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ABSTRACT

Porous media beneath the Earth’s surface, including aquifers, oil and gas reservoirs,
and geothermal systems, play a crucial role in various natural resource management
and environmental engineering applications. The study of their physical properties,
particularly thermo-physical properties like effective thermal conductivity (ETC), is
essential for enhancing the efficiency of subsurface engineering technologies
including nuclear waste disposal, geothermal energy utilization, and underground
thermal energy storage. Traditionally, determining ETC has relied on either simplified
empirical models, which often lack accuracy, or sophisticated laboratory
experiments, which are time-consuming and resource intensive. The advent of three-
dimensional (3D) imaging technologies has enabled digital characterization of
subsurface media, but direct numerical simulations of ETC remain computationally
prohibitive. In response to these challenges, we introduce a novel machine learning
framework that leverages transfer learning to enhance the prediction of ETC in digital
rock samples. Our approach utilizes state-of-the-art convolutional neural networks
(CNNs), pre-trained on extensive datasets, and applies them to various porous media
samples, including Berea sandstone, Bentheimer sandstone, and Ketton limestone.
By employing transfer learning, we demonstrate that our models can achieve high
prediction accuracy with significantly reduced training time, computational power,
and data requirements. This study highlights the potential of transfer learning to
advance the efficiency and accuracy of digital rock analysis, offering a promising tool
for the rapid and reliable characterization of subsurface properties.

KEYWORDS
Digital rock physics, Machine learning, Geothermal energy, Effective thermal
conductivity
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1. INTRODUCTION

Porous media beneath the Earth's surface, including aquifers, oil and gas reservoirs, and geothermal
systems, are integral to various natural resource and environmental management applications. The
physical properties of these media have been extensively studied to elucidate their behavior and facilitate

InterPore Journal, Vol. 2, Issue 3, 2025 https://doi.org/10.69631/ipj.v2i3nr75


https://doi.org/10.69631/ipj.v2i3nr75
mailto:robinzhao@mcmaster.ca
https://doi.org/10.69631/ipj.v2i3nr75
https://doi.org/10.69631/ipj.v2i3nr75
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-7983-6139
https://orcid.org/0000-0001-8617-261X
https://orcid.org/0000-0003-1136-9957

Elmorsy et al. Page 2 of 19

the development of predictive models for flow and transport phenomena. Among these properties,
thermo-physical characteristics, particularly the effective thermal conductivity (ETC)—which represents
the thermal conductivity of the geological porous medium—are crucial in subsurface engineering
technologies including nuclear waste disposal (29), geothermal energy utilization (35), underground
thermal energy storage (61), and enhanced oil recovery (48). The thermal conductivity of the porous
media is a critical parameter in evaluating the performance and safety of these subsurface
technologies (69). Thermal conductivity is the measure of how efficiently heat passes through a material
given a unit temperature difference across a unit area of the material with a unit thickness, under steady-
state conditions (44). In porous media, thermal conductivity is not a fixed value; it varies as a function of
factors such as porosity, water saturation, mineralogical composition, and most notably, the pore
microstructure and temperature of the medium (1). Consequently, the thermal conductivity of porous
media, such as rocks, is termed effective thermal conductivity (2, 69). In the case of dry sedimentary
rocks, the thermal conductivity of air (approximately 0.026 W/m - K) within the pores is significantly
lower compared to that of the solid rock matrix (ranging from 0.4 to 7 W/m - K). Therefore, the
microstructure of the pores, including their volume, shape, and distribution, plays a fundamental role in
determining the ETC of the rock samples (44).

The determination of ETC of porous media includes conducting laboratory and field experiments as well
as developing theoretical models. Experimental techniques, including needle probes (25, 74), guarded
parallel plates (1), and optical scanning (55), are commonly employed to measure the ETC of porous
media. However, these experimental methods are often costly, requiring specialized equipment,
materials, and skilled personnel. Additionally, the experimental process is time-intensive, requiring
extensive preparation, data collection, and analysis, which can impede the research progress and limit
the number of experiments that can be feasibly conducted (83). To mitigate these challenges, analytical
methods such as the Maxwell model and the weighted harmonic mean equation offer a more rapid
approach to estimating the ETC. These methods provide simple analytical formulas that can predict the
effective thermal conductivity of porous media using only the volume fraction of the sample (9, 35).
However, despite their ease of use, these analytical models tend to oversimplify the complex structural
characteristics of porous media, leading to limitations in their accuracy (21). The intricate pore structures
and irregular pore distributions within porous media create significant challenges, and as a result, a
universally accepted analytical relationship between ETC and geometric structural parameters remains
elusive (81).

