3 0.13 50 3,819 11,457 

Berea 
sandstone 

2.1 5.3 0.19 25 4,651 13,953 

ETC: effective thermal conductivity 
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calculated using Equation 2, where 𝑞𝑞t is the total heat transfer rate integrated over the entire input 
surface, 𝑆𝑆in is the area of the input surface, 𝑇𝑇in and 𝑇𝑇out are the inlet and outlet temperature, respectively, 
and 𝐿𝐿 is the distance between the inlet and the outlet surfaces of the sample. 

𝜆𝜆 =
𝑞𝑞t𝐿𝐿

𝑆𝑆in(𝑇𝑇in − 𝑇𝑇out)
 (2) 

Although the thermal conductivity for the solid phase 𝜆𝜆s varies depending on the material, we set 𝜆𝜆𝑠𝑠 to 
unity (i.e, 𝜆𝜆s = 1 W/m · K) for all simulations, and report the ETC as 𝜆𝜆eff = 𝜆𝜆/𝜆𝜆s. 

We conducted over 40,000 simulations on a dataset of 150 × 150 × 150  subvolumes, which were 
randomly split into training and testing sets in a 90-10 ratio (Fig. 2a, b). In our methodology, the ETC 
values obtained from numerical simulations serve as the ground truth labels for training and testing the 
machine learning models, providing the reference against which the models’ predictive capabilities are 
evaluated. To enhance the training set, we implemented data augmentation techniques. Common 
methods for data augmentation in machine learning include simple image transformations such as 
flipping and rotating. For example, Elmorsy et al. (22) utilized image flipping to effectively increase the 
size of their digital rocks training dataset, resulting in improved accuracy and generalizability of their 
model. Similar techniques have been applied to benchmark datasets like ImageNet and CIFAR-10 (62). 
In our study, we generated four unique subvolumes with the same effective thermal conductivity (ETC) 
value by horizontally and vertically flipping the individual 2D image slices that constitute each 3D 
subvolume. Additionally, we reversed the order of the 2D slices to create four more distinct subvolumes 
with the same ETC value. This augmentation process expanded the original training dataset to 
approximately 288,000 distinct subvolumes, encompassing around 36,000 unique ETC values. 

The ETC values in the dataset span from 0.38 to 0.98 and display a negatively skewed distribution, with 
a tail extending toward the lower ETC region (Fig. 2c). Such skewed distributions are common in natural 
phenomena, such as rainfall and earthquakes; however, they pose significant challenges for machine 
learning models. Algorithms often interpret the “tail" of the distribution as outliers, which can result in 
biased predictions that favor the more prevalent values in the training data (11, 53). This bias impedes 

 

Figure 1: Sample sequential 2D slices from a 3D 𝜇𝜇CT scan of Berea sandstone after rescaling, where (a) 
shows the 1𝑠𝑠𝑠𝑠 slice, (b) the 200𝑡𝑡ℎ slice, (c) the 400𝑡𝑡ℎ slice, and (d) the 600𝑡𝑡ℎ slice. The void (pore) spaces of 
the porous medium are shown in black, and the solid matrix is shown in white. 
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the ability of machine learning models to learn effectively from imbalanced datasets (12). To mitigate 
this issue and construct a balanced dataset, we implemented an under-sampling strategy. Specifically, 
we divided the augmented dataset into bins corresponding to ETC intervals of 0.02  and randomly 
selected 550 subvolumes from each bin. This method yielded an evenly distributed dataset with ETC 
values from 0.38 to 0.98 (Fig. 2d), with the upper threshold indicating a lack of sufficient subvolumes 
beyond that point. The resulting balanced dataset, consisting of approximately 16,000 subvolumes, was 
then utilized for training the machine learning models and it was further split into training and validation 
subsets using the same 90-10 ratio applied during model training.  

2.2. Transfer Learning and Pre-trained Models 
Transfer learning is a machine learning technique that involves leveraging knowledge gained from a pre-
trained model on one task or domain to improve the performance of a model on a different but related 
task or domain. By reusing the weights of the pre-trained model, transfer learning accelerates the 
training process, enhances model performance, and reduces the need for large amounts of training 
data (71). This approach has been successfully applied across various fields, including computer 
vision (16, 28), natural language processing (4, 58), and speech recognition (43, 56). 

There are two primary ways to apply transfer learning: fine-tuning and feature extraction. Fine-tuning 
involves using the weights of a pre-trained model as a starting point and re-training the model on a new 
dataset for a specific task, allowing the pre-trained weights to be adjusted or “fine-tuned" to perform 
well on the new task (27). In contrast, the feature extraction approach leverages the earlier layers (e.g., 
the initial convolutional layers) of the pre-trained model to extract relevant features from the new 

 

Figure 2: The distributions of effective thermal conductivity (ETC) for the (a) training and (b) testing datasets, 
each consisting of 150 × 150 × 150  cubic voxel volumes, are presented. c) The ETC distribution of the 
augmented training dataset exhibits skewness, with a tail extending into the lower ETC value region. d) To 
construct a balanced dataset, we randomly select 550 subvolumes from each 0.02 interval within the ETC 
range of 𝜆𝜆eff ∈ [0.38,0.98] from the augmented dataset. 
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dataset, while a newly added set of layers (e.g., the fully connected layers) is trained specifically for the 
target task using these extracted features. This method is particularly useful when the pre-trained model 
has already learned features that are applicable to the new task (71). In this study, we adopted the latter 
approach by employing four different pre-trained CNN models as feature extractors to develop new 
models for predicting the effective thermal conductivity (ETC) of 3D porous media. The pre-trained 
models were used strictly for feature extraction, not fine-tuning. Specifically, the feature extraction 
modules retained frozen weights throughout training, ensuring that the pre-trained layers acted solely 
as non-trainable feature extractors to identify relevant patterns in the input data. In contrast, the 
regression modules were composed of fully connected layers with randomly initialized weights, which 
were trained from scratch for the specific task of ETC prediction. This setup adheres to the standard 
definition of feature extraction, where pre-trained models provide stable, fixed features, and only the 
newly added layers are trained for the target application. We utilized the VGG16, ResNet50, and 
InceptionV3 models—2D CNN models pre-trained on the ImageNet dataset—along with a 3D CNN 
model pre-trained on a comprehensive digital rock dataset for permeability prediction (22). Below, we 
provide a more detailed description of the four pre-trained models. 

