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ABSTRACT

Pore network models are useful for studying transport in porous materials in
a computationally efficient way. Extraction of networks from volumetric
images has evolved over the vyears, starting with medial axis-based
approaches to more recent watershed segmentation. This paper reconsiders
the classic medial axis method, which offers several advantages such as
speed and topological correctness, and develops a modernized, updated, and
improved version. The new method is named Medial Axis Guided Network
Extraction Tool (MAGNET). It works by analyzing the skeleton of a porous
material to identify pore centers at junctions and endpoints. Additional pore
bodies are found on long throats using two different approaches. This work
includes an efficient tool for calculating the cross-sectional area of throats
with irregular shape by using walkers with an infinite mean-free path to
probe the geometry orthogonal to the medial axis at the point of the throat
constriction. This extra step was critical for obtaining an equivalent diameter
needed to calculate the permeability. Lastly, MAGNET was written with
computational efficiency in mind. The skeletonization approach was itself
4.2X faster than the SNOW watershed segmentation for a 1000° image.
Additionally, a parallelized skeletonization was applied by processing the
image in blocks with sufficient overlap which resulted in a 5.5X speed-up
compared to the serial approach. To validate the output, MAGNET was tested
on a 400% voxel image of a Berea sandstone, and the flow and capillary
properties of the extracted network were compared to the results from
SNOW and the lattice-Boltzmann method. Structural information such as
pore and throat size distribution and mercury intrusion curves was
compared, and noticeable similarity was achieved. Crucially, the permeability
predicted by MAGNET was within 5% of the lattice-Boltzmann prediction on
the same image.
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1. INTRODUCTION

Advances in imaging tools such as x-ray computed tomography and focused ion beam milling coupled
with scanning electron microscopy (SEM) imaging has enabled the study of porous materials at the
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micron scale or smaller (22) via analysis of and simulations on voxel images of the microstructure (28).
Because the starting point is a volumetric image, the acquisition of topological, geometrical, and
transport properties is based on image processing algorithms. Using volumetric images, it is possible to
estimate tortuosity (17), coordination number distributions (6, 15, 33), and pore and throat size
distributions (2, 15, 19, 33), among others. One particularly useful but challenging task is the extraction
of pore networks (37). Pore networks combine both topological and geometrical information to create
a simplified representation of the void space which can then be used to simulate transport processes
such as permeability and tortuosity, as well as multiphase conditions, with excellent computational
efficiency. Increasing the speed and accuracy of pore network extraction algorithms is an ongoing pursuit
(12).

Over the years, various network extraction algorithms have been developed, which can generally be
grouped into three different categories: maximal ball (6, 31), watershed segmentation (8, 26, 29, 34), and
medial axis (11, 15, 17). The maximal ball approach works by inserting the largest inscribed sphere at
each void voxel. Spheres that are fully encompassed by larger ones are removed, leaving the so-called
"maximal balls” (6). The smaller of the “maximal balls” situated between relatively larger “maximal balls”
are considered throats while those adjoining larger “maximal balls” are considered pores. One drawback
of this approach is the time-consuming process of interpretating which balls belong to which pores (8,
27). Watershed segmentation works by segmenting the void space into regions corresponding to pores.
This method was first explored by Thompson et al. (34) and Sheppard et al. (29). More recently, detailed
validation has been provided by Rabbani et al. (26) and Gostick et al. (8), and an open-source
implementation is now available (7). This algorithm works by identifying local peaks in the distance
transform, removing saddle points and nearby peaks to avoid over-segmentation, and finally applying
the watershed algorithm to segment the image into pore regions (8). One of the main disadvantages of
this approach is the computational effort of the watershed filter, though the process of correctly
identifying peaks and therefore pore bodies is not entirely reliable as it involves several adjustable
parameters. The third and final approach is based on the medial axis. The medial axis, also often referred
to as the skeleton of an object, is defined by the set of points that are equidistant to two or more points
on the object border (3). The skeleton retains all the topological information of the original image, which
is one of its main appeals. When combined with a distance transform, the skeleton can also be used to
obtain geometrical data such as pore and throat diameters by looking at distance values corresponding
to voxels on the skeleton. Lindquist et al. (17) were the first to explore the use of the medial axis as a
tool for analyzing the geometry of a porous material, and this was developed into a software
implementation called 3DMA-Rock (16). The advantage of this approach over the other two methods is
its simplicity owing to the direct relationship between the topological skeleton and the pore network, as
well as the potential efficiency since skeletonization is comparatively fast.

The aim of the present paper is to revisit and revise medial axis-based network extraction with the
following aims: a) to create a computationally efficient and accurate network extraction tool, and b) to
provide a modernized, user-friendly, and open-source implementation. Past developments of a medial
axis-based network extraction were developed in either MATLAB (15) or FORTRAN (16), however the
code was not widely distributed and required significant technical know-how of the user. Our new
algorithm, which is referred to as Medial Axis Guided Network Extraction Tool (MAGNET), was written in
Python, a popular and easy to use programming language, and is included in the open-source package
PoreSpy which is publicly available on Github and distributed via the Python Package Index (PyPI). Aside
from being more accessible and modernized, MAGNET was also written to be more efficient than
commonly used options such as the watershed segmentation approach developed by Gostick et al. (8).
As will be shown, MAGNET is also faster than the recently presented PREGO algorithm (13) which uses
region-growing in place of the standard watershed. To fully capitalize on MAGNET's inherent speed, the
present work also includes a study on the use of image chunking to apply skeletonization in parallel,
since skeletonization is the slowest step.

In order to provide an accurate network, this work addresses some of the challenges faced by medial
axis network extraction algorithms. Firstly, dealing with overlapping pores can be complicated, since
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merging criteria must be defined, the details of which can vary between implementations (25). Secondly,
determining pore and throat sizes from the skeleton can be incorrect since the position of the skeleton
does not always coincide with the actual maxima of the distance transforms. Moreover, using the
distance transform to find pore/throat sizes means that only the smallest dimension is known. This is
problematic for pores/throats with an aspect ratio above unity, since both sizes control the transport
and capillary properties. Lastly, pores with a connectivity of 2 are misclassified as long throats, which can
lead to errors when computing flow since the smallest diameter between pores will be applied to the
entire length. The algorithm developed herein addresses all these problems in novel ways that are simple
enough to be efficient, while still effectively remedying the problem.