In recent years, digital rock physics technology has been widely adopted for simulating the physical
properties of porous media, thanks to its benefits in digitalization and visualization (49). Progress in
imaging technologies, including X-ray micro-computed tomography (15), neutron tomography (51), and
micro-positron tomography (80) have enabled the visualization of the three-dimensional (3D) internal
structure of porous media that are otherwise opaque. These imaging techniques facilitate the digital
characterization of the physical properties of porous media through numerical simulations (7, 8, 13). Two
types of simulation approaches are commonly employed: pore network modeling and direct numerical
modeling. Pore network models utilize simplified geometries, such as spheres and cylinders, to represent
the pores and throats within porous media. In contrast, direct numerical models create meshes from
digitized image blocks, offering a more precise representation of the complex microstructure in porous
media (65). Direct numerical simulations, including those employing the finite element method (FEM)
and the finite volume method (FVM), are developed based on physical modeling by solving partial
differential equations and are effectively used for simulating flow and heat transfer within micro-CT
images of digital rocks (19, 70). These simulation techniques allow for a more accurate and detailed
analysis of the internal structure and properties of porous media (65), contributing to a deeper
understanding of flow and heat transfer under various conditions (47).

For example, Yang et al. (79) evaluated the effects of fracture parameters—such as length, aperture, and
angle—on the thermal conductivity of digital rocks, using 50 x 50 x 50 cubic voxel samples
reconstructed from a stack of 2D images of sandstone with varying fractures. Similarly, Dongxing et al.
(21) developed a digital model of a homogeneous rock by performing a 3D reconstruction of its internal
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structure using a series of micro-CT images. By generating high-quality meshes compatible with
computational fluid dynamics (CFD) software, they calculated the ETC of rock samples of varying sizes in
three directions through direct numerical simulation. The study concluded that digital rock analysis offers
a feasible and reliable alternative for evaluating the thermal properties of rocks, grounded in the accurate
characterization of the internal microscale structure of porous media. However, performing direct
numerical simulations of thermal transport in 3D porous media remains computationally intensive,
requiring significant computing power and memory resources (20).

Recently, machine learning has emerged as a powerful tool for the digital characterization of subsurface
porous media, offering significant advantages in terms of efficiency by reducing the time and
computational costs associated with analyzing large datasets (52). Machine learning algorithms are
particularly effective at identifying complex patterns and relationships within data, leading to accurate
predictions of key properties, including the thermo-physical properties of porous media. For instance,
Vaferi et al. (73) employed a two-layer artificial neural network (ANN) to estimate the ETC of dry and oil-
saturated sandstone under a wide range of environmental conditions. The predicted ETC values showed
strong agreement with experimental thermal conductivity data, with absolute average relative deviation
percentages of 2.73% and 3.81% for the overall experimental dataset of oil-saturated and dry sandstone,
respectively.

Fei et al. (25) utilized micro-CT images of four dry sand samples to predict their ETC using an artificial
neural network (ANN) model with pre-calculated micro-structural parameters. In their approach, the
sand is represented as a network composed of nodes (sand grains) and edges (inter-grain contacts or
small gaps between neighboring grains). In particular, the weighted coordination number, which
accounts for both particle connectivity and contact area, was identified as a particularly reliable predictor
of ETC in dry materials. The model demonstrated good predictive capabilities, achieving a high
correlation (R? = 0.97) between the predicted and actual ETC values obtained through thermal needle
probe testing. Similarly, Wei et al. (75) employed pre-calculated features to predict the ETC of digital
porous media by investigating structural characteristics that significantly impact thermal transport. To
effectively describe the characteristics of porous media, they devised five structural descriptors: shape
factor, bottleneck, channel factor, perpendicular non-uniformity, and dominant paths. These descriptors
were then utilized in two conventional machine learning models—support vector regression (SVR) and
Gaussian process regression (GPR)—to predict the ETC of porous media. Specifically, both models were
trained on a dataset comprising 2,460 synthetic 2D porous media images, each 100 x 100 pixels in size,
generated using the quartet structure generation set (QSGS) technique. The models were then tested on
615 100 x 100 images. The predicted thermal conductivity values from the machine learning models
were comparable to those estimated by FEM simulations, with most absolute relative prediction errors
within a 30% range.

