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ABSTRACT 
Pore network models are useful for studying transport in porous materials in 
a computationally efficient way. Extraction of networks from volumetric 
images has evolved over the years, starting with medial axis-based 
approaches to more recent watershed segmentation. This paper reconsiders 
the classic medial axis method, which offers several advantages such as 
speed and topological correctness, and develops a modernized, updated, and 
improved version. The new method is named Medial Axis Guided Network 
Extraction Tool (MAGNET). It works by analyzing the skeleton of a porous 
material to identify pore centers at junctions and endpoints. Additional pore 
bodies are found on long throats using two different approaches. This work 
includes an efficient tool for calculating the cross-sectional area of throats 
with irregular shape by using walkers with an infinite mean-free path to 
probe the geometry orthogonal to the medial axis at the point of the throat 
constriction. This extra step was critical for obtaining an equivalent diameter 
needed to calculate the permeability. Lastly, MAGNET was written with 
computational efficiency in mind. The skeletonization approach was itself 
4.2X faster than the SNOW watershed segmentation for a 10003 image. 
Additionally, a parallelized skeletonization was applied by processing the 
image in blocks with sufficient overlap which resulted in a 5.5X speed-up 
compared to the serial approach. To validate the output, MAGNET was tested 
on a 4003 voxel image of a Berea sandstone, and the flow and capillary 
properties of the extracted network were compared to the results from 
SNOW and the lattice-Boltzmann method. Structural information such as 
pore and throat size distribution and mercury intrusion curves was 
compared, and noticeable similarity was achieved. Crucially, the permeability 
predicted by MAGNET was within 5% of the lattice-Boltzmann prediction on 
the same image. 
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1. INTRODUCTION
Advances in imaging tools such as x-ray computed tomography and focused ion beam milling coupled 
with scanning electron microscopy (SEM) imaging has enabled the study of porous materials at the 
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micron scale or smaller (22) via analysis of and simulations on voxel images of the microstructure (28). 
Because the starting point is a volumetric image, the acquisition of topological, geometrical, and 
transport properties is based on image processing algorithms. Using volumetric images, it is possible to 
estimate tortuosity (17), coordination number distributions (6, 15, 33), and pore and throat size 
distributions (2, 15, 19, 33), among others. One particularly useful but challenging task is the extraction 
of pore networks (37). Pore networks combine both topological and geometrical information to create 
a simplified representation of the void space which can then be used to simulate transport processes 
such as permeability and tortuosity, as well as multiphase conditions, with excellent computational 
efficiency. Increasing the speed and accuracy of pore network extraction algorithms is an ongoing pursuit 
(12).  

Over the years, various network extraction algorithms have been developed, which can generally be 
grouped into three different categories: maximal ball (6, 31), watershed segmentation (8, 26, 29, 34), and 
medial axis (11, 15, 17). The maximal ball approach works by inserting the largest inscribed sphere at 
each void voxel. Spheres that are fully encompassed by larger ones are removed, leaving the so-called 
“maximal balls” (6). The smaller of the “maximal balls” situated between relatively larger “maximal balls” 
are considered throats while those adjoining larger “maximal balls” are considered pores. One drawback 
of this approach is the time-consuming process of interpretating which balls belong to which pores (8, 
27). Watershed segmentation works by segmenting the void space into regions corresponding to pores. 
This method was first explored by Thompson et al. (34) and Sheppard et al. (29). More recently, detailed 
validation  has been provided by Rabbani et al. (26) and Gostick et al. (8), and an open-source 
implementation is now available (7). This algorithm works by identifying local peaks in the distance 
transform, removing saddle points and nearby peaks to avoid over-segmentation, and finally applying 
the watershed algorithm to segment the image into pore regions (8). One of the main disadvantages of 
this approach is the computational effort of the watershed filter, though the process of correctly 
identifying peaks and therefore pore bodies is not entirely reliable as it involves several adjustable 
parameters. The third and final approach is based on the medial axis. The medial axis, also often referred 
to as the skeleton of an object, is defined by the set of points that are equidistant to two or more points 
on the object border (3). The skeleton retains all the topological information of the original image, which 
is one of its main appeals. When combined with a distance transform, the skeleton can also be used to 
obtain geometrical data such as pore and throat diameters by looking at distance values corresponding 
to voxels on the skeleton. Lindquist et al. (17) were the first to explore the use of the medial axis as a 
tool for analyzing the geometry of a porous material, and this was developed into a software 
implementation called 3DMA-Rock (16). The advantage of this approach over the other two methods is 
its simplicity owing to the direct relationship between the topological skeleton and the pore network, as 
well as the potential efficiency since skeletonization is comparatively fast. 

The aim of the present paper is to revisit and revise medial axis-based network extraction with the 
following aims: a) to create a computationally efficient and accurate network extraction tool, and b) to 
provide a modernized, user-friendly, and open-source implementation. Past developments of a medial 
axis-based network extraction were developed in either MATLAB (15) or FORTRAN (16), however the 
code was not widely distributed and required significant technical know-how of the user. Our new 
algorithm, which is referred to as Medial Axis Guided Network Extraction Tool (MAGNET), was written in 
Python, a popular and easy to use programming language, and is included in the open-source package 
PoreSpy which is publicly available on Github and distributed via the Python Package Index (PyPI). Aside 
from being more accessible and modernized, MAGNET was also written to be more efficient than 
commonly used options such as the watershed segmentation approach developed by Gostick et al. (8). 
As will be shown, MAGNET is also faster than the recently presented PREGO algorithm (13) which uses 
region-growing in place of the standard watershed. To fully capitalize on MAGNET’s inherent speed, the 
present work also includes a study on the use of image chunking to apply skeletonization in parallel, 
since skeletonization is the slowest step. 