The present work uses a pore-finding approach, as opposed to a throat finding approach (25), which
works by locating junctions and terminal points (or endpoints) in the skeleton. Nearby junctions are
merged if they are close but otherwise they are allowed to overlap which can be accommodated in the
pore network modeling software using appropriate conductance models. This work explores two
different methods to identify pores with a connectivity of 2, by either looking for local maxima along
throat segments or by analyzing the throat profile for peaks. Also, it was found that applying a maximum
filter was sufficient to correct the fact that the skeleton does not always lie on the true maxima in the
distance transform. Finally, and most importantly, this work proposes a new approach to finding area
and shape of throat openings. Previous efforts have addressed this by slicing (15) or dilating (18)
subsections of the volumetric image, but in this work a procedure is proposed that uses walkers with an
infinite mean-free path (36), travelling orthogonally away from the skeleton in all directions, to probe
the shape of the local geometry. As will be shown, MAGNET is both faster than comparable network
extraction tools and quite accurate at predicting transport properties and capillary pressure behavior,
providing a modern and improved implementation of a classic algorithm.

* Perform skeletonization on image to obtain skel
* Apply distance transform on image to obtain dist
* Apply convolution to skel with a square kernel (w=3) to obtain conv
* Analyze conv to find juncs (conv>4) and ends (conv==2)
* Merge nearby clusters in juncs using chosen method (fixed-size or local distance)
* |solate throat segments by subtracting juncs from skel, then use chosen method
(local maxima or throat profile) to find nodes along each throat
* Collect alljunctions (juncs, ends, nodes) into all_juncs
* Reduce each clusterin all_juncs to a single voxel if necessary
* Apply maximum filter on dist with round kernel (r=2 or 3) to obtain dist2
* Scan each voxelin all_juncs to find pore coordinates and diameter from dist2
* Scan each throat segment:
* Find its cross-sectional area using the walker method
* Find the inscribed diameter from dist2
* Find connected pores by dilating each throat segment to find labels of

overlapped pore clusters and generate the adjacency list

Figure 1: Pseudo-code for MAGNET. The steps highlighted in dark gray indicate new
approaches introduced in this work.
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2. ALGORITHM

Figure 1 is a flow-chart of the image processing steps used by MAGNET. The steps highlighted by dark
gray indicate where new approaches have been developed as part of this work. It starts by obtaining the
skeleton and the distance transform of the void space which are used repeatedly over the course of the
network extraction. Next, convolution is applied to the skeleton to find all junctions and endpoints
followed by merging. After merging, the clusters of junctions are removed from the skeleton, and the
remaining skeleton segments are searched for additional pores with a connectivity of 2. Pore and throat
sizes are found by looking at the distance transform values underlaying each identified junction.
Crucially, when obtaining throat sizes, a new algorithm was developed which can extract the area of
throats and not just their inscribed diameter. Finally, the connectivity of the network is determined from
the image, then all properties are combined into a Python dictionary for easy conversion to OpenPNV for
performing network simulations, though the data format is general enough to be used with any
simulation tool.

2.1. Skeleton

The process of obtaining the skeleton is sometimes called “image thinning” (9) or “ultimate erosion”,
and the term skeleton and medial axis are used interchangeably. There are generally two main
approaches to image thinning algorithms: kernel-based filters and decision trees. Zhang et al. developed
the first algorithm for image thinning using a kernel-based approach that iterates over each pixel in an
image with sub-iterations to remove contour pixels that do not lie on the skeleton (39). This approach,
however, was only designed for 2D images. Lee et al. developed an image thinning algorithm that
effectively reduces 3D structures to their skeletal forms by iteratively removing surface layers of voxels
while preserving the essential topology (14). The algorithm is based on a decision tree approach that
evaluates each voxel's connectivity within its local neighborhood. At each iteration, it identifies and
removes "simple" surface voxels—those that, when removed, do not alter the topology or connectivity
of the structure. Given the importance of volumetric images in the study of porous media, Lee’s method

Figure 2: Progression of MAGNET steps. (a) Lee’s skeleton on a 100 by 100 image of packed spheres
with radius of 5 pixels and 60% porosity. (b) is the distance transform with skeleton overlaid. (c) shows
the junctions (orange) and endpoints (cyan) found from convolution on the skeleton. (d) shows clusters
of junctions and endpoints (green) that form after merging. (e) shows spherical pore bodies inserted at
junctions and endpoints (purple) used for identifying the segments of the skeleton that do not overlap a
pore body (cyan). (f) shows the throat nodes (cyan) found via the maximum filter method. (g) shows the
throat nodes (cyan) found using the throat profile method. (h) shows the entire set of nhodes color-coded
by their pore index number, along with the throat segments (purple).

a https.//openpnm.org/
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has been used extensively by porous media researchers including in the original medial axis network
extraction by Lindquist et al. (17). Lee's method is publicly available as part of sdkit-image®. Figure 2a
shows Lee's skeleton applied to a 100 by 100 image of packed spheres with radius of 5 pixels and 60%
porosity. By default, MAGNET uses the scikit-image implementation for determining the skeleton, though
it can work with any skeleton so in principle an alternative skeletonization algorithm could be used.
However, it should be stressed that the skeleton must be a single pixel thick for pore identification to
work properly. One alternative thinning algorithm worth mentioning for applications in porous media is
that of Delgado-Friedrichs et al., who present a state-of-the-art skeletonization approach based on
Discrete Morse Theory (5).

Because of their relevance to porous materials, there have been some image thinning algorithms
developed specifically for this use. Thovert et al. developed an image thinning algorithm and applied it
to stochastic images of porous media, but could not guarantee connectivity of the pore space (35).
Connectivity is important in preserving the topology of the original structure (23). For this reason, Liang
et al. (15) elected to use Ma and Sonka'’s thinning algorithm (20) which guaranteed connectivity. Palagyi
and Kuba (24) discuss the importance of preserving the topology, as they present a thinning algorithm
for 3D objects that do not form medial surfaces. The skeleton provides not only topological information
but can also be multiplied by the distance transform to obtain the medial axis transform, which in turn
can be used to determine geometrical properties as well the size of spheres that can be inserted at each
point.

Prior to obtaining the skeleton there are several necessary steps that should be taken to clean-up the
original image. Firstly, “floating solids” must be removed since the skeleton will form a “shell” around
them. In 2D this is not a problem since the skeleton remains an ‘axis’; however, in 3D this leads to
“surfaces”. This is illustrated in Figure 3 where a shell, shown in purple, forms around a floating solid,
shown in blue. While floating solids are physically impossible, they are common in tomography images
following improper binarization of the original greyscale image. This can be easily avoided by pre-
processing images to remove solid that is not connected to the bulk solid phase prior to determining
the skeleton (10). This is done automatically by MAGNET but should be noted for users working with
their own skeleton. In the case that the user provides MAGNET with their own skeleton (e.g., from Image)
or other image processing application), a check is performed to ensure that it contains no hollow shells.
Secondly, it is also helpful to fill blind pores since these lead to numerical errors when pore network
simulations are run. Although these can be removed from the network later, it is convenient to prevent
their existence in the first place.