The VGG16 model is a CNN trained on a collection of over 14 million images from the ImageNet dataset. 
Introduced by Simonyan and Zisserman (63), the VGG16 model achieved a top-5 accuracy of 91.1% in 
the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (59). To use the VGG16 model as 
a feature extractor for our dataset, we imported the model while excluding its classification module 
consisting of fully connected layers. We then fed the 3D images as a stack of 2D slices—where each slice 
represents an image channel—into the VGG16 feature extractor, which outputs a stack of extracted visual 
features. This three-dimensional feature stack was flattened and used as input for our newly developed 
regression module, which consists of two consecutive fully connected layers with 128 and 64 neurons, 
respectively. These layers are designed to uncover latent relationships from the extracted features. To 
prevent overfitting during the training process, we applied a dropout rate of 0.1 to the fully connected 
layers. We employed the rectified linear unit (ReLU) as the activation function for these layers, as it 

 

Figure 3: We apply transfer learning by using the earlier layers of pre-trained models as feature extractors, 
while training a new set of layers (i.e., the regression module) for our specific task of predicting effective 
thermal conductivity.  
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introduces non-linearity while minimizing computational cost (6). The final layer of the regression 
module is a single-neuron dense layer with a linear activation function that outputs the predicted ETC 
(Fig. 3). 

The InceptionV3 model is the third generation of a deep CNN model that adopts an inception 
architecture. Introduced by researchers at Google, InceptionV3 has become a widely used image 
recognition model, demonstrating a top-5 accuracy of 93.9% on the ImageNet dataset (67). The model 
represents the integration of several advancements in deep learning architecture, as detailed by Szegedy 
et al. (67). The InceptionV3 architecture consists of several convolution layers, as well as layers for average 
pooling, max pooling, dropout, and a classification module that includes fully connected dense layers 
and a softmax activation function. For transfer learning, the final pooling layer, located just before the 
dense and softmax layers, is of particular interest. Thus, we imported the InceptionV3 model while 
excluding its classification module (i.e., top layers), allowing us to use it as a feature extractor. The 
extracted features were then fed into our newly developed regression module, which consists of two 
consecutive fully connected layers with 128 and 64 neurons, respectively, designed to uncover latent 
relationships within the features. The final layer of the regression module is a single-neuron dense layer 
with a linear activation function that outputs the predicted ETC (Fig. 3). 

The ResNet50 model is a deep CNN and an expanded version of the ResNet model, a type of ANN that 
constructs networks by stacking residual modules—blocks of convolutional layers with shortcut 
connections. Developed by researchers at Microsoft, ResNet50 was trained on the ImageNet dataset and 
achieved a top-5 accuracy of 94.47% (32). ResNet50 is a 50-layer CNN comprising 48 convolutional 
layers, one max pooling layer, one average pooling layer, and a final fully connected dense layer with a 
SoftMax activation function. Similar to our approach with other models, we used the ResNet50 model 
as a feature extractor by importing the original model without its top layers. We then added our newly 
developed regression module, which consists of two consecutive fully connected layers with 128 and 64 
neurons, respectively, designed to identify latent relationships within the extracted features. The final 
layer of the regression module is a single-neuron dense layer with a linear activation function that 
outputs the predicted ETC (Fig. 3). 

Finally, we employed the multi-scale 3D CNN model introduced by Elmorsy et al. (22) for the prediction 
of digital rock permeability, referred to here as MS-PERM, in our transfer learning application. This model 
incorporates an inception module that consists of two parallel convolutional layer paths with varying 
kernel sizes, allowing for multi-scale feature aggregation. Following the inception module, a deep 
learning module further extracts deeper features, which are then passed to a final regression module 
capable of identifying latent relationships within the features and predicting permeability. The primary 
advantage of MS-PERM is that it was trained on one of the largest digital rock datasets available in the 
literature, comprising over 50,000 subvolumes of 150 × 150 × 150  voxels of digital porous media 
samples. Due to its novel architecture and the extensive dataset it was trained on, the model achieves 
excellent accuracy in predicting the permeability of various rock samples, with a mean absolute relative 
accuracy of 90.7%. In this study, we utilized MS-PERM as a feature extractor by importing the original 
model without its top layers. We then incorporated our newly developed regression module, consisting 
of two consecutive fully connected layers with 128 and 64 neurons, respectively, to uncover latent 
relationships from the extracted features. The regression module’s final layer is a single-neuron dense 
layer with a linear activation function, which outputs the predicted ETC (Fig. 3). 

We trained the four aforementioned models on a computing cluster equipped with four NVIDIA GeForce 
RTX 2080 Ti GPUs, using the open-source software interface Keras 2.4.0 and the machine learning library 
TensorFlow 2.3.1. The use of parallel computing enabled by GPUs significantly reduced training time and 
allowed the models to scale with additional resources (54). We use the mean squared error (MSE) as the 
loss function and train the model with the Adam optimizer, a computationally efficient variant of adaptive 
stochastic gradient descent (39). 

We note that the regression models are designed to operate on a fixed input size (i.e., 150 × 150 × 150 
voxels). Given the memory-intensive nature of 3D CNNs, incorporating higher-resolution datasets would 
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introduce significant computational challenges. Downsampling the digital porous media samples may 
partially mitigate this issue; however, evaluating its effectiveness lies beyond the scope of the present 
study. Future work could explore the impact of downsampling on predictive accuracy by quantifying the 
trade-off between computational efficiency and the preservation of critical pore-scale features. 

3. RESULTS AND DISCUSSION 
We investigated the transfer learning methodology by training the four pre-trained models (i.e., VGG16, 
InceptionV3, ResNet50, MS-PERM) on the training dataset in two different scenarios: with and without 
pre-trained weights, each for 10 epochs. First, we trained the four models from scratch, starting with 
random initialization of all weights, including those in the feature extractor engine. In the second 
scenario, we trained the same models using frozen pre-trained weights for the feature extractor engine, 
while the weights of the regression module are trainable and initialized randomly in both cases. We 
assessed the performance of the trained models by evaluating prediction accuracy on the testing dataset 
and monitoring the training time. Prediction accuracy was measured by computing the absolute relative 
error (ARE) defined as ARE = |(λeff

pred − λeff
true)/λeff

true| , where 𝜆𝜆eff
pred  is the ETC predicted by the machine 

learning model, 𝜆𝜆eff
true is true ETC obtained from direct numerical simulation. To reduce the impact of 

outliers, we reported the model’s accuracy solely for predictions with an ARE that falls within the 95th 
percentile.  