In order to provide an accurate network, this work addresses some of the challenges faced by medial 
axis network extraction algorithms. Firstly, dealing with overlapping pores can be complicated, since 
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merging criteria must be defined, the details of which can vary between implementations (25). Secondly, 
determining pore and throat sizes from the skeleton can be incorrect since the position of the skeleton 
does not always coincide with the actual maxima of the distance transforms. Moreover, using the 
distance transform to find pore/throat sizes means that only the smallest dimension is known. This is 
problematic for pores/throats with an aspect ratio above unity, since both sizes control the transport 
and capillary properties. Lastly, pores with a connectivity of 2 are misclassified as long throats, which can 
lead to errors when computing flow since the smallest diameter between pores will be applied to the 
entire length. The algorithm developed herein addresses all these problems in novel ways that are simple 
enough to be efficient, while still effectively remedying the problem.   

The present work uses a pore-finding approach, as opposed to a throat finding approach (25), which 
works by locating junctions and terminal points (or endpoints) in the skeleton. Nearby junctions are 
merged if they are close but otherwise they are allowed to overlap which can be accommodated in the 
pore network modeling software using appropriate conductance models. This work explores two 
different methods to identify pores with a connectivity of 2, by either looking for local maxima along 
throat segments or by analyzing the throat profile for peaks. Also, it was found that applying a maximum 
filter was sufficient to correct the fact that the skeleton does not always lie on the true maxima in the 
distance transform. Finally, and most importantly, this work proposes a new approach to finding area 
and shape of throat openings. Previous efforts have addressed this by slicing (15) or dilating (18) 
subsections of the volumetric image, but in this work a procedure is proposed that uses walkers with an 
infinite mean-free path (36), travelling orthogonally away from the skeleton in all directions, to probe 
the shape of the local geometry. As will be shown, MAGNET is both faster than comparable network 
extraction tools and quite accurate at predicting transport properties and capillary pressure behavior, 
providing a modern and improved implementation of a classic algorithm.   

Figure 1: Pseudo-code for MAGNET. The steps highlighted in dark gray indicate new 
approaches introduced in this work. 
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2. ALGORITHM
Figure 1 is a flow-chart of the image processing steps used by MAGNET. The steps highlighted by dark 
gray indicate where new approaches have been developed as part of this work. It starts by obtaining the 
skeleton and the distance transform of the void space which are used repeatedly over the course of the 
network extraction. Next, convolution is applied to the skeleton to find all junctions and endpoints 
followed by merging. After merging, the clusters of junctions are removed from the skeleton, and the 
remaining skeleton segments are searched for additional pores with a connectivity of 2. Pore and throat 
sizes are found by looking at the distance transform values underlaying each identified junction. 
Crucially, when obtaining throat sizes, a new algorithm was developed which can extract the area of 
throats and not just their inscribed diameter. Finally, the connectivity of the network is determined from 
the image, then all properties are combined into a Python dictionary for easy conversion to OpenPNMa for 
performing network simulations, though the data format is general enough to be used with any 
simulation tool. 

2.1. Skeleton 
The process of obtaining the skeleton is sometimes called “image thinning” (9) or “ultimate erosion”, 
and the term skeleton and medial axis are used interchangeably. There are generally two main 
approaches to image thinning algorithms: kernel-based filters and decision trees. Zhang et al. developed 
the first algorithm for image thinning using a kernel-based approach that iterates over each pixel in an 
image with sub-iterations to remove contour pixels that do not lie on the skeleton (39). This approach, 
however, was only designed for 2D images. Lee et al. developed an image thinning algorithm that 
effectively reduces 3D structures to their skeletal forms by iteratively removing surface layers of voxels 
while preserving the essential topology (14). The algorithm is based on a decision tree approach that 
evaluates each voxel’s connectivity within its local neighborhood. At each iteration, it identifies and 
removes "simple" surface voxels—those that, when removed, do not alter the topology or connectivity 
of the structure. Given the importance of volumetric images in the study of porous media, Lee’s method 

a https://openpnm.org/   

Figure 2: Progression of MAGNET steps.  (a) Lee’s skeleton on a 100 by 100 image of packed spheres 
with radius of 5 pixels and 60% porosity. (b) is the distance transform with skeleton overlaid. (c) shows 
the junctions (orange) and endpoints (cyan) found from convolution on the skeleton. (d) shows clusters 
of junctions and endpoints (green) that form after merging. (e) shows spherical pore bodies inserted at 
junctions and endpoints (purple) used for identifying the segments of the skeleton that do not overlap a 
pore body (cyan). (f) shows the throat nodes (cyan) found via the maximum filter method. (g) shows the 
throat nodes (cyan) found using the throat profile method. (h) shows the entire set of nodes color-coded 
by their pore index number, along with the throat segments (purple). 
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has been used extensively by porous media researchers including in the original medial axis network 
extraction by Lindquist et al. (17). Lee’s method is publicly available as part of scikit-imageb. Figure 2a 
shows Lee’s skeleton applied to a 100 by 100 image of packed spheres with radius of 5 pixels and 60% 
porosity. By default, MAGNET uses the scikit-image implementation for determining the skeleton, though 
it can work with any skeleton so in principle an alternative skeletonization algorithm could be used. 
However, it should be stressed that the skeleton must be a single pixel thick for pore identification to 
work properly. One alternative thinning algorithm worth mentioning for applications in porous media is 
that of Delgado-Friedrichs et al., who present a state-of-the-art skeletonization approach based on 
Discrete Morse Theory (5). 