Finding the skeleton of an image can represent
substantial computational costs on the total
network extraction time. In fact, MAGNET can
spend almost 30% of its computational time on
skeletonization (see Fig. 12). Therefore, to
improve efficiency, the “block-and-tackle”
approach was explored, whereby the image was
subdivided into blocks, with some overlap, and
skeletonization was performed on these blocks in
parallel (using dask). To quantify the speed-up of
this approach, four artificial images of
overlapping spheres with a radius of 10 voxels and
50% porosity were generated using PoreSpy with
a random seed value of 10. Each image was
assigned a different shape, but each shape had

the same pattern of (n, n, 2n) with values of n | Figure 3: Skeleton (purple) forming a shell on a
being 250, 500, 1000, and 1500 for the four | foating sphere (blue).

b https.//scikit-image.org/
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images. This shape pattern allowed for the image to be divided into 16 blocks using divisions (2, 2, 4)
with each block having the same size. Then setting the number of cores to 16, the skeleton was
parallelized across 16 logical cores which were available on the workstation used for this analysis.

The main challenge with subdividing the image was determining the amount of overlap to use between
image blocks to ensure a correct result. The amount of overlap was studied by trying different values on
the four images and comparing the resulting skeleton to the true skeleton obtained using the serial
method. Figure 4a shows the effect of overlap between blocks on the four images of overlapping
spheres. The accuracy of the parallel skeleton was calculated by counting the number of voxels shared
by both serial and parallel skeletons and then dividing that number by the total size of the serial skeleton.
The results showed that 100% accuracy was reached at 60, 72, 72, and 78 voxels respectively for each of
the four images increasing in size. The maximum distance transform of the four images, also in order of
increasing size, were 20, 25, 27, and 31. Therefore, a general estimate for overlap of image chunks could
be ~2-3 times the maximum distance transform value of the image.

After determining the correct amount of overlap for each image size, the computational time of the
parallel skeleton was compared to the serial skeleton. Figure 4b shows the resulting comparison for
each of the four images tested, and it was observed that the speed up increased with the size of the
image. The (250, 250, 500) sized image experienced a speed up of only 2 times while a maximum amount
of speed up of 5.5 was observed for the (1500, 1500, 3000) sized image. This observation is an effect of
the diminishing ratio of overlapped voxels to total voxels as the image size increased. For example, the
number of extra voxels due to overlapping for the smallest image was calculated to be 5.25 x 107,
however the image itself only had a total of 3.125 x 107 voxels. Here, the extra number of voxels due to
overlapping exceeded the original number of voxels. This means that more than twice the original
number of voxels was being distributed across 16 logical cores, explaining why only moderate speedup
was achieved. However, the extra number of voxels required for overlapping in the largest image was
just 36% of the original size. Therefore, less time was spent on these overlapping regions, and more time
was spent on the actual image resulting in a higher speedup. For this reason and based on the results
from this investigation, parallelization of the skeleton is recommended only for large images, or images
with small pores, where a proportionally small amount of overlap is required. This is also justified by the
fact that computational time is not an important consideration if the image is smaller.

(a) (b)
100.0F v T —o— Serial
97.5} . Parallel
_ 10'F 7
§ 95.0F E E
3 92.5f { E
o w
o 90.0f - £ 100 i
o F
< 87,5k —=— shape: [250 250 500] |
’ shape: [ 500 500 1000]
85.0F —4— shape: [1000 1000 2000]
—— shape: [1500 1500 3000] 10-1F 4
823 20 40 60 80 100 10° 107
Overlap No. of Voxels

Figure 4: (a) The effect of overlap between image chunks on the resulting accuracy of the parallelized
skeleton compared to the serial skeleton. A range of overlaps from 6 to 96 voxels incrementing by 6
voxels was tried on 4 different images of shape (n, n, 2n). The image was divided by 2, 2, 4 in the x, y,
and z directions respectively resulting in an even 16 image chunks for parallel operation on 16 cores.
(b) The resulting computation times of the parallel skeleton (orange) compared to the serial skeleton
(blue). The skeleton, serial and parallel, was taken on four images of overlapping spheres with radius of
10 voxels and porosity of 50%. The shapes of the four images were: [250, 250, 500], [500, 500, 1000],
[1000, 1000, 2000], and [1500, 1500, 3000]. The results showed increasing speedup with increasing
size ranging from 2 for the smallest image and 5.5 for the largest image.
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A remaining challenge with the skeleton is locating boundary or surface pores (25) as the normal
skeleton does not extend to the edge of the image (see Fig. 2a). Attempts were made to coerce the
skeleton to the edge of the image using strategies based on padding the image prior to skeletonization
and trimming the padding thereafter. However, while this idea worked successfully in 2D, ultimately all
methods resulted in a skeleton that was fragmented and clustered for 3D images. For this reason,
boundary pores are not labelled by MAGNET and the user is left to find or add boundary pores using
their own criteria for simulations requiring them. The simulations in this work assumed boundary pores
to be within 2% of the edge of the image boundary. Developing a skeletonization algorithm that
correctly extends beyond the edges of the images remains a valuable target for future research.

2.2. Distance Transform

The distance transform is a standard tool used in image processing of porous media. It replaces each
foreground voxel with the Euclidean distance to the nearest background voxel and, therefore, is useful
for obtaining the geometrical properties of pores and throats. Computing the distance transform can be
computationally intensive; however, the open source edt package (32) was used here, which is efficient
and is also parallelized.

Figure 2b shows the resulting distance transform on the void space, with the skeleton overlaid in black.
The skeleton tends to follow the contour of the brightest pixels, which have the largest Euclidean
distance; however, this is not always guaranteed. One example is at the edge of the image where the
skeleton remains approximately centered between the edge of the image and the neighboring solid
phase while the distance transform continues to measure from the nearest solid. The failure of the
skeleton to lie on the true maximum of the distance transform also occurs within the center of the image,
but to a less noticeable extent. For example, on a 256 image of blobs with 70% porosity, it was found
that only 13.6% of peaks in the distance transform map were located on the skeleton. This issue means
that the pore and throat sizes, which are taken from the distance transform values underlying the
skeleton are generally biased toward small sizes. This is why it is proposed in Figure 1 to take the
maximum filter of the distance transform using a small kernel prior to obtaining pore and throat sizes as
discussed further in Section 2.6.