Unlike ANNs that rely on pre-calculated features as input, convolutional neural networks (CNNs)
represent a more advanced deep learning method that enables end-to-end predictions by accepting 2D
and 3D images directly as input. Convolutional neural networks have been extensively utilized in various
computer vision applications, such as face recognition (36, 38) and object detection (26, 84), due to their
ability to automatically extract relevant features from input images. Similarly, CNNs have been widely
employed in digital porous media studies to automatically extract internal microstructural features and
determine their relationship with the effective properties being analyzed (22, 23, 37, 78). In the context
of ETC prediction, Wei et al. (76) introduced a machine learning framework incorporating SVR, GPR, and
CNN models to investigate heat transport in digital porous media and found that they yielded more
accurate predictions compared to traditional analytical models, such as the Maxwell-Eucken and
Bruggeman models. Furthermore, they concluded that, given a sufficiently robust training dataset,
machine learning techniques offer a valuable and efficient means for predicting the ETC of porous media.
In another study, Rong et al. (57) explored the application of 2D and 3D CNNs for predicting the ETC of
digital porous media. They generated a synthetic 3D porous media dataset using particle-packing and
QSGS techniques, creating a training dataset of 2,000 100 x 100 x 100 sub-volumes with a fixed solid
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volume fraction of 0.35, for which the ETC was simulated using the FEniCS software?. Initially, they trained
a 2D CNN based on the AlexNet (42) architecture to predict the ETC of the 3D samples. Subsequently,
they investigated the use of a 3D CNN for training on the dataset. However, due to the high
computational demands of training 3D CNNs, they were required to reduce the dataset size to 800
samples and simplify the 3D CNN architecture to just three convolutional layers. While the CNN models
produced results comparable to those obtained from numerical simulations and achieved low mean
absolute error (MAE) and root mean square error (RMSE) values, both below 5%, the training process
was still time-consuming, taking six days on a single CPU.

Traditionally, training deep learning models such as CNNs require a vast amount of training data, which
poses a significant challenge in practical applications where available datasets are often limited and
sparse. This limitation restricts the broader use of deep learning in various domains. To address this
issue, a new branch of machine learning known as Transfer Learning has emerged. Transfer learning is a
powerful machine learning technique, enabling models to leverage pre-trained knowledge to improve
performance on new tasks with limited data (3, 66). It works by transferring knowledge acquired by a
model trained on one task or domain to enhance performance on a related but distinct task (77). By
reusing the weights of pre-trained models, transfer learning accelerates training, improves predictive
accuracy, and reduces reliance on large datasets (24). This approach has been successfully applied across
numerous fields. In medical imaging, for example, fine-tuning pre-trained models on domain-specific
datasets has significantly improved cancer detection and neurological disorder classification (5, 64).
Architectures such as ResNet and VGGNet have shown strong performance by reducing training time
and addressing class imbalances (41, 60). In natural language processing (NLP), models like BERT and
GPT leverage transfer learning to achieve superior results in tasks such as text classification and machine
translation, benefiting from the efficiency of transformer-based architectures (10, 58). Autonomous
driving systems also employ transfer learning to bridge the gap between simulation and real-world
environments, improving collision avoidance and domain adaptation through deep reinforcement
learning and federated transfer learning (40, 45, 72). In materials science and geophysics, transfer
learning enables accurate property predictions from limited data, with cross-property deep transfer
learning often outperforming traditional approaches (30, 31). These diverse applications underscore the
versatility of transfer learning, accelerating discovery and improving computational efficiency across
disciplines.

Convolutional neural networks models such as VGG (63), Inception (67), and ResNet (32), all trained on
the ImageNet dataset, have proven highly effective in transfer learning applications. Their pre-trained
architecture provides robust feature extraction capabilities, making them invaluable in scenarios where
acquiring large-scale labeled datasets is challenging or costly, such as medical image analysis.
Consequently, many studies in the medical field have reported the successful application of transfer
learning techniques (17, 34, 68). For example, Michat Byra et al. (18) utilized a pre-trained Inception-
ResNet-v2 CNN, originally trained on the ImageNet dataset, to extract high-level features from liver B-
mode ultrasound images. These extracted features were then used by a support vector machine (SVM)
algorithm to categorize images with fatty liver, a clinically relevant step in determining the grade of liver
steatosis. In the context of digital rock analysis, Liu et al. (46) applied transfer learning to estimate the
effective permeability of digital rocks. Specifically, they employed the VGG pre-trained model to extract
salient features from micro-CT images of sandstone and carbonate samples that are most sensitive to
permeability. The predicted permeabilities using this approach were consistent with direct numerical
simulation results while significantly reducing computational time and memory requirements compared
to traditional direct numerical simulations.

Here, we introduce a novel approach to characterize the ETC of digital porous media by leveraging
transfer learning. Our machine learning framework employs four pre-trained CNN models as feature
extractors for 3D images of digital rocks, significantly expediting the training process, reducing the need
for large datasets, and minimizing computational resource demands while maintaining high accuracy.

a https://fenicsproject.org/
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We anticipate that the use of transfer learning has the potential to revolutionize the digital
characterization of porous media, particularly in cases where 3D image datasets are scarce. Even when
large datasets of 3D images become available, training complex deep learning models from scratch
requires substantial computational resources, both in terms of processing power (e.g., multiple GPUs)
and time (e.g., training that can extend to days or even weeks). Consequently, this approach paves the
way for more efficient prediction, analysis, and understanding of porous media properties (e.g.,
permeability, electrical resistivity, elastic modulus) using machine learning with fewer resources and at
greater speeds.