Because of their relevance to porous materials, there have been some image thinning algorithms 
developed specifically for this use. Thovert et al. developed an image thinning algorithm and applied it 
to stochastic images of porous media, but could not guarantee connectivity of the pore space (35). 
Connectivity is important in preserving the topology of the original structure (23). For this reason, Liang 
et al. (15) elected to use Ma and Sonka’s thinning algorithm (20) which guaranteed connectivity. Palagyi 
and Kuba (24) discuss the importance of preserving the topology, as they present a thinning algorithm 
for 3D objects that do not form medial surfaces. The skeleton provides not only topological information 
but can also be multiplied by the distance transform to obtain the medial axis transform, which in turn 
can be used to determine geometrical properties as well the size of spheres that can be inserted at each 
point.  

Prior to obtaining the skeleton there are several necessary steps that should be taken to clean-up the 
original image. Firstly, “floating solids” must be removed since the skeleton will form a “shell” around 
them. In 2D this is not a problem since the skeleton remains an ‘axis’; however, in 3D this leads to 
“surfaces”. This is illustrated in Figure 3 where a shell, shown in purple, forms around a floating solid, 
shown in blue. While floating solids are physically impossible, they are common in tomography images 
following improper binarization of the original greyscale image. This can be easily avoided by pre-
processing images to remove solid that is not connected to the bulk solid phase prior to determining 
the skeleton (10). This is done automatically by MAGNET but should be noted for users working with 
their own skeleton. In the case that the user provides MAGNET with their own skeleton (e.g., from ImageJ 
or other image processing application), a check is performed to ensure that it contains no hollow shells. 
Secondly, it is also helpful to fill blind pores since these lead to numerical errors when pore network 
simulations are run. Although these can be removed from the network later, it is convenient to prevent 
their existence in the first place.  

Finding the skeleton of an image can represent 
substantial computational costs on the total 
network extraction time. In fact, MAGNET can 
spend almost 30% of its computational time on 
skeletonization (see Fig. 12). Therefore, to 
improve efficiency, the “block-and-tackle” 
approach was explored, whereby the image was 
subdivided into blocks, with some overlap, and 
skeletonization was performed on these blocks in 
parallel (using dask). To quantify the speed-up of 
this approach, four artificial images of 
overlapping spheres with a radius of 10 voxels and 
50% porosity were generated using PoreSpy with 
a random seed value of 10. Each image was 
assigned a different shape, but each shape had 
the same pattern of (n, n, 2n) with values of n 
being 250, 500, 1000, and 1500 for the four 

b https://scikit-image.org/  

Figure 3: Skeleton (purple) forming a shell on a 
floating sphere (blue). 
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images. This shape pattern allowed for the image to be divided into 16 blocks using divisions (2, 2, 4) 
with each block having the same size. Then setting the number of cores to 16, the skeleton was 
parallelized across 16 logical cores which were available on the workstation used for this analysis. 

The main challenge with subdividing the image was determining the amount of overlap to use between 
image blocks to ensure a correct result. The amount of overlap was studied by trying different values on 
the four images and comparing the resulting skeleton to the true skeleton obtained using the serial 
method. Figure 4a shows the effect of overlap between blocks on the four images of overlapping 
spheres. The accuracy of the parallel skeleton was calculated by counting the number of voxels shared 
by both serial and parallel skeletons and then dividing that number by the total size of the serial skeleton. 
The results showed that 100% accuracy was reached at 60, 72, 72, and 78 voxels respectively for each of 
the four images increasing in size. The maximum distance transform of the four images, also in order of 
increasing size, were 20, 25, 27, and 31. Therefore, a general estimate for overlap of image chunks could 
be ~2-3 times the maximum distance transform value of the image. 

After determining the correct amount of overlap for each image size, the computational time of the 
parallel skeleton was compared to the serial skeleton. Figure 4b shows the resulting comparison for 
each of the four images tested, and it was observed that the speed up increased with the size of the 
image. The (250, 250, 500) sized image experienced a speed up of only 2 times while a maximum amount 
of speed up of 5.5 was observed for the (1500, 1500, 3000) sized image. This observation is an effect of 
the diminishing ratio of overlapped voxels to total voxels as the image size increased. For example, the 
number of extra voxels due to overlapping for the smallest image was calculated to be 5.25 x 107, 
however the image itself only had a total of 3.125 x 107  voxels. Here, the extra number of voxels due to 
overlapping exceeded the original number of voxels. This means that more than twice the original 
number of voxels was being distributed across 16 logical cores, explaining why only moderate speedup 
was achieved. However, the extra number of voxels required for overlapping in the largest image was 
just 36% of the original size. Therefore, less time was spent on these overlapping regions, and more time 
was spent on the actual image resulting in a higher speedup. For this reason and based on the results 
from this investigation, parallelization of the skeleton is recommended only for large images, or images 
with small pores, where a proportionally small amount of overlap is required. This is also justified by the 
fact that computational time is not an important consideration if the image is smaller.  