 

Figure 4: Effective thermal conductivity (ETC) prediction of the subvolumes from the testing dataset using (a) 
a VGG16 model trained from scratch and (b) a model trained with the pre-trained VGG16 feature extractor. 
The VGG16 model trained from scratch significantly underpredicts the true ETC, while the model trained with 
the pre-trained VGG16 feature extractor achieves excellent accuracy. The blue dashed vertical line represents 
the median ARE, while the red dashed line indicates the mean absolute relative error (MARE). 
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We began by assessing the predictive accuracy of the models based on VGG16. The VGG16 pre-trained 
model outperforms the VGG16 model trained from scratch, achieving a mean absolute relative error 
(MARE) of 0.104, which is significantly lower than the MARE of 0.196 achieved by the model trained from 
scratch  (Fig. 4). We observed that the VGG16 model trained from scratch tends to underestimate the 
ETC values. Beyond accuracy enhancement, we found that the VGG16 pre-trained model is 2.4 times 
faster to train than the VGG16 model trained from scratch. This increased speed is primarily due to the 
reduced number of trainable parameters that need to be optimized and updated after each training 
epoch. 

Next, we evaluated the models based on ResNet50. The evaluation revealed that the ResNet50 pre-
trained model outperforms the ResNet50 model trained from scratch, with MARE values of 0.098 and 
0.148, respectively (Fig. 5). We observed that the ResNet50 model trained from scratch tends to 
overestimate the ETC values, occasionally producing unphysical ETC values greater than one. In terms of 
training speed, we found that the ResNet50 pre-trained model was 3.3 times faster to train than the 
ResNet50 model trained from scratch, consistent with the trend observed with the VGG16 models. 

Similarly, we evaluated the InceptionV3 models by quantifying their training and testing performance. 
We found that the InceptionV3 pre-trained model was significantly more accurate, achieving a MARE of 
0.097 compared to 0.162 for the InceptionV3 model trained from scratch (Fig. 6). Additionally, the pre-
trained model exhibited a reduced error distribution range (ARE ∈ [0,0.28]) compared to the broader 

 

Figure 5: Effective thermal conductivity (ETC) prediction of the subvolumes from the testing dataset using 
(a) a ResNet50 model trained from scratch and (b) a model trained with the pre-trained ResNet50 feature 
extractor. The ResNet50 model trained from scratch overpredicts the true ETC, occasionally producing 
unphysical ETC values that are greater than one. The model trained with the pre-trained ResNet50 feature 
extractor achieves excellent accuracy. The blue dashed vertical line represents the median absolute relative 
error, while the red dashed line indicates the mean absolute relative error (MARE). 
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range of ARE ∈ [0,0.4] observed for the model trained from scratch (Fig. 6b). The pre-trained model is 
also 3 times faster than the model trained from scratch for the same number of training epochs, 
highlighting the speed-up advantage of using pre-trained models. 

Finally, we assessed the performance of the MS-PERM models. Our results indicate that the pre-trained 
MS-PERM model performed better, achieving a lower MARE of 0.090 compared to the MARE of 0.156 
for the MS-PERM model trained from scratch (Fig. 7). The pre-trained MS-PERM model also 
outperformed all other models discussed earlier. This improvement is primarily attributed to the fact that 
the MS-PERM model was originally trained on a comprehensive 3D digital rock dataset, enabling its 
feature extractor to identify the most relevant features from the new dataset. Additionally, we found that 
the MS-PERM model trained from scratch tends to overestimate ETC values, occasionally producing 
unphysical ETC values greater than one. In contrast, the pre-trained MS-PERM model delivered balanced 
predictions across the entire ETC range (Fig. 7b). In fact, the pre-trained model exhibited the narrowest 
error distribution range among all models, with ARE values confined to [0, 0.26]. In terms of training 
speed, the pre-trained MS-PERM model was also 2.5 times faster than the MS-PERM model trained from 
scratch, reinforcing the advantage of using pre-trained models as feature extractors over training the 
entire model from scratch. 

 

Figure 6: Effective thermal conductivity (ETC) prediction of the subvolumes from the testing dataset using (a) 
an InceptionV3 model trained from scratch and (b) a model trained with the pre-trained InceptionV3 feature 
extractor. The InceptionV3 model trained from scratch significantly underpredicts the true ETC, while the 
model trained with the pre-trained InceptionV3 feature extractor achieves excellent accuracy. The absolute 
relative error (ARE) of the InceptionV3 model trained from scratch has a wide distribution, whereas the ARE 
distribution for the model trained with the pre-trained InceptionV3 feature extractor is much narrower, with 
the majority of predictions concentrated in the low-error range. The blue dashed vertical line denotes the 
median ARE, while the red dashed line shows the mean absolute relative error (MARE). 
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Our analysis clearly demonstrates the superior performance of pre-trained models employed as feature 
extractors compared to models trained from scratch, both in terms of prediction accuracy and training 
speed. Specifically, we show that using pre-trained models as feature extractors and training them on 
our target dataset results in predictions that are, on average, over 70% more accurate than those from 
models trained from scratch with random weight initialization. This technique proves highly 
advantageous in scenarios where large training datasets are unavailable, scarce, or time-consuming to 
compile. Similarly, in situations where large datasets are available but computational resources—such as 
memory or processing power—are limited, making it difficult to train models from scratch, pre-trained 
models offer a significant advantage. Furthermore, the pre-trained models are found to be, on average, 
2.8 times faster to train than their counterparts trained from scratch. This speed advantage arises because 
pre-trained models, when used as feature extractors, require substantially fewer trainable parameters to 
be fine-tuned and optimized. This is especially beneficial when computational resources, like CPUs and 
GPUs, are constrained. These challenges—limited data availability, insufficient computational power, and 
time constraints—are common obstacles that many researchers face when training and fine-tuning 
machine learning models using traditional methods (82). By leveraging and expanding the application 
of transfer learning techniques in the domain of digital rock characterization, it will become increasingly 

 

Figure 7: Effective thermal conductivity (ETC) prediction of the subvolumes from the testing dataset using (a) 
a MS-PERM model trained from scratch and (b) a model trained with the pre-trained MS-PERM model feature 
extractor. The MS-PERM model trained from scratch tends to overpredict the true ETC, occasionally 
producing unphysical ETC values greater than one, while the model leveraging the pre-trained MS-PERM 
feature extractor achieves excellent accuracy. Moreover, the model trained with the pre-trained MS-PERM 
feature extractor exhibits a narrower absolute relative error (ARE) range, with most predictions concentrated 
in the low-error range. The blue dashed vertical line represents the median ARE, while the red dashed line 
indicates the mean absolute relative error (MARE). 
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feasible to predict, analyze, and understand various porous media properties (e.g., permeability, thermal 
conductivity, electrical resistivity, elastic modulus) with fewer resources and at higher speeds. 