2.3. Find Junctions and Endpoints

The next step is to analyze the skeleton for junctions and endpoints, which will become pore centers, by
applying a convolution to the skeleton. The convolution replaces each voxel with the number of skeleton
voxels in the vicinity of a cubic kernel 3 voxels across. Figure 5 shows the process in 2D by looking
closely at a 10 by 10 area of pixels representing a subimage of a larger two-dimensional skeleton. Note
that the left hand side of the subimage represents the edge of the larger image whereas all other sides
in the subimage do not. Figure 5a is the original skeleton prior to convolution and Figure 5b is the
resulting image after convolution. Following convolution, the image is masked using the original
skeleton image to yield Figure 5c. All pixels with a value of 4 or greater are junction points, whereas

(a) (b) (c)
0|0|0|0|0|06|0B|0|0 |1 el |0|06|0|0(0|1]|3]|3 ©|l0|0|0|0|06|0|0]|0]3
e|lo|e|lo|o|lo|e|e|1]|e 1|1|e|e|le|le|1|2]|3]|2 ele|e|e|o0|0|lo|0|[3]0
1|le|le|le|le|le|e|1]|e|e 23 |3|3|3|3|3|3]|2]|1 2|e|le|le|le|le|le|3|e|e
o112 |21|2|21|e|e]|e 23|3|3|3|[4|4|3|1]|e 0[3[3[3[3[4[4|0|0]0
e|le|e|le|e|lo|1|e|0|e 12 |3|3|3[4|4|3|1]|e e|e|e|o|e 04|00 0|0
0|0|0|(0|0|06|0|1|0]|0 (0|00 |0|1(3|3|2]|60 0|0 |0|0| 0|00 |3|0]|0
e|le|e|lo|e|lo|e|1]|0|e ele|e|e|e|o|2[3[3]1 ele|e|e|0|0|0|[3 0|0
0|0|0|0|0|06|0B|0|1]|80 el |0|6 0|01 |3]|3]|2 ©|l0|0|0|0|06|0|0]|3]|0
e|le|e|lo|e|lo|e|e|1]|e ele|e|e|e|o|lo|2|2]2 ele|e|e|o|0|o|0|2]0
0|0|0|0|0|06|0|0|0]|80 (0|00 |0|0 (0 |1|1]|1 ©|l0|0|0|0|0|0|0|0|0

Figure 5: A close up view of a 10 by 10 pixel area of a skeleton (a), skeleton following convolution (b),
and the final convolution after the skeleton mask (c).
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pixels with a value of 2 are endpoints. Endpoints could exist at the image edge as shown on the left hand
side of Figure 5c or in the internal image. However, endpoints will rarely exist, if at all, at the image edge
unless otherwise coerced by some means.

Figure 2c shows the result of finding junctions and endpoints using convolution on the skeleton taken
from the image of overlapping spheres introduced above. Note that the convolution operation can result
in clusters of junctions where several branches nearly coincide. Liang et al. devised a sophisticated
strategy to eliminate clustering (15), but MAGNET handles clustering more gracefully by simply merging
junctions into a single cluster, and therefore a single pore, as shown by the green pixels in Figure 2d.
Junctions can be merged by two different options: by applying either a fixed threshold or by using an
adaptive threshold based on the local distance transform values. In both cases, the process starts by
removing the junctions and endpoints from the image, leaving only the connecting segments. For the
fixed threshold, segments are re-added to the image if their number of voxels is smaller than a specified
threshold (e.g. 3 pixels). This will cause junctions that are 3 voxels apart to merge into a single junction.
Figure 2d shows the result of using a fixed threshold of 3 pixels, with the section in the top-right
illustrating clearly how several junctions are merged into a single one. For the adaptive distance-based
threshold, segments are re-added to the image if their number of voxels is smaller than the maximum
of the distance transform underlying the segment. This allows junctions in larger pores to become
connected even if they are further apart than junctions in small pores. In either case, after the junctions
are merged, it is necessary to choose a single voxel from each cluster which will be deemed the center
point of the pore. The voxel with the largest distance transform value is chosen. In the event that multiple
voxels have the same value, then a random one is chosen from them.

2.4. Finding ThroatJunctions

A limitation of finding pores by looking for junctions is that it misidentifies pores with a coordination
number of 2 as being part of a long throat. This can be problematic in some applications as it will result
in long throats which can cause difficulties when modelling reactions since pore network models
generally assume that reactions occur in pores. Therefore, this work presents two alternative approaches
for finding "throat junctions”. The two approaches presented are 1) using a maximum filter to find local
maximum on each skeleton segment and 2) using the fast-marching method to sort the voxels of each
segment into a linear chain, then using signal processing tools to find peaks in the profile using the
underlying distance transform value as the heights. It is important to stress that these two methods are
not intended to be topologically consistent but two fundamentally different ways to characterize
junctions along throats. The two approaches are explained in detail below.

2.4.1. Maximum Filter

To find throat junctions using a maximum filter, pore bodies are first inserted as spheres at the pore
centers found from junctions and endpoints in the previous step. Figure 2e shows an example of disks
inserted at pore centers in the image of overlapping spheres. The radius of the inserted spheres (or disks
in Fig. 2e) is equal to the value of the distance transform at the pore center explaining why each disk in
Figure 2e just touches the nearest solid. Unfortunately, inserting pore bodies into an image using Python
for loops can be slow for a large number of pores. Therefore, MAGNET uses just-in-time compilation,
using the Numba package, to speed up for loops and reduce computation time.

After inserting spheres, the remaining skeleton segments (cyan color in Fig. 2e) are searched for local
maximums in the distance transform. To ensure that the ends of the segments are not inadvertently
identified, the distance transform value in the voxels belonging to the pore bodies are set to infinity.
Figure 6 is a 10-pixel by 10-pixel area of the resulting image, showing a skeleton connecting two pore
bodies. The connected pores have values of infinity as shown in the top right and bottom left corners
while the skeleton is labelled according to its distance to the nearest solid (aka the medial axis transform).
Finally, the maximum filter is applied to this image to find maxima along the remaining skeleton. Any
pixels which retain their value after applying the maximum filter are a local maximum. The resulting local
maximums are the throat junctions shown in Figure 2f as cyan pixels.
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Figure 6: (a) A 10 by 10 array of pixels showing a skeleton connecting two inserted pore bodies. The
inserted pores (bottom left and top right) are labelled with the value infinity while the skeleton is labelled
with size values corresponding to the value of the distance transform. Local maximums are searched
for along the remaining skeleton using the maximum filter, but different sized neighboring regions can
be used. The red and blue bounding boxes represent a neighboring region of 5 pixels and 7 pixels wide
respectively, centered on the local maximum. (b) The peak profile along the length of throats with 2
peaks (black), 1 peak (grey), and no peaks (blue) where peaks are identified as circle markers. The
distance to the nearest grain and the distance along each throat is in number of voxels.

The size of the neighboring region in applying the maximum filter is an adjustable parameter. By default,
MAGNET uses a size of 7 voxels meaning that the neighboring region is defined as three voxels in each
direction from the center of the kernel element. To illustrate this, red and blue bounding boxes
representing 5- and 7-pixel long neighboring regions centered at the local maximum (i.e. 12) were added
to Figure 6a. In the case of the smaller footprint, the local maximum along the skeleton is found whereas
the larger footprint overlaps with the adjacent pore body, and therefore, does not find the local
maximum on the skeleton since pore bodies were labelled with infinity. This illustration shows how the
kernel size effectively controls which throats are classified as long and should be broken into 2 throats
and a pore (at least).