Figure 4: (a) The effect of overlap between image chunks on the resulting accuracy of the parallelized 
skeleton compared to the serial skeleton. A range of overlaps from 6 to 96 voxels incrementing by 6 
voxels was tried on 4 different images of shape (n, n, 2n).  The image was divided by 2, 2, 4 in the x, y, 
and z directions respectively resulting in an even 16 image chunks for parallel operation on 16 cores.  
(b) The resulting computation times of the parallel skeleton (orange) compared to the serial skeleton
(blue). The skeleton, serial and parallel, was taken on four images of overlapping spheres with radius of 
10 voxels and porosity of 50%. The shapes of the four images were: [250, 250, 500], [500, 500, 1000], 
[1000, 1000, 2000], and [1500, 1500, 3000].  The results showed increasing speedup with increasing 
size ranging from 2 for the smallest image and 5.5 for the largest image. 
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A remaining challenge with the skeleton is locating boundary or surface pores (25) as the normal 
skeleton does not extend to the edge of the image (see Fig. 2a). Attempts were made to coerce the 
skeleton to the edge of the image using strategies based on padding the image prior to skeletonization 
and trimming the padding thereafter. However, while this idea worked successfully in 2D, ultimately all 
methods resulted in a skeleton that was fragmented and clustered for 3D images. For this reason, 
boundary pores are not labelled by MAGNET and the user is left to find or add boundary pores using 
their own criteria for simulations requiring them. The simulations in this work assumed boundary pores 
to be within 2% of the edge of the image boundary. Developing a skeletonization algorithm that 
correctly extends beyond the edges of the images remains a valuable target for future research.  

2.2. Distance Transform 
The distance transform is a standard tool used in image processing of porous media. It replaces each 
foreground voxel with the Euclidean distance to the nearest background voxel and, therefore, is useful 
for obtaining the geometrical properties of pores and throats. Computing the distance transform can be 
computationally intensive; however, the open source edt package (32) was used here, which is efficient 
and is also parallelized. 

Figure 2b shows the resulting distance transform on the void space, with the skeleton overlaid in black. 
The skeleton tends to follow the contour of the brightest pixels, which have the largest Euclidean 
distance; however, this is not always guaranteed. One example is at the edge of the image where the 
skeleton remains approximately centered between the edge of the image and the neighboring solid 
phase while the distance transform continues to measure from the nearest solid. The failure of the 
skeleton to lie on the true maximum of the distance transform also occurs within the center of the image, 
but to a less noticeable extent. For example, on a 2563 image of blobs with 70% porosity, it was found 
that only 13.6% of peaks in the distance transform map were located on the skeleton. This issue means 
that the pore and throat sizes, which are taken from the distance transform values underlying the 
skeleton are generally biased toward small sizes. This is why it is proposed in Figure 1 to take the 
maximum filter of the distance transform using a small kernel prior to obtaining pore and throat sizes as 
discussed further in Section 2.6.   

2.3. Find Junctions and Endpoints 
The next step is to analyze the skeleton for junctions and endpoints, which will become pore centers, by 
applying a convolution to the skeleton. The convolution replaces each voxel with the number of skeleton 
voxels in the vicinity of a cubic kernel 3 voxels across. Figure 5 shows the process in 2D by looking 
closely at a 10 by 10 area of pixels representing a subimage of a larger two-dimensional skeleton. Note 
that the left hand side of the subimage represents the edge of the larger image whereas all other sides 
in the subimage do not. Figure 5a is the original skeleton prior to convolution and Figure 5b is the 
resulting image after convolution. Following convolution, the image is masked using the original 
skeleton image to yield Figure 5c. All pixels with a value of 4 or greater are junction points, whereas 

Figure 5: A close up view of a 10 by 10 pixel area of a skeleton (a), skeleton following convolution (b), 
and the final convolution after the skeleton mask (c). 
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pixels with a value of 2 are endpoints. Endpoints could exist at the image edge as shown on the left hand 
side of Figure 5c or in the internal image. However, endpoints will rarely exist, if at all, at the image edge 
unless otherwise coerced by some means. 

Figure 2c shows the result of finding junctions and endpoints using convolution on the skeleton taken 
from the image of overlapping spheres introduced above. Note that the convolution operation can result 
in clusters of junctions where several branches nearly coincide. Liang et al. devised a sophisticated 
strategy to eliminate clustering (15), but MAGNET handles clustering more gracefully by simply merging 
junctions into a single cluster, and therefore a single pore, as shown by the green pixels in Figure 2d. 
Junctions can be merged by two different options: by applying either a fixed threshold or by using an 
adaptive threshold based on the local distance transform values. In both cases, the process starts by 
removing the junctions and endpoints from the image, leaving only the connecting segments. For the 
fixed threshold, segments are re-added to the image if their number of voxels is smaller than a specified 
threshold (e.g. 3 pixels). This will cause junctions that are 3 voxels apart to merge into a single junction. 
Figure 2d shows the result of using a fixed threshold of 3 pixels, with the section in the top-right 
illustrating clearly how several junctions are merged into a single one. For the adaptive distance-based 
threshold, segments are re-added to the image if their number of voxels is smaller than the maximum 
of the distance transform underlying the segment. This allows junctions in larger pores to become 
connected even if they are further apart than junctions in small pores. In either case, after the junctions 
are merged, it is necessary to choose a single voxel from each cluster which will be deemed the center 
point of the pore. The voxel with the largest distance transform value is chosen. In the event that multiple 
voxels have the same value, then a random one is chosen from them. 