4. CONCLUSION 
In this study, we introduce a novel approach to digital porous media characterization by leveraging 
transfer learning. Our methodology effectively transfers prior knowledge from state-of-the-art machine 
learning models to significantly enhance both the speed and accuracy of new models tailored specifically 
for predicting the effective thermal conductivity (ETC) of digital porous media. 

Our analysis focuses on the application of four pre-trained machine learning models—VGG16, ResNet50, 
InceptionV3, and MS-PERM—as feature extractors within machine learning models designed for end-
to-end ETC predictions of 150 × 150 × 150 voxel subvolumes. The first three models, pre-trained on the 
ImageNet dataset, effectively extract generic image features, while the MS-PERM model, pre-trained on 
a comprehensive digital porous media dataset for permeability prediction, demonstrates superior ability 
in capturing specific features relevant to digital porous media. Despite utilizing a relatively modest 
training dataset of approximately 16,000 subvolumes, the models equipped with pre-trained feature 
extractors achieve remarkable accuracy on the testing dataset, with the MS-PERM model attaining the 
lowest mean absolute relative error (MARE) of 0.09. Our findings indicate that this enhanced accuracy is 
directly attributable to the adoption of transfer learning, which improves accuracy by over 70% 
compared to models trained from scratch. Additionally, the use of pre-trained models significantly 
increases computational efficiency, reducing training times by an average of 2.8 times. 

Over the past decade, digital rock analysis has gained increasing significance in both academic research 
and industrial applications. Our work underscores the advantages of employing transfer learning 
techniques, particularly in scenarios where large training datasets are unavailable, scarce, or time-
consuming to assemble, or where computational resources are limited. We anticipate that the continued 
application and expansion of transfer learning in porous media characterization will facilitate more 
effective, resource-efficient, and rapid predictions and analyses of key subsurface properties, including 
permeability, electrical resistivity, and elastic modulus, thereby expanding the applicability of digital rock 
physics in subsurface engineering. 

STATEMENTS AND DECLARATIONS 
Author Contributions 
M.E. and B.Z. designed research; M.E. performed research and analyzed data; W.E. and B.Z. acquired 
funding and supervised research; and M.E., W.E., and B.Z. wrote the paper. 

Conflicts of Interest 
The authors have no relevant financial or non-financial interests to disclose. 

Data, Code & Protocol Availability 
The data used in this manuscript were obtained from the freely accessible Imperial College London 
online repository portal (14). Numerical simulations of the 3D porous media samples were performed 
using OpenFOAM, an open-source suite of solvers for CFD simulations (33). The machine learning 
model was trained using the open-source software Keras 2.4.0 and TensorFlow 2.3.1 on NVIDIA 
GeForce RTX 2080 Ti GPUs. All figures were created with Matplotlib 3.5.1, which is available under the 
Matplotlib license at https://matplotlib.org/. Part of the software (v.1.1) for data processing and the 
machine learning model associated with this manuscript is publicly available on GitHub at 
https://github.com/elmorsym1/Transfer-Learning-ETC-Predictions. 

Funding Received 
This study was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) 
Discovery Grants (RGPIN-2019-07162) and the Canadian Nuclear Energy Infrastructure Resilience 

https://doi.org/10.69631/ipj.v2i3nr75
https://matplotlib.org/
https://github.com/elmorsym1/Transfer-Learning-ETC-Predictions


 
Elmorsy et al.  Page 15 of 19 
 

 
InterPore Journal, Vol. 2, Issue 3, 2025        https://doi.org/10.69631/ipj.v2i3nr75  

under Systemic Risk (CaNRisk) - Collaborative Research and Training Experience (CREATE) program. 
Additional support from the INTERFACE Institute and the INViSionLab at McMaster University is greatly 
appreciated. The data will be made publicly accessible on the author’s repository 
(https://github.com/elmorsym1). 

ORCID IDs 
Mohamed Elmorsy   https://orcid.org/0000-0002-7983-6139  
Wael El-Dakhakhni   https://orcid.org/0000-0001-8617-261X  
Benzhong Zhao    https://orcid.org/0000-0003-1136-9957  
 

REFERENCES 
1. Abdulagatova, Z., Abdulagatov, I. M., & Emirov, V. N. (2009). Effect of temperature and pressure on the 

thermal conductivity of sandstone. International Journal of Rock Mechanics and Mining Sciences, 46(6), 1055–
1071. https://doi.org/10.1016/j.ijrmms.2009.04.011  

2. Albert, K., Franz, C., Koenigsdorff, R., & Zosseder, K. (2017). Inverse estimation of rock thermal conductivity 
based on numerical microscale modeling from sandstone thin sections. Engineering Geology, 231, 1–8. 
https://doi.org/10.1016/j.enggeo.2017.10.010  

3. Ali, A. H., Mohanad G. Yaseen, Mohammad Aljanabi, & Saad Abbas Abed. (2023). Transfer learning: A new 
promising techniques. Mesopotamian Journal of Big Data, 2023, 29–30. 
https://doi.org/10.58496/MJBD/2023/004  

4. Alyafeai, Z., AlShaibani, M. S., & Ahmad, I. (2020). A survey on transfer learning in natural language processing 
(No. arXiv:2007.04239). arXiv. https://doi.org/10.48550/arXiv.2007.04239  

5. Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A. J., Al-Shamma, O., et al. (2021). Novel transfer learning 
approach for medical imaging with limited labeled data. Cancers, 13(7), 1590. 
https://doi.org/10.3390/cancers13071590  

6. Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., et al. (2021). Review of deep learning: Concepts, 
CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. 
https://doi.org/10.1186/s40537-021-00444-8  

7. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., et al. (2013a). Digital rock physics benchmarks—Part I: 
Imaging and segmentation. Computers & Geosciences, 50, 25–32. 
https://doi.org/10.1016/j.cageo.2012.09.005  

8. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., et al. (2013b). Digital rock physics benchmarks—part II: 
Computing effective properties. Computers & Geosciences, 50, 33–43. 
https://doi.org/10.1016/j.cageo.2012.09.008  

9. Askari, R., Taheri, S., & Hejazi, S. H. (2015). Thermal conductivity of granular porous media: A pore scale 
modeling approach. AIP Advances, 5(9), 097106. https://doi.org/10.1063/1.4930258  