2. METHODOLOGY

2.1. DataPreparation and Processing

We created our machine learning models using a dataset of 3D images of various digital porous media
samples, which are publicly accessible (Table 1). These images were originally obtained by researchers
at Imperial College London using synchrotron X-ray beamlines or micro-CT scanners. This dataset has
been employed in prior studies to examine different pore-scale flow and transport processes in digital
porous media (15, 50).

Table 1: Digital rock samples used for training and testing the machine learning methods.

Rock type Size Resolution Porosity Stride Number of Number of
(mm) (um/voxel) (-) (voxel) subvolumes labelled ETC
(-) (-)

Bentheimer 3 3 0.22 50 4,877 14,631
sandstone

Ketton 3 3 0.13 50 3,819 11,457
limestone

Berea 2.1 53 0.19 25 4,651 13,953
sandstone

ETC: effective thermal conductivity

The dataset is stored and made publicly accessible through an online portal (14). We utilized three sets
of 3D scans from cores of Bentheimer sandstone, Berea sandstone, and Ketton limestone. The 3D images
of Bentheimer sandstone and Ketton limestone consist of 1000x1000x 1000 cubic voxels with a
resolution of 3 pm/voxel, while the Berea sandstone core measures 400x400x400 cubic voxels with a
resolution of 5.3 um/voxel. To maintain consistency in the scale of all samples in our study, we rescaled
the Berea sandstone images to 712x712x712 cubic voxels, ensuring that each voxel corresponds to a
physical dimension of 3 um (Fig. 1). The rescaling procedure was validated by comparing the porosity
of the rescaled sample to that of the original, revealing a variation of less than 2%, which confirmed the
effectiveness of the rescaling technique. Then, we extracted subvolumes from the 3D images using a
sliding cube of 150x150x 150 cubic voxels, with an overlapping stride of either 25 or 50 voxels (Table 1,
Fig. 1).

We employed OpenFOAMP, an open-source suite of CFD solvers (33), to numerically simulate the
thermal conductivity of the extracted subvolumes. OpenFOAM simulates heat conduction by solving
Fourier's law (Eq. 1), where q is the heat flux, A is the thermal conductivity, and VT is the temperature
gradient.

q=—AVT M

We simulated heat conduction along each of the principal axis (i.e., x,y, z) of the porous media samples.
Specifically, a fixed heat flux was applied at the heat input surface, and a fixed temperature was
maintained at the heat output surface. The laplacianFOAM algorithm was then employed to compute
the temperature at the inlet surface. Finally, the thermal conductivity of the porous media sample was

b https://www.openfoam.com/
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Figure 1: Sample sequential 2D slices from a 3D uCT scan of Berea sandstone after rescaling, where (a)
shows the 15¢ slice, (b) the 200%" slice, (c) the 400" slice, and (d) the 600" slice. The void (pore) spaces of
the porous medium are shown in black, and the solid matrix is shown in white.

calculated using Equation 2, where g, is the total heat transfer rate integrated over the entire input
surface, S, is the area of the input surface, T, and T, are the inlet and outlet temperature, respectively,
and L is the distance between the inlet and the outlet surfaces of the sample.

1= q:L )
Sin (Tln - Tout)

Although the thermal conductivity for the solid phase A, varies depending on the material, we set A, to
unity (i.e, A, = 1 W/m - K) for all simulations, and report the ETC as A = 1/A,.

We conducted over 40,000 simulations on a dataset of 150 X 150 x 150 subvolumes, which were
randomly split into training and testing sets in a 90-10 ratio (Fig. 2a, b). In our methodology, the ETC
values obtained from numerical simulations serve as the ground truth labels for training and testing the
machine learning models, providing the reference against which the models’ predictive capabilities are
evaluated. To enhance the training set, we implemented data augmentation techniques. Common
methods for data augmentation in machine learning include simple image transformations such as
flipping and rotating. For example, EImorsy et al. (22) utilized image flipping to effectively increase the
size of their digital rocks training dataset, resulting in improved accuracy and generalizability of their
model. Similar techniques have been applied to benchmark datasets like ImageNet and CIFAR-10 (62).
In our study, we generated four unique subvolumes with the same effective thermal conductivity (ETC)
value by horizontally and vertically flipping the individual 2D image slices that constitute each 3D
subvolume. Additionally, we reversed the order of the 2D slices to create four more distinct subvolumes
with the same ETC value. This augmentation process expanded the original training dataset to
approximately 288,000 distinct subvolumes, encompassing around 36,000 unique ETC values.