2.4. Finding Throat Junctions 
A limitation of finding pores by looking for junctions is that it misidentifies pores with a coordination 
number of 2 as being part of a long throat. This can be problematic in some applications as it will result 
in long throats which can cause difficulties when modelling reactions since pore network models 
generally assume that reactions occur in pores. Therefore, this work presents two alternative approaches 
for finding “throat junctions”. The two approaches presented are 1) using a maximum filter to find local 
maximum on each skeleton segment and 2) using the fast-marching method to sort the voxels of each 
segment into a linear chain, then using signal processing tools to find peaks in the profile using the 
underlying distance transform value as the heights. It is important to stress that these two methods are 
not intended to be topologically consistent but two fundamentally different ways to characterize 
junctions along throats. The two approaches are explained in detail below. 

2.4.1. Maximum Filter 
To find throat junctions using a maximum filter, pore bodies are first inserted as spheres at the pore 
centers found from junctions and endpoints in the previous step. Figure 2e shows an example of disks 
inserted at pore centers in the image of overlapping spheres. The radius of the inserted spheres (or disks 
in Fig. 2e) is equal to the value of the distance transform at the pore center explaining why each disk in 
Figure 2e just touches the nearest solid. Unfortunately, inserting pore bodies into an image using Python 
for loops can be slow for a large number of pores. Therefore, MAGNET uses just-in-time compilation, 
using the Numba package, to speed up for loops and reduce computation time. 

After inserting spheres, the remaining skeleton segments (cyan color in Fig. 2e) are searched for local 
maximums in the distance transform. To ensure that the ends of the segments are not inadvertently 
identified, the distance transform value in the voxels belonging to the pore bodies are set to infinity. 
Figure 6 is a 10-pixel by 10-pixel area of the resulting image, showing a skeleton connecting two pore 
bodies. The connected pores have values of infinity as shown in the top right and bottom left corners 
while the skeleton is labelled according to its distance to the nearest solid (aka the medial axis transform). 
Finally, the maximum filter is applied to this image to find maxima along the remaining skeleton. Any 
pixels which retain their value after applying the maximum filter are a local maximum. The resulting local 
maximums are the throat junctions shown in Figure 2f as cyan pixels. 

https://doi.org/10.69631/g47x8w91
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The size of the neighboring region in applying the maximum filter is an adjustable parameter. By default, 
MAGNET uses a size of 7 voxels meaning that the neighboring region is defined as three voxels in each 
direction from the center of the kernel element. To illustrate this, red and blue bounding boxes 
representing 5- and 7-pixel long neighboring regions centered at the local maximum (i.e. 12) were added 
to Figure 6a. In the case of the smaller footprint, the local maximum along the skeleton is found whereas 
the larger footprint overlaps with the adjacent pore body, and therefore, does not find the local 
maximum on the skeleton since pore bodies were labelled with infinity. This illustration shows how the 
kernel size effectively controls which throats are classified as long and should be broken into 2 throats 
and a pore (at least). 

2.4.2. Throat Profile 

The other approach for finding throat junctions looks for peaks in the profile of the distance values along 
each segment. To create a profile, however, it was necessary to determine the order of the voxels along 
the segment from one pore to the neighbor. This was accomplished using the fast-marching method, 
which starts at one end and steps along the segment, labeling each voxel with the distance travelled, 
until reaching the last voxel on the other end. A profile can then be created by plotting the distance 
travelled vs. the distance transform value for each voxel. Figure 6b shows the peak profile for three 
throats, with 2 peaks, 1 peak, and no peaks. The peaks were identified using a circle marker and are 
found using the find_peaks function in Scipy’s signal processing toolbox. This function accepts numerous 
arguments to ensure only valid peaks are found, such as avoiding peaks which are too close together 
and avoiding peaks which do not stand high enough relative to the neighboring voxels.  These are 
adjustable, but in the present work only peaks with a relative height of 1 voxel or more and a spacing 
greater than the minimum distance value along the profile were accepted. Figure 2g shows the resulting 
image of junctions on the image of overlapping spheres after adding throat junctions. The throat with 
two junctions in Figure 6b is visible in the top left corner of Figure 2g for instance. 

Figure 6: (a) A 10 by 10 array of pixels showing a skeleton connecting two inserted pore bodies. The 
inserted pores (bottom left and top right) are labelled with the value infinity while the skeleton is labelled 
with size values corresponding to the value of the distance transform.  Local maximums are searched 
for along the remaining skeleton using the maximum filter, but different sized neighboring regions can 
be used.  The red and blue bounding boxes represent a neighboring region of 5 pixels and 7 pixels wide 
respectively, centered on the local maximum.  (b) The peak profile along the length of throats with 2 
peaks (black), 1 peak (grey), and no peaks (blue) where peaks are identified as circle markers. The 
distance to the nearest grain and the distance along each throat is in number of voxels. 
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2.5. Determining Throat Area 
While the distance transform is an important tool in the study of porous media for storing geometrical 
data, it is limited in that it only reports the distance to the nearest grain voxel. In real porous media, 
throat cross-sections can take on a variety of irregular shapes with varying aspect ratios. For example, 
consider the simple case of an elliptical cross-section, as shown in Figure 7a. Here, the distance 
transform is not sufficiently useful for calculating the throat area because it only contains the distance 
of the minor axis (or shorter radius, 𝑟𝑟1) and knows nothing about the length of the major axis (or larger 
radius, 𝑟𝑟2). The distance transform will, therefore, always underestimate the throat area because it reports 
only the shortest distance. This problem has been faced by other medial axis network extractions in the 
past, and a variety of different solutions have been proposed (15, 18, 25, 30). In general, there have been 
two different ways of finding throat area and these can be classified, by our own recognition, as either 
throat slicing or throat dilating. The work by Liang et al., is an example of using throat slicing to find the 
cross-sectional area (15). In that work, three consecutive voxels on the skeleton were used to find the 
vector normal to the plane of cross-section. Then, the image was sliced according to the plane of cross-
section and the throat area estimated by counting the number of voxels. Alternatively, the skeleton can 
be dilated to find the cross-sectional area of the throat. Lindquist et al. did this by dilating the skeleton 
in a radial direction and stopping at points that touch the grain but continuing in other directions until 
eventually a closed loop forms representing the minimum throat surface area (18). Both approaches, 
however, become computationally expensive for a large number of throats. 