10. Banerjee, P., & Kashyap, S. (2024). Unlocking transfer learning’s potential in natural language processing: An 
extensive investigation and evaluation. 2024 International Conference on Advances in Computing Research on 
Science Engineering and Technology (ACROSET), 1–7. https://doi.org/10.1109/ACROSET62108.2024.10743260  

11. Bauder, R. A., & Khoshgoftaar, T. M. (2018). The effects of varying class distribution on learner behavior for 
medicare fraud detection with imbalanced big data. Health Information Science and Systems, 6(1), 9. 
https://doi.org/10.1007/s13755-018-0051-3  

12. Bauder, R. A., Khoshgoftaar, T. M., & Hasanin, T. (2018). An empirical study on class rarity in big data. 2018 
17th IEEE International Conference on Machine Learning and Applications (ICMLA), 785–790. 
https://doi.org/10.1109/ICMLA.2018.00125  

13. Berg, C. F., Lopez, O., & Berland, H. (2017). Industrial applications of digital rock technology. Journal of 
Petroleum Science and Engineering, 157, 131–147. https://doi.org/10.1016/j.petrol.2017.06.074  

14. Bijeljic, B., & Raeini, A. Q. (n.d.). Micro-CT images and networks. Imperial College London. Retrieved June 25, 
2025, from https://www.imperial.ac.uk/engineering/departments/earth-science/research/research-
groups/pore-scale-modelling/micro-ct-images-and-networks/  

15. Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., et al. (2013). Pore-scale imaging and modelling. 
Advances in Water Resources, 51, 197–216. https://doi.org/10.1016/j.advwatres.2012.03.003  

https://doi.org/10.69631/ipj.v2i3nr75
https://github.com/elmorsym1
https://orcid.org/0000-0002-7983-6139
https://orcid.org/0000-0001-8617-261X
https://orcid.org/0000-0003-1136-9957
https://doi.org/10.1016/j.ijrmms.2009.04.011
https://doi.org/10.1016/j.enggeo.2017.10.010
https://doi.org/10.58496/MJBD/2023/004
https://doi.org/10.48550/arXiv.2007.04239
https://doi.org/10.3390/cancers13071590
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1016/j.cageo.2012.09.005
https://doi.org/10.1016/j.cageo.2012.09.008
https://doi.org/10.1063/1.4930258
https://doi.org/10.1109/ACROSET62108.2024.10743260
https://doi.org/10.1007/s13755-018-0051-3
https://doi.org/10.1109/ICMLA.2018.00125
https://doi.org/10.1016/j.petrol.2017.06.074
https://www.imperial.ac.uk/engineering/departments/earth-science/research/research-groups/pore-scale-modelling/micro-ct-images-and-networks/
https://www.imperial.ac.uk/engineering/departments/earth-science/research/research-groups/pore-scale-modelling/micro-ct-images-and-networks/
https://doi.org/10.1016/j.advwatres.2012.03.003


 
Elmorsy et al.  Page 16 of 19 
 

 
InterPore Journal, Vol. 2, Issue 3, 2025        https://doi.org/10.69631/ipj.v2i3nr75  

16. Brodzicki, A., Piekarski, M., Kucharski, D., Jaworek-Korjakowska, J., & Gorgon, M. (2020). Transfer learning 
methods as a new approach in computer vision tasks with small datasets. Foundations of Computing and 
Decision Sciences, 45(3), 179–193. https://doi.org/10.2478/fcds-2020-0010  

17. Byra, M. (2018). Discriminant analysis of neural style representations for breast lesion classification in 
ultrasound. Biocybernetics and Biomedical Engineering, 38(3), 684–690. 
https://doi.org/10.1016/j.bbe.2018.05.003  

18. Byra, M., Styczynski, G., Szmigielski, C., Kalinowski, P., Michałowski, Ł., et al. (2018). Transfer learning with deep 
convolutional neural network for liver steatosis assessment in ultrasound images. International Journal of 
Computer Assisted Radiology and Surgery, 13(12), 1895–1903. https://doi.org/10.1007/s11548-018-1843-2  

19. Demuth, C., Mendes, M. A. A., Ray, S., & Trimis, D. (2014). Performance of thermal lattice Boltzmann and finite 
volume methods for the solution of heat conduction equation in 2D and 3D composite media with inclined 
and curved interfaces. International Journal of Heat and Mass Transfer, 77, 979–994. 
https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.051  

20. Diersch, H.-J. G. (2014). Heat transport in porous media. In H.-J. G. Diersch, FEFLOW (pp. 673–709). Springer 
Berlin Heidelberg. https://doi.org/10.1007/978-3-642-38739-5_13  

21. Dongxing, D., Xu, Z., Chunhao, W., Jiaqi, L., Yinjie, S., & Yingge, L. (2021). Determination of the effective 
thermal conductivity of the porous media based on digital rock physics. Geothermics, 97, 102267. 
https://doi.org/10.1016/j.geothermics.2021.102267  

22. Elmorsy, M., El‐Dakhakhni, W., & Zhao, B. (2022). Generalizable permeability prediction of digital porous 
media via a novel multi‐scale 3D convolutional neural network. Water Resources Research, 58(3), 
e2021WR031454. https://doi.org/10.1029/2021WR031454  

23. Elmorsy, M., El‐Dakhakhni, W., & Zhao, B. (2023). Rapid permeability upscaling of digital porous media via 
physics‐informed neural networks. Water Resources Research, 59(12), e2023WR035064. 
https://doi.org/10.1029/2023WR035064  

24. Farahani, A., Pourshojae, B., Rasheed, K., & Arabnia, H. R. (2020). A concise review of transfer learning. 2020 
International Conference on Computational Science and Computational Intelligence (CSCI), 344–351. 
https://doi.org/10.1109/CSCI51800.2020.00065  

25. Fei, W., Narsilio, G. A., & Disfani, M. M. (2021). Predicting effective thermal conductivity in sands using an 
artificial neural network with multiscale microstructural parameters. International Journal of Heat and Mass 
Transfer, 170, 120997. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120997  

26. Galvez, R. L., Bandala, A., Dadlos, E. P., & Vicerra, R. R. P. (n.d.). Object detection using CNN | pdf | Artificial 
Neural Network | Computer Science. Scribd. Retrieved June 25, 2025, from 
https://www.scribd.com/document/737186240/Object-Detection-Using-CNN  