2.4.2. Throat Profile

The other approach for finding throat junctions looks for peaks in the profile of the distance values along
each segment. To create a profile, however, it was necessary to determine the order of the voxels along
the segment from one pore to the neighbor. This was accomplished using the fast-marching method,
which starts at one end and steps along the segment, labeling each voxel with the distance travelled,
until reaching the last voxel on the other end. A profile can then be created by plotting the distance
travelled vs. the distance transform value for each voxel. Figure 6b shows the peak profile for three
throats, with 2 peaks, 1 peak, and no peaks. The peaks were identified using a circle marker and are
found using the find_peaksfunction in Scipy’s signal processing toolbox. This function accepts numerous
arguments to ensure only valid peaks are found, such as avoiding peaks which are too close together
and avoiding peaks which do not stand high enough relative to the neighboring voxels. These are
adjustable, but in the present work only peaks with a relative height of 1 voxel or more and a spacing
greater than the minimum distance value along the profile were accepted. Figure 2g shows the resulting
image of junctions on the image of overlapping spheres after adding throat junctions. The throat with
two junctions in Figure 6b is visible in the top left corner of Figure 2g for instance.
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2.5. Determining Throat Area

While the distance transform is an important tool in the study of porous media for storing geometrical
data, it is limited in that it only reports the distance to the nearest grain voxel. In real porous media,
throat cross-sections can take on a variety of irregular shapes with varying aspect ratios. For example,
consider the simple case of an elliptical cross-section, as shown in Figure 7a. Here, the distance
transform is not sufficiently useful for calculating the throat area because it only contains the distance
of the minor axis (or shorter radius, r;) and knows nothing about the length of the major axis (or larger
radius, ). The distance transform will, therefore, always underestimate the throat area because it reports
only the shortest distance. This problem has been faced by other medial axis network extractions in the
past, and a variety of different solutions have been proposed (15, 18, 25, 30). In general, there have been
two different ways of finding throat area and these can be classified, by our own recognition, as either
throat slicing or throat dilating. The work by Liang et al., is an example of using throat slicing to find the
cross-sectional area (15). In that work, three consecutive voxels on the skeleton were used to find the
vector normal to the plane of cross-section. Then, the image was sliced according to the plane of cross-
section and the throat area estimated by counting the number of voxels. Alternatively, the skeleton can
be dilated to find the cross-sectional area of the throat. Lindquist et al. did this by dilating the skeleton
in a radial direction and stopping at points that touch the grain but continuing in other directions until
eventually a closed loop forms representing the minimum throat surface area (18). Both approaches,
however, become computationally expensive for a large number of throats.

In this work, random walk simulations which are well suited to voxel images and commonly used to
estimate properties such as directional tortuosity (36), have inspired a novel approach for finding the
throat area that uses walkers. While this approach might be similar to how throat cross-sections were
found in the work by Bakke and Oren (4), it's unclear how the distance to the nearest solid was found
exactly, and our technique proposes the use of the distance transform for faster computation. In our
work, walkers are used to find the throat area by setting walkers to march out radially from the skeleton
to the grain boundary, recording the distance each walker takes to reach the grain, and using
triangulation to approximate the throat area. The direction taken by each walker is in a plane normal to
the skeleton with equally spaced angles between adjacent walkers spanning a full revolution around the
skeleton. To find the direction each walker takes, the dot product is taken with the plane’s normal and
set equal to zero. This results in Equation 1 which constrains the resulting set of directional vectors,
defined by angles ¢4 and 64 in spherical coordinates, to directions that lie in the plane perpendicular to
the skeleton. The angle 64 spans the full revolution around the skeleton from zero to 2m with even
intervals of 2mt/n where n is the number of walkers. The plane’s normal is found using three consecutive
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Figure 7: Digitally generated throat for demonstrating how walkers can be used to measure the cross-
sectional area of a throat. Image (a) is a full view of the digitally generated throat while image (b) shows
the cross-section and the path four walkers (w1, wz, ws, and w,) at directions 90 degrees from each other
would take to estimate the area. (b) Measured area across length of digitally generated throat using 5
(blue), 10 (red), and 100 (green) walkers with a step size of 0.5 voxels. The black line represents the true
area calculated using the equation for area of an ellipse. (¢) The computational time to estimate throat
area using different step sizes and number of walkers. The step sizes the walkers took were 0.1, 0.5, and
1.0 voxels as shown in blue, red, and green respectively. The yellow line shows an adaptive stepping
scheme that uses the distance transform for which significant speed up was observed.
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voxels in the skeleton, similar to the work by Liang et al. (6), and is expressed in spherical coordinates to
obtain angles ¢, and 6,,.

tan((pd) tan(‘pn) COS(QH - ed) =-1 (1)
After calculating the direction each walker is to take, the starting positions of the walkers are set and the
X, ¥, and z positions are recorded. Then, the walkers march out from the skeleton at certain step sizes
and their cartesian coordinates updated. Upon each step, walkers are checked to see if they land in a
grain voxel at which point the walker stops walking. The walking procedure continues until all walkers
reach the grain boundary. Prior to walking, the image is padded with grain voxels to keep walkers from
marching outside of the image boundary. The final coordinates of the walkers can be compared to their
starting positions to calculate the distance traveled. Figure 7a shows a set of four walkers (w1, wz, ws,
and wa) marching out from the skeleton in a plane perpendicular to the normal vector and spanning a
full revolution around the skeleton with an angle ofg between walkers. A triangulation, similar to the

work by Shin et al. (30), was used to estimate the throat area. In Figure 7a, the dashed line connecting
the end positions of walkers 1 and 2 encloses the estimated area as a triangle where lengths a and b are
the distances travelled by walkers 1 and 2 respectively. Equation 2 can be used to calculate the area of
any triangle connecting the path taken by two walkers where 6 is the angle between walker trajectories.
The area between adjacent walkers, can be estimated in this way (using triangles), and the resulting area
can be summed together to get a throat area.

ab
A= 75in(0) 2)

Figure 7b shows the effect of the number of walkers on estimating the cross-sectional area along the
length of the digital throat in Figure 7a as an example. Walkers were sent out from the medial axis of
the generated throat by trying 5, 10, and 100 walkers with a step size of 0.5 voxels. The distance the
walkers travelled to reach the grain boundary was measured and triangulation was used to estimate the
cross-sectional area. The calculated area along the length of the throat is plotted in Figure 7b along
with the true area (in black) which was calculated using the equation for the area of an ellipse. The
triangulation of the throat area is underestimated when using 5 walkers, a good approximation when
using 10 walkers, and almost identical to the actual area for 100 walkers.