In this work, random walk simulations which are well suited to voxel images and commonly used to 
estimate properties such as directional tortuosity (36), have inspired a novel approach for finding the 
throat area that uses walkers. While this approach might be similar to how throat cross-sections were 
found in the work by Bakke and Oren (4), it’s unclear how the distance to the nearest solid was found 
exactly, and our technique proposes the use of the distance transform for faster computation. In our 
work, walkers are used to find the throat area by setting walkers to march out radially from the skeleton 
to the grain boundary, recording the distance each walker takes to reach the grain, and using 
triangulation to approximate the throat area. The direction taken by each walker is in a plane normal to 
the skeleton with equally spaced angles between adjacent walkers spanning a full revolution around the 
skeleton. To find the direction each walker takes, the dot product is taken with the plane’s normal and 
set equal to zero. This results in Equation 1 which constrains the resulting set of directional vectors, 
defined by angles 𝜑𝜑d and 𝜃𝜃d in spherical coordinates, to directions that lie in the plane perpendicular to 
the skeleton. The angle 𝜃𝜃d  spans the full revolution around the skeleton from zero to 2π with even 
intervals of 2π 𝑛𝑛⁄  where 𝑛𝑛 is the number of walkers. The plane’s normal is found using three consecutive 

Figure 7: Digitally generated throat for demonstrating how walkers can be used to measure the cross-
sectional area of a throat. Image (a) is a full view of the digitally generated throat while image (b) shows 
the cross-section and the path four walkers (w1, w2, w3, and w4) at directions 90 degrees from each other 
would take to estimate the area. (b) Measured area across length of digitally generated throat using 5 
(blue), 10 (red), and 100 (green) walkers with a step size of 0.5 voxels. The black line represents the true 
area calculated using the equation for area of an ellipse. (c) The computational time to estimate throat 
area using different step sizes and number of walkers. The step sizes the walkers took were 0.1, 0.5, and 
1.0 voxels as shown in blue, red, and green respectively. The yellow line shows an adaptive stepping 
scheme that uses the distance transform for which significant speed up was observed. 
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voxels in the skeleton, similar to the work by Liang et al. (6), and is expressed in spherical coordinates to 
obtain angles 𝜑𝜑n and 𝜃𝜃n. 

tan(𝜑𝜑d) tan(𝜑𝜑n) cos(𝜃𝜃n − 𝜃𝜃d) = −1 (1) 

After calculating the direction each walker is to take, the starting positions of the walkers are set and the 
x, y, and z positions are recorded. Then, the walkers march out from the skeleton at certain step sizes 
and their cartesian coordinates updated. Upon each step, walkers are checked to see if they land in a 
grain voxel at which point the walker stops walking. The walking procedure continues until all walkers 
reach the grain boundary. Prior to walking, the image is padded with grain voxels to keep walkers from 
marching outside of the image boundary. The final coordinates of the walkers can be compared to their 
starting positions to calculate the distance traveled. Figure 7a shows a set of four walkers (w1, w2, w3, 
and w4) marching out from the skeleton in a plane perpendicular to the normal vector and spanning a 
full revolution around the skeleton with an angle of π

2
 between walkers. A triangulation, similar to the

work by Shin et al. (30), was used to estimate the throat area. In Figure 7a, the dashed line connecting 
the end positions of walkers 1 and 2 encloses the estimated area as a triangle where lengths 𝑎𝑎 and 𝑏𝑏 are 
the distances travelled by walkers 1 and 2 respectively. Equation 2 can be used to calculate the area of 
any triangle connecting the path taken by two walkers where 𝜃𝜃 is the angle between walker trajectories. 
The area between adjacent walkers, can be estimated in this way (using triangles), and the resulting area 
can be summed together to get a throat area.  

𝐴𝐴 =
𝑎𝑎𝑎𝑎
2

sin(𝜃𝜃) (2) 

Figure 7b shows the effect of the number of walkers on estimating the cross-sectional area along the 
length of the digital throat in Figure 7a as an example. Walkers were sent out from the medial axis of 
the generated throat by trying 5, 10, and 100 walkers with a step size of 0.5 voxels. The distance the 
walkers travelled to reach the grain boundary was measured and triangulation was used to estimate the 
cross-sectional area. The calculated area along the length of the throat is plotted in Figure 7b along 
with the true area (in black) which was calculated using the equation for the area of an ellipse. The 
triangulation of the throat area is underestimated when using 5 walkers, a good approximation when 
using 10 walkers, and almost identical to the actual area for 100 walkers. 