27. Goodfellow, I., Bengio, Y., & Courville, A. (n.d.). Deep learning. MIT Press. Retrieved June 25, 2025, from 
https://mitpress.mit.edu/9780262035613/deep-learning/  

28. Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., & Agrawal, A. (2017). Deep Convolutional Neural Networks 
with transfer learning for computer vision-based data-driven pavement distress detection. Construction and 
Building Materials, 157, 322–330. https://doi.org/10.1016/j.conbuildmat.2017.09.110  

29. Greenberg, H. R., Blink, J. A., Sutton, M., Fratoini, M., & Ross, A. D. (2012, March 26). Application of Analytical 
Heat Transfer Models of Multi-Layered Natural and Engineered Barriers in Potential High-Level Nuclear Waste 
Repositories. WM2012 Conference, Phoenix, Arizona, USA. https://www.osti.gov/servlets/purl/1114696  

30. Gupta, V., Choudhary, K., DeCost, B., Tavazza, F., Campbell, C., et al. (2024). Structure-aware graph neural 
network based deep transfer learning framework for enhanced predictive analytics on diverse materials 
datasets. NPJ Computational Materials, 10(1), 1. https://doi.org/10.1038/s41524-023-01185-3  

31. Gupta, V., Choudhary, K., Tavazza, F., Campbell, C., Liao, W., et al. (2021). Cross-property deep transfer learning 
framework for enhanced predictive analytics on small materials data. Nature Communications, 12(1), 6595. 
https://doi.org/10.1038/s41467-021-26921-5  

32. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90  

33. Horgue, P., Soulaine, C., Franc, J., Guibert, R., & Debenest, G. (2015). An open-source toolbox for multiphase 
flow in porous media. Computer Physics Communications, 187, 217–226. 
https://doi.org/10.1016/j.cpc.2014.10.005  

https://doi.org/10.69631/ipj.v2i3nr75
https://doi.org/10.2478/fcds-2020-0010
https://doi.org/10.1016/j.bbe.2018.05.003
https://doi.org/10.1007/s11548-018-1843-2
https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.051
https://doi.org/10.1007/978-3-642-38739-5_13
https://doi.org/10.1016/j.geothermics.2021.102267
https://doi.org/10.1029/2021WR031454
https://doi.org/10.1029/2023WR035064
https://doi.org/10.1109/CSCI51800.2020.00065
https://doi.org/10.1016/j.ijheatmasstransfer.2021.120997
https://www.scribd.com/document/737186240/Object-Detection-Using-CNN
https://mitpress.mit.edu/9780262035613/deep-learning/
https://doi.org/10.1016/j.conbuildmat.2017.09.110
https://www.osti.gov/servlets/purl/1114696
https://doi.org/10.1038/s41524-023-01185-3
https://doi.org/10.1038/s41467-021-26921-5
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.cpc.2014.10.005


 
Elmorsy et al.  Page 17 of 19 
 

 
InterPore Journal, Vol. 2, Issue 3, 2025        https://doi.org/10.69631/ipj.v2i3nr75  

34. Huynh, B. Q., Li, H., & Giger, M. L. (2016). Digital mammographic tumor classification using transfer learning 
from deep convolutional neural networks. Journal of Medical Imaging, 3(3), 034501. 
https://doi.org/10.1117/1.JMI.3.3.034501  

35. Jia, G. S., Tao, Z. Y., Meng, X. Z., Ma, C. F., Chai, J. C., & Jin, L. W. (2019). Review of effective thermal 
conductivity models of rock-soil for geothermal energy applications. Geothermics, 77, 1–11. 
https://doi.org/10.1016/j.geothermics.2018.08.001  

36. Kamencay, P., Benco, M., Mizdos, T., & Radil, R. (2017). A new method for face recognition using convolutional 
neural network. Advances in Electrical and Electronic Engineering, 15(4), 663–672. 
https://doi.org/10.15598/aeee.v15i4.2389  

37. Kamrava, S., Tahmasebi, P., & Sahimi, M. (2020). Linking morphology of porous media to their macroscopic 
permeability by deep learning. Transport in Porous Media, 131(2), 427–448. https://doi.org/10.1007/s11242-
019-01352-5  

38. Kasar, M. M., Bhattacharyya, D., & Kim, T. (2016). Face recognition using neural network: A review. 
International Journal of Security and Its Applications, 10(3), 81–100. https://doi.org/10.14257/ijsia.2016.10.3.08  

39. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv. 
https://doi.org/10.48550/ARXIV.1412.6980  

40. Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A., et al. (2022). Deep reinforcement learning for 
autonomous driving: A survey. IEEE Transactions on Intelligent Transportation Systems, 23(6), 4909–4926. 
https://doi.org/10.1109/TITS.2021.3054625  

41. Kora, P., Ooi, C. P., Faust, O., Raghavendra, U., Gudigar, A., et al. (2022). Transfer learning techniques for 
medical image analysis: A review. Biocybernetics and Biomedical Engineering, 42(1), 79–107. 
https://doi.org/10.1016/j.bbe.2021.11.004  

42. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural 
networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386  

43. Kunze, J., Kirsch, L., Kurenkov, I., Krug, A., Johannsmeier, J., & Stober, S. (2017). Transfer learning for speech 
recognition on a budget. arXiv. https://doi.org/10.48550/ARXIV.1706.00290  

44. Labus, M., & Labus, K. (2018). Thermal conductivity and diffusivity of fine-grained sedimentary rocks. Journal 
of Thermal Analysis and Calorimetry, 132(3), 1669–1676. https://doi.org/10.1007/s10973-018-7090-5  

45. Liang, X., Liu, Y., Chen, T., Liu, M., & Yang, Q. (2019). Federated transfer reinforcement learning for 
autonomous driving. arXiv. https://doi.org/10.48550/ARXIV.1910.06001  

46. Liu, M., Ahmad, R., Cai, W., & Mukerji, T. (2023). Hierarchical homogenization with deep‐learning‐based 
surrogate model for rapid estimation of effective permeability from digital rocks. Journal of Geophysical 
Research: Solid Earth, 128(2), e2022JB025378. https://doi.org/10.1029/2022JB025378  

47. Maes, J., & Menke, H. P. (2022). GeoChemFoam: Direct modelling of flow and heat transfer in micro-CT 
images of porous media. Heat and Mass Transfer, 58(11), 1937–1947. https://doi.org/10.1007/s00231-022-
03221-2  