The step size taken by the walkers is an important factor in the computational time required. If the step
size is too large (e.g. 5 voxels) then walkers end their path too far inside the solid, creating a bias towards
longer paths. If the step size is too small (e.g. 0.1 voxels), then the result will be more accurate but more
time consuming. Figure 7c shows the effect of step size on the computational time. This study was run
on a workstation with an Intel(R) Xeon(R) CPU E7- 4860 processor with a speed of 2.27 GHz and 748 GB
of RAM. Step sizes of 0.1, 0.5, and 1.0 voxel were tried for all walkers as well as an adaptive stepping
scheme. The adaptive stepping works by having walkers step an amount equal to the distance transform
underlying the voxel in which they are currently located. The idea is that walkers are never closer to the
grain boundary than the value indicated in the distance transform, and therefore it is safe for the walker
to travel as much as that distance in any direction without overstepping into the grain boundary. The
results from measuring the computation time showed that a million walkers took roughly 78 minutes 41
seconds, 3 minutes 52 seconds, 1 minute 11 seconds, and 7.8 seconds for the 0.1, 0.5, 1.0 voxel, and
adaptive step respectively. A million walkers in a pore network are reasonable considering that this is
equivalent to 10 walkers per throat in a network with 100,000 throats. The speed up achieved from taking
a 1 voxel step to using the distance transform for adaptive stepping was 9.1X faster.

2.6. Converting Junctions to Network Topology

After finding all junctions including endpoints and throat junctions, the final geometric and topological
features of the network can be obtained. Figure 2h shows the final set of junctions for the image of
overlapping spheres. In this image, the throat junctions are the ones found using the maximum filter
method. The junctions are labelled, indicated by their color in Figure 2h, and overlayed with the skeleton,
which is shown in purple. Throats are found by removing all junction voxels from the skeleton, leaving a
fragmented skeleton, which is also labelled. The labels in these two images correspond to the pore and
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throat index of the network. Generating the adjacency list (which pores are connected to which, and by
which throat) is done by analyzing the image of labelled throats. Each throat is isolated, dilated by 1
pixel, then checked to see which pore junctions are overlapped. The adjacency list is generated by noting
the two pore labels (e.g. i and j) on the row corresponding to the throat label being analyzed (e.g. k),
thus row k of the adjacency list will contain (i, j). The final adjacency list will be an N.x2 array, where N,
is the total number of throats in the network. While finding throat connections, geometric properties of
the throats are also found. The area is computed using the walker method, and the inscribed throat
diameter is found as the minimum distance transform value along a throat. As discussed in Section 2.2,
the majority of peaks in the distance transform do not lie on the skeleton. Therefore, it was found that
MAGNET underestimated pore and throat sizes compared to SNOW, which determines these sizes from
peaks in the distance transform. To remedy this problem, a maximum filter was applied to the distance
transform, using a small spherical structuring element with a radius of 2 voxels, prior to finding the
minimum throat radius.

Table 1: Pore and throat properties returned by MAGNET.

Pore Property Description

Coordinates The pore coordinates are an N, — by — 3 array (N, is the number of pores) of x, y,
and z coordinates corresponding to the centre of the pore. In a cluster of
junctions, the pore center is the voxel with the largest distance transform. The
coordinates are multiplied by the resolution or length of a voxel.

Inscribed Diameter This value is taken as two times the distance transform at the pore centre. It is
the diameter of the pore that does not overlap with any adjacent grain voxels.
This distance is multiplied by the voxel size to get pore diameter.

Throat Property Description

Connections The throat connections are a N:— by — 2 array (N: is the number of throats) where
each row contains the indices of two pores that are connected to one another.
The skeleton is used to determine the connections between pores.

Area This is the area calculated using walkers as explained in section 2.5. By default,
MAGNET sends out walkers only from the throat voxel with the minimum
distance transform, but if more throat voxels are used, only the minimum throat
area along each throat is returned.

Inscribed Diameter This value is two times the minimum value of maximum filtered distance
transform along the throat. It is the diameter of the throat that does not overlap
any adjacent grain voxels. This distance is multiplied by the voxel size to get
throat diameter.

Equivalent This is the diameter of the circle with the same area as the throat cross-section.

Diameter It uses the throat area property previously calculated by walkers in section 2.5.
The result is multiplied by the voxel size to get a throat diameter.

After finding throat properties, pore properties are found including pore coordinates and pore size. This
is accomplished in the same manner as for throats, by analyzing each labelled cluster of pore junctions.
The pore coordinates correspond to the voxel location since these junctions were already reduced to a
single voxel that lies on the skeleton and has the maximum distance transform value. The indices of the
resulting pore center are multiplied by the image resolution or voxel size to get an x, ¥, and z coordinate
that is returned as an N,x3 array where N,, is the number of pores. For pore size, the inscribed diameter
is the value of the distance transform at the pore center, also obtained after applying a maximum filter.
Table 1 provides a summary of all pore and throat properties returned by MAGNET.

3. SIMULATION AND VALIDATION

In this section, MAGNET is demonstrated on a 400° image of Berea sandstone obtained from the work
by Dong and Blunt (6). The network extracted by MAGNET is compared to a network extraction by
SNOW, lattice-Boltzmann method, and drainage by image-based sphere insertion. After which, the
computational time of MAGNET is broken down by each image processing step and compared to SNOW.
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3.1. Network Extraction of Berea Sandstone

Prior to network extraction, all blind pores were filled, and floating solids trimmed, yielding a porosity of
19.54%, compared to an initial value of 19.65%. Figure 8 shows the resulting network extractions
comparing SNOW and MAGNET, overlaid with the voxel image. Excellent fitting of pores inside and filling
of the porous regions is demonstrated by MAGNET, and the two network extractions appear to compare
reasonably well in terms of topology and pore size.

Visual inspection of the two approaches looks as though the SNOW extraction has fewer pores but
higher connectivity than the MAGNET extraction. In general, MAGNET has more pores and throats than
SNOW with 17,968 pores and 24,373 throats for MAGNET compared to 12,374 pores and 21,696 throats
for SNOW. The average coordination number for MAGNET is less than the average coordination number
for SNOW with 2.71 for MAGNET and 3.51 for SNOW. This can be attributed to the fact that MAGNET
keeps nearby pores and allows them to overlap, while SNOW is more aggressive with merging nearby
pores. The total network extraction took 55 seconds for MAGNET (without parallelization) and 3 minutes
and 21 seconds for SNOW on a laptop with a 2.4 GHz Intel Core i5-1135G7 processor and 12 GB of RAM.
The time that it took MAGNET to calculate the throat area was 12.8 seconds using 10 walkers per throat.