The step size taken by the walkers is an important factor in the computational time required. If the step 
size is too large (e.g. 5 voxels) then walkers end their path too far inside the solid, creating a bias towards 
longer paths. If the step size is too small (e.g. 0.1 voxels), then the result will be more accurate but more 
time consuming. Figure 7c shows the effect of step size on the computational time. This study was run 
on a workstation with an Intel(R) Xeon(R) CPU E7- 4860 processor with a speed of 2.27 GHz and 748 GB 
of RAM. Step sizes of 0.1, 0.5, and 1.0 voxel were tried for all walkers as well as an adaptive stepping 
scheme. The adaptive stepping works by having walkers step an amount equal to the distance transform 
underlying the voxel in which they are currently located. The idea is that walkers are never closer to the 
grain boundary than the value indicated in the distance transform, and therefore it is safe for the walker 
to travel as much as that distance in any direction without overstepping into the grain boundary. The 
results from measuring the computation time showed that a million walkers took roughly 78 minutes 41 
seconds, 3 minutes 52 seconds, 1 minute 11 seconds, and 7.8 seconds for the 0.1, 0.5, 1.0 voxel, and 
adaptive step respectively. A million walkers in a pore network are reasonable considering that this is 
equivalent to 10 walkers per throat in a network with 100,000 throats. The speed up achieved from taking 
a 1 voxel step to using the distance transform for adaptive stepping was 9.1X faster.  

2.6. Converting Junctions to Network Topology 
After finding all junctions including endpoints and throat junctions, the final geometric and topological 
features of the network can be obtained. Figure 2h shows the final set of junctions for the image of 
overlapping spheres. In this image, the throat junctions are the ones found using the maximum filter 
method. The junctions are labelled, indicated by their color in Figure 2h, and overlayed with the skeleton, 
which is shown in purple. Throats are found by removing all junction voxels from the skeleton, leaving a 
fragmented skeleton, which is also labelled. The labels in these two images correspond to the pore and 
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throat index of the network. Generating the adjacency list (which pores are connected to which, and by 
which throat) is done by analyzing the image of labelled throats. Each throat is isolated, dilated by 1 
pixel, then checked to see which pore junctions are overlapped. The adjacency list is generated by noting 
the two pore labels (e.g. 𝑖𝑖 and 𝑗𝑗) on the row corresponding to the throat label being analyzed (e.g. 𝑘𝑘), 
thus row 𝑘𝑘 of the adjacency list will contain (𝑖𝑖,  𝑗𝑗). The final adjacency list will be an 𝑁𝑁𝑡𝑡𝑥𝑥2  array, where 𝑁𝑁𝑡𝑡   
is the total number of throats in the network. While finding throat connections, geometric properties of 
the throats are also found. The area is computed using the walker method, and the inscribed throat 
diameter is found as the minimum distance transform value along a throat. As discussed in Section 2.2, 
the majority of peaks in the distance transform do not lie on the skeleton. Therefore, it was found that 
MAGNET underestimated pore and throat sizes compared to SNOW, which determines these sizes from 
peaks in the distance transform. To remedy this problem, a maximum filter was applied to the distance 
transform, using a small spherical structuring element with a radius of 2 voxels, prior to finding the 
minimum throat radius.  

After finding throat properties, pore properties are found including pore coordinates and pore size. This 
is accomplished in the same manner as for throats, by analyzing each labelled cluster of pore junctions. 
The pore coordinates correspond to the voxel location since these junctions were already reduced to a 
single voxel that lies on the skeleton and has the maximum distance transform value. The indices of the 
resulting pore center are multiplied by the image resolution or voxel size to get an 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 coordinate 
that is returned as an 𝑁𝑁𝑝𝑝𝑥𝑥3  array where 𝑁𝑁𝑝𝑝  is the number of pores. For pore size, the inscribed diameter 
is the value of the distance transform at the pore center, also obtained after applying a maximum filter. 
Table 1 provides a summary of all pore and throat properties returned by MAGNET.  

3. SIMULATION AND VALIDATION
In this section, MAGNET is demonstrated on a 4003 image of Berea sandstone obtained from the work 
by Dong and Blunt (6). The network extracted by MAGNET is compared to a network extraction by 
SNOW, lattice-Boltzmann method, and drainage by image-based sphere insertion. After which, the 
computational time of MAGNET is broken down by each image processing step and compared to SNOW. 

Table 1: Pore and throat properties returned by MAGNET. 
Pore Property Description 
Coordinates The pore coordinates are an Np – by – 3 array (Np is the number of pores) of x, y, 

and z coordinates corresponding to the centre of the pore. In a cluster of 
junctions, the pore center is the voxel with the largest distance transform.  The 
coordinates are multiplied by the resolution or length of a voxel. 

Inscribed Diameter This value is taken as two times the distance transform at the pore centre. It is 
the diameter of the pore that does not overlap with any adjacent grain voxels. 
This distance is multiplied by the voxel size to get pore diameter. 

Throat Property Description 
Connections The throat connections are a Nt – by – 2 array (Nt is the number of throats) where 

each row contains the indices of two pores that are connected to one another. 
The skeleton is used to determine the connections between pores. 

Area This is the area calculated using walkers as explained in section 2.5. By default, 
MAGNET sends out walkers only from the throat voxel with the minimum 
distance transform, but if more throat voxels are used, only the minimum throat 
area along each throat is returned. 

Inscribed Diameter This value is two times the minimum value of maximum filtered distance 
transform along the throat. It is the diameter of the throat that does not overlap 
any adjacent grain voxels. This distance is multiplied by the voxel size to get 
throat diameter. 