The ETC values in the dataset span from 0.38 to 0.98 and display a negatively skewed distribution, with
a tail extending toward the lower ETC region (Fig. 2c). Such skewed distributions are common in natural
phenomena, such as rainfall and earthquakes; however, they pose significant challenges for machine
learning models. Algorithms often interpret the “tail" of the distribution as outliers, which can result in
biased predictions that favor the more prevalent values in the training data (11, 53). This bias impedes
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Figure 2: The distributions of effective thermal conductivity (ETC) for the (a) training and (b) testing datasets,
each consisting of 150 X 150 x 150 cubic voxel volumes, are presented. c¢) The ETC distribution of the
augmented training dataset exhibits skewness, with a tail extending into the lower ETC value region. d) To
construct a balanced dataset, we randomly select 550 subvolumes from each 0.02 interval within the ETC
range of A4 € [0.38,0.98] from the augmented dataset.

the ability of machine learning models to learn effectively from imbalanced datasets (12). To mitigate
this issue and construct a balanced dataset, we implemented an under-sampling strategy. Specifically,
we divided the augmented dataset into bins corresponding to ETC intervals of 0.02 and randomly
selected 550 subvolumes from each bin. This method yielded an evenly distributed dataset with ETC
values from 0.38 to 0.98 (Fig. 2d), with the upper threshold indicating a lack of sufficient subvolumes
beyond that point. The resulting balanced dataset, consisting of approximately 16,000 subvolumes, was
then utilized for training the machine learning models and it was further split into training and validation
subsets using the same 90-10 ratio applied during model training.

2.2. Transfer Learning and Pre-trained Models

Transfer learning is a machine learning technique that involves leveraging knowledge gained from a pre-
trained model on one task or domain to improve the performance of a model on a different but related
task or domain. By reusing the weights of the pre-trained model, transfer learning accelerates the
training process, enhances model performance, and reduces the need for large amounts of training
data (71). This approach has been successfully applied across various fields, including computer
vision (16, 28), natural language processing (4, 58), and speech recognition (43, 56).

There are two primary ways to apply transfer learning: fine-tuning and feature extraction. Fine-tuning
involves using the weights of a pre-trained model as a starting point and re-training the model on a new
dataset for a specific task, allowing the pre-trained weights to be adjusted or “fine-tuned" to perform
well on the new task (27). In contrast, the feature extraction approach leverages the earlier layers (e.g.,
the initial convolutional layers) of the pre-trained model to extract relevant features from the new
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dataset, while a newly added set of layers (e.g., the fully connected layers) is trained specifically for the
target task using these extracted features. This method is particularly useful when the pre-trained model
has already learned features that are applicable to the new task (71). In this study, we adopted the latter
approach by employing four different pre-trained CNN models as feature extractors to develop new
models for predicting the effective thermal conductivity (ETC) of 3D porous media. The pre-trained
models were used strictly for feature extraction, not fine-tuning. Specifically, the feature extraction
modules retained frozen weights throughout training, ensuring that the pre-trained layers acted solely
as non-trainable feature extractors to identify relevant patterns in the input data. In contrast, the
regression modules were composed of fully connected layers with randomly initialized weights, which
were trained from scratch for the specific task of ETC prediction. This setup adheres to the standard
definition of feature extraction, where pre-trained models provide stable, fixed features, and only the
newly added layers are trained for the target application. We utilized the VGG16, ResNet50, and
InceptionV3 models—2D CNN models pre-trained on the ImageNet dataset—along with a 3D CNN
model pre-trained on a comprehensive digital rock dataset for permeability prediction (22). Below, we
provide a more detailed description of the four pre-trained models.

The VGG16 model is a CNN trained on a collection of over 14 million images from the ImageNet dataset.
Introduced by Simonyan and Zisserman (63), the VGG16 model achieved a top-5 accuracy of 91.1% in
the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (59). To use the VGG16 model as
a feature extractor for our dataset, we imported the model while excluding its classification module
consisting of fully connected layers. We then fed the 3D images as a stack of 2D slices—where each slice
represents an image channel—into the VGG16 feature extractor, which outputs a stack of extracted visual
features. This three-dimensional feature stack was flattened and used as input for our newly developed
regression module, which consists of two consecutive fully connected layers with 128 and 64 neurons,
respectively. These layers are designed to uncover latent relationships from the extracted features. To
prevent overfitting during the training process, we applied a dropout rate of 0.1 to the fully connected
layers. We employed the rectified linear unit (ReLU) as the activation function for these layers, as it
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Figure 3: We apply transfer learning by using the earlier layers of pre-trained models as feature extractors,
while training a new set of layers (i.e., the regression module) for our specific task of predicting effective
thermal conductivity.
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introduces non-linearity while minimizing computational cost (6). The final layer of the regression
module is a single-neuron dense layer with a linear activation function that outputs the predicted ETC
(Fig. 3).