48. Meshalkin, Y., Shakirov, A., Popov, E., Koroteev, D., & Gurbatova, I. (2020). Robust well-log based 
determination of rock thermal conductivity through machine learning. Geophysical Journal International, 
222(2), 978–988. https://doi.org/10.1093/gji/ggaa209  

49. Mostaghimi, P., Blunt, M. J., & Bijeljic, B. (2013). Computations of absolute permeability on micro-CT images. 
Mathematical Geosciences, 45(1), 103–125. https://doi.org/10.1007/s11004-012-9431-4  

50. Muljadi, B. P., Blunt, M. J., Raeini, A. Q., & Bijeljic, B. (2016). The impact of porous media heterogeneity on non-
Darcy flow behaviour from pore-scale simulation. Advances in Water Resources, 95, 329–340. 
https://doi.org/10.1016/j.advwatres.2015.05.019  

51. Murison, J., Moosavi, R., Schulz, M., Schillinger, B., & Schröter, M. (2015). Neutron tomography as a tool to 
study immiscible fluids in porous media without chemical dopants. Energy & Fuels, 29(10), 6271–6276. 
https://doi.org/10.1021/acs.energyfuels.5b01403  

52. Nabipour, I., Raoof, A., Cnudde, V., Aghaei, H., & Qajar, J. (2024). A computationally efficient modeling of flow 
in complex porous media by coupling multiscale digital rock physics and deep learning: Improving the 
tradeoff between resolution and field-of-view. Advances in Water Resources, 188, 104695. 
https://doi.org/10.1016/j.advwatres.2024.104695  

53. Olson, D. L. (2004). Data set balancing. In Y. Shi, W. Xu, & Z. Chen (Eds.), Data Mining and Knowledge 
Management (Vol. 3327, pp. 71–80). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-30537-
8_8  

https://doi.org/10.69631/ipj.v2i3nr75
https://doi.org/10.1117/1.JMI.3.3.034501
https://doi.org/10.1016/j.geothermics.2018.08.001
https://doi.org/10.15598/aeee.v15i4.2389
https://doi.org/10.1007/s11242-019-01352-5
https://doi.org/10.1007/s11242-019-01352-5
https://doi.org/10.14257/ijsia.2016.10.3.08
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1016/j.bbe.2021.11.004
https://doi.org/10.1145/3065386
https://doi.org/10.48550/ARXIV.1706.00290
https://doi.org/10.1007/s10973-018-7090-5
https://doi.org/10.48550/ARXIV.1910.06001
https://doi.org/10.1029/2022JB025378
https://doi.org/10.1007/s00231-022-03221-2
https://doi.org/10.1007/s00231-022-03221-2
https://doi.org/10.1093/gji/ggaa209
https://doi.org/10.1007/s11004-012-9431-4
https://doi.org/10.1016/j.advwatres.2015.05.019
https://doi.org/10.1021/acs.energyfuels.5b01403
https://doi.org/10.1016/j.advwatres.2024.104695
https://doi.org/10.1007/978-3-540-30537-8_8
https://doi.org/10.1007/978-3-540-30537-8_8


 
Elmorsy et al.  Page 18 of 19 
 

 
InterPore Journal, Vol. 2, Issue 3, 2025        https://doi.org/10.69631/ipj.v2i3nr75  

54. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU computing. 
Proceedings of the IEEE, 96(5), 879–899. https://doi.org/10.1109/JPROC.2008.917757  

55. Popov, Y. A., Pribnow, D. F. C., Sass, J. H., Williams, C. F., & Burkhardt, H. (1999). Characterization of rock 
thermal conductivity by high-resolution optical scanning. Geothermics, 28(2), 253–276. 
https://doi.org/10.1016/S0375-6505(99)00007-3  

56. Qin, C.-X., Qu, D., & Zhang, L.-H. (2018). Towards end-to-end speech recognition with transfer learning. 
EURASIP Journal on Audio, Speech, and Music Processing, 2018(1), 18. https://doi.org/10.1186/s13636-018-
0141-9  

57. Rong, Q., Wei, H., Huang, X., & Bao, H. (2019). Predicting the effective thermal conductivity of composites 
from cross sections images using deep learning methods. Composites Science and Technology, 184, 107861. 
https://doi.org/10.1016/j.compscitech.2019.107861  

58. Ruder, S., Peters, M. E., Swayamdipta, S., & Wolf, T. (2019). Transfer learning in natural language processing. 
Proceedings of the 2019 Conference of the North, 15–18. https://doi.org/10.18653/v1/N19-5004  

59. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., et al. (2015). ImageNet large scale visual recognition 
challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-
0816-y  

60. Salehi, A. W., Khan, S., Gupta, G., Alabduallah, B. I., Almjally, A., et al. (2023). A study of CNN  and transfer 
learning in medical imaging: Advantages, challenges, future scope. Sustainability, 15(7), 5930. 
https://doi.org/10.3390/su15075930  

61. Sapińska-Śliwa, A., Sliwa, T., Twardowski, K., Szymski, K., Gonet, A., & Żuk, P. (2020). Method of averaging the 
effective thermal conductivity based on thermal response tests of borehole heat exchangers. Energies, 13(14), 
3737. https://doi.org/10.3390/en13143737  

62. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of 
Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0  

63. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. 
arXiv. https://doi.org/10.48550/ARXIV.1409.1556  

64. Singh, A., & Gosain, A. (2024). Catalyzing medical imaging: Exploring the potentials of deep transfer learning. 
Journal of Information and Optimization Sciences, 45(2), 439–448. https://doi.org/10.47974/JIOS-1561  

65. Song, R., Liu, J., & Cui, M. (2017). A new method to reconstruct structured mesh model from micro-computed 
tomography images of porous media and its application. International Journal of Heat and Mass Transfer, 
109, 705–715. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.053  

66. Sreerama, J., & Sistla, S. M. K. (2023). Harnessing the power of transfer learning in deep learning models. 
Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), 1(1), 139–147. 
https://doi.org/10.60087/jklst.vol1.n1.p147  

67. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for 
computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818–2826. 
https://doi.org/10.1109/CVPR.2016.308  

68. Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., et al. (2016). Convolutional neural networks 
for medical image analysis: Full training or fine tuning? IEEE Transactions on Medical Imaging, 35(5), 1299–
1312. https://doi.org/10.1109/TMI.2016.2535302  

69. Tong, F., Jing, L., & Zimmerman, R. W. (2009). An effective thermal conductivity model of geological porous 
media for coupled thermo-hydro-mechanical systems with multiphase flow. International Journal of Rock 
Mechanics and Mining Sciences, 46(8), 1358–1369. https://doi.org/10.1016/j.ijrmms.2009.04.010  