The pore and throat size distributions for the inscribed diameters determined from MAGNET and SNOW
networks taken from the Berea sandstone are compared in Figure 9. The distributions for both pore and
throat sizes are in excellent agreement. The average pore diameter is 32.5 pm for SNOW and 33.1 ym
for MAGNET, while the average throat diameter is 24.8 um for SNOW and 26.5 pm for MAGNET. One
difference is that MAGNET has more smaller pores. Here, MAGNET has about 25% more pores with a
diameter less than 20 ym, and in other cases it has been observed that MAGNET has twice as many small
pores. One possible explanation for the number of small pores could be the dead-end branches in the
skeleton that were not trimmed away. In the past, other medial axis extractions have trimmed away these
dead-end pores since these pores do not contribute to flow (18). However, in simulations with reactions
occurring at the interphase, such as battery discharge, these pores do contribute to the performance
and thus should not be ignored. It would also be possible to increase the threshold at which junctions

Figure 8: A visualization of
network extractions for 4003
image of Berea sandstone with a
5.35um resolution comparing
SNOW and MAGNET extrac-
tions.

Berea Sandstone
4003 voxels with 5.35pm resolution

MAGNET

Berea Sandstone
4002 voxels with 5.35pm resolution

InterPore Journal, Vol. 2, Issue 4, 2025 https://doi.org/10.69631/g47x8w91


https://doi.org/10.69631/g47x8w91

McKague, et al.

Page 14 of 21

x10~2

4F

SNOW |
MAGNET

SNOW |
MAGNET

40 60 80
Throat Diameter (um)

20 40 60 100

80
Pore Diameter (um)

Figure 9: Pore and throat size distributions for SNOW (blue) and MAGNET (purple)
extractions. The inscribed diameters are used for comparison.

are merged into a single pore, which would decrease the number of pores in the network and shift the
size distribution to larger pores.

3.2. Validation of Network Extraction

3.2.1. Capillary Pressure Curves

A mercury intrusion porosimetry simulation was performed on both MAGNET and SNOW network
extractions to compare capillary pressure curves. An image-based drainage simulation was also
performed and considered as a ground truth. This method used a binary erosion followed by dilation
using progressively smaller spherical structuring elements to find the invading fluid configuration.
Image-based drainage is known to overestimate the intrusion capillary pressure since invading fluid must
overcome the pressure corresponding to the inscribed diameter. Consequently, the inscribed diameter
was used in both SNOW and MAGNET calculations. Meanwhile, OpenPNM was used to run a drainage
simulation on the two extracted networks. The drainage simulation works by using the Young-Laplace
equation to calculate the throat entry pressure from the throat diameter. Equation 3 is the Young-
Laplace equation where D; is the diameter of throat i, y is the surface tension, and 6 is the contact angle
of the invading fluid. Mercury with a surface tension of 0.4791 N/m and contact angle of 140 degrees
was used as the invading fluid. All simulations were set to have mercury invade from all sides.
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Figure 10: Resulting poro-
simetry curves from SNOW
(blue) and MAGNET (purple)
. extractions on the Berea
sandstone sample. Mercury
4 was used as the invading fluid
with a surface tension of 0.48
N/m and a contact angle of 140
degrees. The black curve
shows the results from an
image-based simulation that
was used as the ground truth in
L ] comparison to results from the
two pore networks.

T
1.0F —o— MAGNET
—— SNOW
0.8 —#— Image-Based

0.6

Saturation

0.2

0.0F

Capillary Pressure (Pa)

InterPore Journal, Vol. 2, Issue 4, 2025 https://doi.org/10.69631/g47x8w91


https://doi.org/10.69631/g47x8w91

McKague, et al. Page 15 of 21

Figure 10 shows the resulting capillary pressure curves for SNOW (blue), MAGNET (purple), and the
image-based (black) simulation, all using inscribed throat diameter for fair comparison. The results show
that all three agree very well. It should be reiterated that applying a maximum filter to the distance
transform was necessary in matching drainage curves, which reinforces the idea that the skeleton does
not follow maximums perfectly. This finding suggests that a new algorithm for obtaining a skeleton that
follows the maximums in the distance transform could be a useful avenue of research, but this is outside
the scope of the present work.

3.2.2. Permeability Coefficient

After extracting the network using MAGNET, a flow simulation was written and run to estimate the
permeability of the Berea sandstone and results were compared to SNOW and lattice Boltzmann
simulations on the same image. The open-source Python package OpenPNM (version 3.1.1) was used to
carry out the simulation for MAGNET and SNOW networks (32), and the permeability values taken from
Yi et al. (38) were used for comparison to lattice Boltzmann. In the pore network simulations, the
hydraulic conductance was calculated using the cone and cylinder geometry models already available in
OpenPNM. The hydraulic conductance, g!*, of arbitrary shape i, was calculated using Equation 4 where A?
is the hydraulic size factor and u is the viscosity of the working fluid, which is assumed to be water or 1
cP.

A

P=— 4
90 = )

Equation 5 shows how to calculate the hydraulic size factor, A%, assuming negligeable inertial loss for a
shape of varying cross-sectional area, A;(x), along length, [;, of throat i (1). The specific polar moment
of inertia is given by I which is calculated by A—lzfyz + z?dA, and depends on the shape of the cross-
section. The specific polar moment of inertia, for a circular cross-section as is the case for cones and
cylinders, is Yam.

1 "l

= 161t2f dx 5

/2 o Ai(0)? ©)
Assuming a resistor in series like model, the overall conductance for a pore-throat-pore conduit can be
calculated from Equation 6. Gihj is the hydraulic conductance for a pore-throat-pore conduit connecting

pore i and pore j.

h

Gij = 1/ 1 /gu 1 /g] ®)

Finally, after defining the hydraulic conductance, flow was simulated on the Berea sandstone image. The
boundary pores were labelled in all three directional axes and flow simulations were performed along
each direction. The permeability, K, was obtained along each axis and then averaged to estimate the
permeability of the sample. The permeability was calculated from Darcy's law (Eq. 7) where Q is the
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steady state flow rate estimated going through the rock sample. The length of the sample is denoted by
L and the cross-sectional area perpendicular to flow is denoted using A.

QuL
= AAP ()

The resulting permeability values from each case are shown in Figure 11. The permeabilities, averaged
for all three directions, were 1.86, 1.84, and 1.78 darcy for MAGNET, SNOW, and LBM respectively. Note
that the LBM estimate of permeability was retrieved from the work by Yi et al. (38) who performed lattice-
Boltzmann on the exact same Berea image. Compared to LBM, MAGNET had an error of just 4.9%. To
estimate permeability, the equivalent throat diameter was used. This corresponds to the diameter of a
circle with the same area as the throat, as computed by the walker method outlined above. How the
throat size is calculated highly influences the results from the permeability prediction. For instance, when
using the inscribed diameter, the permeability predicted by MAGNET was 0.46 darcy, so 75% lower than
the LBM result. This clearly highlights the value of the walker method for finding the throat area.