The InceptionV3 model is the third generation of a deep CNN model that adopts an inception
architecture. Introduced by researchers at Google, InceptionV3 has become a widely used image
recognition model, demonstrating a top-5 accuracy of 93.9% on the ImageNet dataset (67). The model
represents the integration of several advancements in deep learning architecture, as detailed by Szegedy
et al. (67). The InceptionV3 architecture consists of several convolution layers, as well as layers for average
pooling, max pooling, dropout, and a classification module that includes fully connected dense layers
and a softmax activation function. For transfer learning, the final pooling layer, located just before the
dense and softmax layers, is of particular interest. Thus, we imported the InceptionV3 model while
excluding its classification module (i.e., top layers), allowing us to use it as a feature extractor. The
extracted features were then fed into our newly developed regression module, which consists of two
consecutive fully connected layers with 128 and 64 neurons, respectively, designed to uncover latent
relationships within the features. The final layer of the regression module is a single-neuron dense layer
with a linear activation function that outputs the predicted ETC (Fig. 3).

The ResNet50 model is a deep CNN and an expanded version of the ResNet model, a type of ANN that
constructs networks by stacking residual modules—blocks of convolutional layers with shortcut
connections. Developed by researchers at Microsoft, ResNet50 was trained on the ImageNet dataset and
achieved a top-5 accuracy of 94.47% (32). ResNet50 is a 50-layer CNN comprising 48 convolutional
layers, one max pooling layer, one average pooling layer, and a final fully connected dense layer with a
SoftMax activation function. Similar to our approach with other models, we used the ResNet50 model
as a feature extractor by importing the original model without its top layers. We then added our newly
developed regression module, which consists of two consecutive fully connected layers with 128 and 64
neurons, respectively, designed to identify latent relationships within the extracted features. The final
layer of the regression module is a single-neuron dense layer with a linear activation function that
outputs the predicted ETC (Fig. 3).

Finally, we employed the multi-scale 3D CNN model introduced by Elmorsy et al. (22) for the prediction
of digital rock permeability, referred to here as MS-PERM, in our transfer learning application. This model
incorporates an inception module that consists of two parallel convolutional layer paths with varying
kernel sizes, allowing for multi-scale feature aggregation. Following the inception module, a deep
learning module further extracts deeper features, which are then passed to a final regression module
capable of identifying latent relationships within the features and predicting permeability. The primary
advantage of MS-PERM is that it was trained on one of the largest digital rock datasets available in the
literature, comprising over 50,000 subvolumes of 150 x 150 x 150 voxels of digital porous media
samples. Due to its novel architecture and the extensive dataset it was trained on, the model achieves
excellent accuracy in predicting the permeability of various rock samples, with a mean absolute relative
accuracy of 90.7%. In this study, we utilized MS-PERM as a feature extractor by importing the original
model without its top layers. We then incorporated our newly developed regression module, consisting
of two consecutive fully connected layers with 128 and 64 neurons, respectively, to uncover latent
relationships from the extracted features. The regression module’s final layer is a single-neuron dense
layer with a linear activation function, which outputs the predicted ETC (Fig. 3).

We trained the four aforementioned models on a computing cluster equipped with four NVIDIA GeForce
RTX 2080 Ti GPUs, using the open-source software interface Keras 2.4.0 and the machine learning library
TensorFlow 2.3.1. The use of parallel computing enabled by GPUs significantly reduced training time and
allowed the models to scale with additional resources (54). We use the mean squared error (MSE) as the
loss function and train the model with the Adam optimizer, a computationally efficient variant of adaptive
stochastic gradient descent (39).

We note that the regression models are designed to operate on a fixed input size (i.e., 150 x 150 x 150
voxels). Given the memory-intensive nature of 3D CNNs, incorporating higher-resolution datasets would
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introduce significant computational challenges. Downsampling the digital porous media samples may
partially mitigate this issue; however, evaluating its effectiveness lies beyond the scope of the present
study. Future work could explore the impact of downsampling on predictive accuracy by quantifying the
trade-off between computational efficiency and the preservation of critical pore-scale features.