70. Tong, Z., Liu, M., & Bao, H. (2016). A numerical investigation on the heat conduction in high filler loading 
particulate composites. International Journal of Heat and Mass Transfer, 100, 355–361. 
https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.092 

71. Torrey, L. A., & Shavlik, J. W. (2009). Chapter 11: Transfer Learning. In  Olivas, E. S., Guerrero, J. D. M., Sober, M. 
M., Benedito, J. R. M., & López, A. J. S (Eds.). Handbook of Research on Machine Learning 36 Applications and 
Trends: Algorithms, Methods, and Techniques. (pp. 242-264). Information Science Reference. 
https://doi.org/10.4018/978-1-60566-766-9.ch011 / https://doi.org/10.4018/978-1-60566-766-9   

72. Troch, A., Hoog, J. D., Vanneste, S., Balemans, D., Latré, S., & Hellinckx, P. (2022). Transfer learning in 
autonomous driving using real-world samples. In L. Barolli (Ed.), Advances on P2P, Parallel, Grid, Cloud and 
Internet Computing (Vol. 343, pp. 237–245). Springer International Publishing. https://doi.org/10.1007/978-3-
030-89899-1_24  

https://doi.org/10.69631/ipj.v2i3nr75
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1016/S0375-6505(99)00007-3
https://doi.org/10.1186/s13636-018-0141-9
https://doi.org/10.1186/s13636-018-0141-9
https://doi.org/10.1016/j.compscitech.2019.107861
https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.3390/su15075930
https://doi.org/10.3390/en13143737
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.47974/JIOS-1561
https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.053
https://doi.org/10.60087/jklst.vol1.n1.p147
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/TMI.2016.2535302
https://doi.org/10.1016/j.ijrmms.2009.04.010
https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.092
https://doi.org/10.4018/978-1-60566-766-9.ch011%20/
https://doi.org/10.4018/978-1-60566-766-9
https://doi.org/10.1007/978-3-030-89899-1_24
https://doi.org/10.1007/978-3-030-89899-1_24


 
Elmorsy et al.  Page 19 of 19 
 

 
InterPore Journal, Vol. 2, Issue 3, 2025        https://doi.org/10.69631/ipj.v2i3nr75  

73. Vaferi, B., Gitifar, V., Darvishi, P., & Mowla, D. (2014). Modeling and analysis of effective thermal conductivity 
of sandstone at high pressure and temperature using optimal artificial neural networks. Journal of Petroleum 
Science and Engineering, 119, 69–78. https://doi.org/10.1016/j.petrol.2014.04.013  

74. Von Herzen, R., & Maxwell, A. E. (1959). The measurement of thermal conductivity of deep-sea sediments by a 
needle-probe method. Journal of Geophysical Research, 64(10), 1557–1563. 
https://doi.org/10.1029/JZ064i010p01557  

75. Wei, H., Bao, H., & Ruan, X. (2020). Machine learning prediction of thermal transport in porous media with 
physics-based descriptors. International Journal of Heat and Mass Transfer, 160, 120176. 
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120176  

76. Wei, H., Zhao, S., Rong, Q., & Bao, H. (2018). Predicting the effective thermal conductivities of composite 
materials and porous media by machine learning methods. International Journal of Heat and Mass Transfer, 
127, 908–916. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.082  

77. Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1), 9. 
https://doi.org/10.1186/s40537-016-0043-6  

78. Wu, H., Fang, W.-Z., Kang, Q., Tao, W.-Q., & Qiao, R. (2019). Predicting effective diffusivity of porous media 
from images by deep learning. Scientific Reports, 9(1), 20387. https://doi.org/10.1038/s41598-019-56309-x  

79. Yang, H., Zhang, L., Liu, R., Wen, X., Yang, Y., et al. (2019). Thermal conduction simulation based on 
reconstructed digital rocks with respect to fractures. Energies, 12(14), 2768. 
https://doi.org/10.3390/en12142768  

80. Zahasky, C., & Benson, S. M. (2018). Micro-positron emission tomography for measuring sub-core scale single 
and multiphase transport parameters in porous media. Advances in Water Resources, 115, 1–16. 
https://doi.org/10.1016/j.advwatres.2018.03.002  

81. Zeng, Y., Ji, B., Zhang, Y., Feng, J., Luo, J., & Wang, M. (2022). A fractal model for effective thermal conductivity 
in complex geothermal media. Frontiers in Earth Science, 10, 786290. 
https://doi.org/10.3389/feart.2022.786290  

82. Zhang, J., Ma, G., Yang, Z., Mei, J., Zhang, D., et al. (2024). Knowledge extraction via machine learning guides a 
topology‐based permeability prediction model. Water Resources Research, 60(7), e2024WR037124. 
https://doi.org/10.1029/2024WR037124  

83. Zhang, Y., Hao, S., Yu, Z., Fang, J., Zhang, J., & Yu, X. (2018). Comparison of test methods for shallow layered 
rock thermal conductivity between in situ distributed thermal response tests and laboratory test based on 
drilling in northeast China. Energy and Buildings, 173, 634–648. https://doi.org/10.1016/j.enbuild.2018.06.009  

84. Zhiqiang, W., & Jun, L. (2017). A review of object detection based on convolutional neural network. 2017 36th 
Chinese Control Conference (CCC), 11104–11109. https://doi.org/10.23919/ChiCC.2017.8029130  

 

 

 

 

 

 

https://doi.org/10.69631/ipj.v2i3nr75
https://doi.org/10.1016/j.petrol.2014.04.013
https://doi.org/10.1029/JZ064i010p01557
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120176
https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.082
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1038/s41598-019-56309-x
https://doi.org/10.3390/en12142768
https://doi.org/10.1016/j.advwatres.2018.03.002
https://doi.org/10.3389/feart.2022.786290
https://doi.org/10.1029/2024WR037124
https://doi.org/10.1016/j.enbuild.2018.06.009
https://doi.org/10.23919/ChiCC.2017.8029130

	1. INTRODUCTION
	2. METHODOLOGY
	Data Preparation and Processing
	2.2. Transfer Learning and Pre-trained Models

	RESULTS AND DISCUSSION
	4. CONCLUSION
	STATEMENTS AND DECLARATIONS
	Author Contributions
	Conflicts of Interest
	Data, Code & Protocol Availability
	Funding Received
	ORCID IDs

	REFERENCES