3.3. Computational Efficiency

To study the computational efficiency of MAGNET, the time taken was measured for each step of the
process. Figure 12 shows the resulting time breakdown for a 10003 image of packed spheres with a
uniform radius of 10 voxels and 50% porosity. The total time to run the MAGNET extraction, prior to
parallelization, and using the maximum filter to find throat junctions, was 35 minutes and 15 seconds.
Compare this to the SNOW extraction which took 74 minutes and 40 seconds for the same image
resulting in a speed up of over 2X. The operations which required the least amount of time were
computing the distance transform and identifying the junctions/endpoints. The distance transform
required only 54.9 seconds, making it the fastest operation and accounting for just 2.6% of the total
extraction time. The next fastest operation was the finding of junctions and endpoints, which took 2
minutes and 46 seconds, which represents 7.9% of the total time. Finding throat junctions, however, took
the most computational effort with a time of 11 minutes and 21 seconds or 32.2% of the total extraction
time. Subsequently, the throat profile method was tried, reducing the total extraction time to 27 minutes
and 28 seconds. This improvement was achieved by decreasing the time required to find throat junctions
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Figure 12: Time breakdown of MAGNET algorithm for a 1000° image of packed spheres
with 50% porosity. The effect of using fast marching to find throat junctions and
parallelizing the skeleton on the total extraction time is observed.
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to just 3 minutes and 26 seconds, corresponding to only 12.5% of the total extraction time. The next
most time-consuming step was the skeletonization, which required 7 minutes and 53 seconds or 28.7%
of the total extraction time. To improve the extraction time, parallelization of the skeletonization was
tried by dividing the image into 8 equal blocks with an overlap of 52 voxels (i.e. two times the maximum
distance transform) for parallelization. The resulting time it took to compute the skeleton was reduced
to just 2 minutes and 39 seconds or 11.8% of the total extraction time. Now, after using the throat profile
method and parallelizing the skeletonization, the total extraction time is only 22 minutes and 28 seconds,
and the resulting speed up compared to SNOW is 3.3 times for the same 1000% image. These tests for
computational effort were carried out on a workstation with 250 GB of ram, 16 logical processors, and a
2.1 GHz Intel Xeon Silver 4110 processor.

After using the throat profile and parallelizing the skeletonization, the slowest step of the network
extraction was finding the throat area. Calculating the throat area took 6 minutes and 21 seconds or
28.3% of the total extraction time, following parallelization. This time includes a gaussian filter that is
used to help find the voxel with the minimum distance transform value along each throat as this voxel
is considered a good candidate to calculate the throat area. A more detailed look at the time it takes to
find the throat area using walkers revealed that only 44 seconds was spent by the walkers but an
overwhelming 5 minutes and 37 seconds was spent just locating where to calculate the minimum. In this
example, 359,485 throats are found, and 10 walkers are used per throat resulting in a total of
approximately 3.6 million walkers. Extrapolating from Figure 7c, the predicted time for these many
walkers, using adaptive stepping, is about 50 seconds, which is roughly what was measured here with a
time of 44 seconds to complete walking. This is fast and demonstrates the benefit of using the distance
transformation to adaptively control the step size walkers take. The most time-consuming part of finding
the throat area is not walking, but finding the throat voxel to walk from which took 88.4% of the total
time. The gaussian filter was removed in an effort to reduce this time; however, the permeability for the
Berea sandstone unfortunately increased by 12.4% compared to the previous estimate. This is likely an
effect of walkers just missing the grain boundary and marching beyond the throat constriction.
Therefore, it is recommended to find and eliminate outliers in the distances walkers travel as part of
future work.

Finally, the speed up of MAGNET was tested and compared to SNOW. The speed up was tested on
artificially generated images of overlapping spheres with radius of 10 voxels and a porosity of 50%.

, (a) Figure 13: Network extractions were
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Floating solids were trimmed from the artificial images to create a realistic 3D image of packed spheres.
Four different images with shapes of (100, 100, 100), (1000, 100, 100), (1000, 1000, 100), and (1000, 1000,
1000) were used. The MAGNET extraction was run in serial mode and did not calculate throat area or
find throat junctions. Figure 13a compares the extraction time of MAGNET to SNOW in minutes for both
SNOW and MAGNET at different image sizes. The extraction time recorded here for MAGNET includes
the skeletonization. Figure 13b shows the speed up plotted against image size. The speed up using the
serial skeletonization ranges from 3.4 to 4.2 compared to the parallel case which has a speed up in the
range of 3.0 to 5.7. Parallelizing the skeletonization actually slowed down the extraction on the smallest
image with 10° voxels because of overlap. Therefore, parallelizing is only recommended on larger images
with at least 107 voxels.

4. CONCLUSIONS

The present work was built on previous medial axis-based network extraction tools by addressing several
shortcomings or challenges with previous approaches. Firstly, a simple pore merging criteria was used
that allowed pores to overlap, since this can be handled using appropriate pore-scale models in the pore
network simulation stage. Secondly, two methods were presented for finding additional nodes along
throat segments, which are important when considering reactive flow for instance (21). Thirdly, it became
apparent that the skeleton does not always lie on the true peaks of the distance transform, meaning that
inscribed diameters of pores and throats were being underreported. It was found that applying a simple
maximum filter with a small round structuring to the distance transform largely remedied this problem
by transposing the correct distance values onto the skeleton pixels. Lastly, we developed a novel method
for finding the cross-sectional area of throats using walkers to probe the shape of the void space around
each throat. Previous medial axis-based methods employed complicated and/or costly approaches to
obtain this information, while the walker approach constituted just a small fraction of the total time for
MAGNET.

Due to the relatively fast speed of the skeletonization algorithm, it was shown that MAGNET can be
much faster than the widely used SNOW algorithm. And finally, it was also shown that skeletonization
can be successfully performed in parallel using the “block-and-tackle” approach, provided the overlap
between the blocks was sufficient to ensure the resultant skeleton was accurate. Using parallelization
reduced the required time by more than 5X for large images.

To validate the extracted network, a 400° voxel image of a Berea sandstone sample with a resolution of
5.35 ym was analyzed by both MAGNET and SNOW. Strikingly similar pore and throat size distributions
were observed except that MAGNET generally has more smaller pores (<20 ym). This was attributed to
merging criteria, not trimming endpoints, and the skeleton missing some maximums on the distance
transform. The versatile nature of the open-source network extraction means that users can easily
change merging criteria or how endpoints are handled. Mercury intrusion was simulated on MAGNET
and SNOW networks and excellent agreement with image-based drainage simulations was obtained
when using the inscribed diameter. Finally, permeability was estimated using MAGNET and the average
permeability for the Berea sandstone was within 5% error compared to a lattice Boltzmann simulation.
The equivalent throat diameter, obtained as from the throat area computed using the walker method,
was found to be essential for achieving such an excellent prediction of permeability.

In closing, MAGNET is a modernized medial axis approach to pore network extraction, that is both
impressively fast and as accurate as existing tools. It is publicly available as part of the PoreSpy project
(7), the source code for which is available on Github and the code is also deployed via the Python
Package Index (PyPI) for effortless installation.
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