3. RESULTS AND DISCUSSION

We investigated the transfer learning methodology by training the four pre-trained models (i.e, VGG16,
InceptionV3, ResNet50, MS-PERM) on the training dataset in two different scenarios: with and without
pre-trained weights, each for 10 epochs. First, we trained the four models from scratch, starting with
random initialization of all weights, including those in the feature extractor engine. In the second
scenario, we trained the same models using frozen pre-trained weights for the feature extractor engine,
while the weights of the regression module are trainable and initialized randomly in both cases. We
assessed the performance of the trained models by evaluating prediction accuracy on the testing dataset
and monitoring the training time. Prediction accuracy was measured by computing the absolute relative
error (ARE) defined as ARE = (A% — A¢) /A, where 2% is the ETC predicted by the machine
learning model, A% is true ETC obtained from direct numerical simulation. To reduce the impact of
outliers, we reported the model’s accuracy solely for predictions with an ARE that falls within the 95
percentile.
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Figure 4: Effective thermal conductivity (ETC) prediction of the subvolumes from the testing dataset using (a)
a VGG16 model trained from scratch and (b) a model trained with the pre-trained VGG16 feature extractor.
The VGG16 model trained from scratch significantly underpredicts the true ETC, while the model trained with
the pre-trained VGG16 feature extractor achieves excellent accuracy. The blue dashed vertical line represents
the median ARE, while the red dashed line indicates the mean absolute relative error (MARE).
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We began by assessing the predictive accuracy of the models based on VGG16. The VGG16 pre-trained
model outperforms the VGG16 model trained from scratch, achieving a mean absolute relative error
(MARE) of 0.104, which is significantly lower than the MARE of 0.196 achieved by the model trained from
scratch (Fig. 4). We observed that the VGG16 model trained from scratch tends to underestimate the
ETC values. Beyond accuracy enhancement, we found that the VGG16 pre-trained model is 2.4 times
faster to train than the VGG16 model trained from scratch. This increased speed is primarily due to the
reduced number of trainable parameters that need to be optimized and updated after each training
epoch.
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Figure 5: Effective thermal conductivity (ETC) prediction of the subvolumes from the testing dataset using
(a) a ResNet50 model trained from scratch and (b) a model trained with the pre-trained ResNet50 feature
extractor. The ResNet50 model trained from scratch overpredicts the true ETC, occasionally producing
unphysical ETC values that are greater than one. The model trained with the pre-trained ResNet50 feature
extractor achieves excellent accuracy. The blue dashed vertical line represents the median absolute relative
error, while the red dashed line indicates the mean absolute relative error (MARE).

Next, we evaluated the models based on ResNet50. The evaluation revealed that the ResNet50 pre-
trained model outperforms the ResNet50 model trained from scratch, with MARE values of 0.098 and
0.148, respectively (Fig. 5). We observed that the ResNet50 model trained from scratch tends to
overestimate the ETC values, occasionally producing unphysical ETC values greater than one. In terms of
training speed, we found that the ResNet50 pre-trained model was 3.3 times faster to train than the
ResNet50 model trained from scratch, consistent with the trend observed with the VGG16 models.

Similarly, we evaluated the InceptionV3 models by quantifying their training and testing performance.
We found that the InceptionV3 pre-trained model was significantly more accurate, achieving a MARE of
0.097 compared to 0.162 for the InceptionV3 model trained from scratch (Fig. 6). Additionally, the pre-
trained model exhibited a reduced error distribution range (ARE € [0,0.28]) compared to the broader
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Figure 6: Effective thermal conductivity (ETC) prediction of the subvolumes from the testing dataset using (a)
an InceptionV3 model trained from scratch and (b) a model trained with the pre-trained InceptionV3 feature
extractor. The InceptionV3 model trained from scratch significantly underpredicts the true ETC, while the
model trained with the pre-trained InceptionV3 feature extractor achieves excellent accuracy. The absolute
relative error (ARE) of the InceptionV3 model trained from scratch has a wide distribution, whereas the ARE
distribution for the model trained with the pre-trained InceptionV3 feature extractor is much narrower, with
the majority of predictions concentrated in the low-error range. The blue dashed vertical line denotes the
median ARE, while the red dashed line shows the mean absolute relative error (MARE).

range of ARE € [0,0.4] observed for the model trained from scratch (Fig. 6b). The pre-trained model is
also 3 times faster than the model trained from scratch for the same number of training epochs,
highlighting the speed-up advantage of using pre-trained models.

Finally, we assessed the performance of the MS-PERM models. Our results indicate that the pre-trained
MS-PERM model performed better, achieving a lower MARE of 0.090 compared to the MARE of 0.156
for the MS-PERM model trained from scratch (Fig. 7). The pre-trained MS-PERM model also
outperformed all other models discussed earlier. This improvement is primarily attributed to the fact that
the MS-PERM model was originally trained on a comprehensive 3D digital rock dataset, enabling its
feature extractor to identify the most relevant features from the new dataset. Additionally, we found that
the MS-PERM model trained from scratch tends to overestimate ETC values, occasionally producing
unphysical ETC values greater than one. In contrast, the pre-trained MS-PERM model delivered balanced
predictions across the entire ETC range (Fig. 7b). In fact, the pre-trained model exhibited the narrowest
error distribution range among all models, with ARE values confined to [0, 0.26]. In terms of training
speed, the pre-trained MS-PERM model was also 2.5 times faster than the MS-PERM model trained from
scratch, reinforcing the advantage of using pre-trained models as feature extractors over training the
entire model from scratch.
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Figure 7: Effective thermal conductivity (ETC) prediction of the subvolumes from the testing dataset using (a)
a MS-PERM model trained from scratch and (b) a model trained with the pre-trained MS-PERM model feature
extractor. The MS-PERM model trained from scratch tends to overpredict the true ETC, occasionally
producing unphysical ETC values greater than one, while the model leveraging the pre-trained MS-PERM
feature extractor achieves excellent accuracy. Moreover, the model trained with the pre-trained MS-PERM
feature extractor exhibits a narrower absolute relative error (ARE) range, with most predictions concentrated
in the low-error range. The blue dashed vertical line represents the median ARE, while the red dashed line
indicates the mean absolute relative error (MARE).

Our analysis clearly demonstrates the superior performance of pre-trained models employed as feature
extractors compared to models trained from scratch, both in terms of prediction accuracy and training
speed. Specifically, we show that using pre-trained models as feature extractors and training them on
our target dataset results in predictions that are, on average, over 70% more accurate than those from
models trained from scratch with random weight initialization. This technique proves highly
advantageous in scenarios where large training datasets are unavailable, scarce, or time-consuming to
compile. Similarly, in situations where large datasets are available but computational resources—such as
memory or processing power—are limited, making it difficult to train models from scratch, pre-trained
models offer a significant advantage. Furthermore, the pre-trained models are found to be, on average,
2.8 times faster to train than their counterparts trained from scratch. This speed advantage arises because
pre-trained models, when used as feature extractors, require substantially fewer trainable parameters to
be fine-tuned and optimized. This is especially beneficial when computational resources, like CPUs and
GPUs, are constrained. These challenges—limited data availability, insufficient computational power, and
time constraints—are common obstacles that many researchers face when training and fine-tuning
machine learning models using traditional methods (82). By leveraging and expanding the application
of transfer learning techniques in the domain of digital rock characterization, it will become increasingly
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feasible to predict, analyze, and understand various porous media properties (e.g., permeability, thermal
conductivity, electrical resistivity, elastic modulus) with fewer resources and at higher speeds.

4. CONCLUSION

In this study, we introduce a novel approach to digital porous media characterization by leveraging
transfer learning. Our methodology effectively transfers prior knowledge from state-of-the-art machine
learning models to significantly enhance both the speed and accuracy of new models tailored specifically
for predicting the effective thermal conductivity (ETC) of digital porous media.

Our analysis focuses on the application of four pre-trained machine learning models—VGG16, ResNet50,
InceptionV3, and MS-PERM—as feature extractors within machine learning models designed for end-
to-end ETC predictions of 150 x 150 x 150 voxel subvolumes. The first three models, pre-trained on the
ImageNet dataset, effectively extract generic image features, while the MS-PERM model, pre-trained on
a comprehensive digital porous media dataset for permeability prediction, demonstrates superior ability
in capturing specific features relevant to digital porous media. Despite utilizing a relatively modest
training dataset of approximately 16,000 subvolumes, the models equipped with pre-trained feature
extractors achieve remarkable accuracy on the testing dataset, with the MS-PERM model attaining the
lowest mean absolute relative error (MARE) of 0.09. Our findings indicate that this enhanced accuracy is
directly attributable to the adoption of transfer learning, which improves accuracy by over 70%
compared to models trained from scratch. Additionally, the use of pre-trained models significantly
increases computational efficiency, reducing training times by an average of 2.8 times.

Over the past decade, digital rock analysis has gained increasing significance in both academic research
and industrial applications. Our work underscores the advantages of employing transfer learning
techniques, particularly in scenarios where large training datasets are unavailable, scarce, or time-
consuming to assemble, or where computational resources are limited. We anticipate that the continued
application and expansion of transfer learning in porous media characterization will facilitate more
effective, resource-efficient, and rapid predictions and analyses of key subsurface properties, including
permeability, electrical resistivity, and elastic modulus, thereby expanding the applicability of digital rock
physics in subsurface engineering.
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