Equivalent 
Diameter 

This is the diameter of the circle with the same area as the throat cross-section. 
It uses the throat area property previously calculated by walkers in section 2.5. 
The result is multiplied by the voxel size to get a throat diameter. 
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3.1. Network Extraction of Berea Sandstone 
Prior to network extraction, all blind pores were filled, and floating solids trimmed, yielding a porosity of 
19.54%, compared to an initial value of 19.65%. Figure 8 shows the resulting network extractions 
comparing SNOW and MAGNET, overlaid with the voxel image. Excellent fitting of pores inside and filling 
of the porous regions is demonstrated by MAGNET, and the two network extractions appear to compare 
reasonably well in terms of topology and pore size.    

Visual inspection of the two approaches looks as though the SNOW extraction has fewer pores but 
higher connectivity than the MAGNET extraction. In general, MAGNET has more pores and throats than 
SNOW with 17,968 pores and 24,373 throats for MAGNET compared to 12,374 pores and 21,696 throats 
for SNOW. The average coordination number for MAGNET is less than the average coordination number 
for SNOW with 2.71 for MAGNET and 3.51 for SNOW.  This can be attributed to the fact that MAGNET 
keeps nearby pores and allows them to overlap, while SNOW is more aggressive with merging nearby 
pores. The total network extraction took 55 seconds for MAGNET (without parallelization) and 3 minutes 
and 21 seconds for SNOW on a laptop with a 2.4 GHz Intel Core i5-1135G7 processor and 12 GB of RAM. 
The time that it took MAGNET to calculate the throat area was 12.8 seconds using 10 walkers per throat. 

The pore and throat size distributions for the inscribed diameters determined from MAGNET and SNOW 
networks taken from the Berea sandstone are compared in Figure 9. The distributions for both pore and 
throat sizes are in excellent agreement. The average pore diameter is 32.5 µm for SNOW and 33.1 µm 
for MAGNET, while the average throat diameter is 24.8 µm for SNOW and 26.5 µm for MAGNET. One 
difference is that MAGNET has more smaller pores. Here, MAGNET has about 25% more pores with a 
diameter less than 20 µm, and in other cases it has been observed that MAGNET has twice as many small 
pores. One possible explanation for the number of small pores could be the dead-end branches in the 
skeleton that were not trimmed away. In the past, other medial axis extractions have trimmed away these 
dead-end pores since these pores do not contribute to flow (18). However, in simulations with reactions 
occurring at the interphase, such as battery discharge, these pores do contribute to the performance 
and thus should not be ignored. It would also be possible to increase the threshold at which junctions 

Figure 8: A visualization of 
network extractions for 4003 
image of Berea sandstone with a 
5.35μm resolution comparing 
SNOW and MAGNET extrac-
tions. 
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are merged into a single pore, which would decrease the number of pores in the network and shift the 
size distribution to larger pores. 

3.2. Validation of Network Extraction 
3.2.1. Capillary Pressure Curves 
A mercury intrusion porosimetry simulation was performed on both MAGNET and SNOW network 
extractions to compare capillary pressure curves. An image-based drainage simulation was also 
performed and considered as a ground truth. This method used a binary erosion followed by dilation 
using progressively smaller spherical structuring elements to find the invading fluid configuration. 
Image-based drainage is known to overestimate the intrusion capillary pressure since invading fluid must 
overcome the pressure corresponding to the inscribed diameter. Consequently, the inscribed diameter 
was used in both SNOW and MAGNET calculations. Meanwhile, OpenPNM was used to run a drainage 
simulation on the two extracted networks. The drainage simulation works by using the Young-Laplace 
equation to calculate the throat entry pressure from the throat diameter. Equation 3 is the Young-
Laplace equation where 𝐷𝐷𝑖𝑖 is the diameter of throat 𝑖𝑖, 𝛾𝛾 is the surface tension, and 𝜃𝜃 is the contact angle 
of the invading fluid. Mercury with a surface tension of 0.4791 N/m and contact angle of 140 degrees 
was used as the invading fluid. All simulations were set to have mercury invade from all sides. 

𝑃𝑃𝑐𝑐 =
4𝛾𝛾
𝐷𝐷𝑖𝑖

cos(𝜃𝜃) (3) 

Figure 9: Pore and throat size distributions for SNOW (blue) and MAGNET (purple) 
extractions. The inscribed diameters are used for comparison. 

Figure 10: Resulting poro-
simetry curves from SNOW 
(blue) and MAGNET (purple) 
extractions on the Berea 
sandstone sample.  Mercury 
was used as the invading fluid 
with a surface tension of 0.48 
N/m and a contact angle of 140 
degrees. The black curve 
shows the results from an 
image-based simulation that 
was used as the ground truth in 
comparison to results from the 
two pore networks. 
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Figure 10 shows the resulting capillary pressure curves for SNOW (blue), MAGNET (purple), and the 
image-based (black) simulation, all using inscribed throat diameter for fair comparison. The results show 
that all three agree very well. It should be reiterated that applying a maximum filter to the distance 
transform was necessary in matching drainage curves, which reinforces the idea that the skeleton does 
not follow maximums perfectly. This finding suggests that a new algorithm for obtaining a skeleton that 
follows the maximums in the distance transform could be a useful avenue of research, but this is outside 
the scope of the present work.  

3.2.2. Permeability Coefficient 
After extracting the network using MAGNET, a flow simulation was written and run to estimate the 
permeability of the Berea sandstone and results were compared to SNOW and lattice Boltzmann 
simulations on the same image. The open-source Python package OpenPNM (version 3.1.1) was used to 
carry out the simulation for MAGNET and SNOW networks (32), and the permeability values taken from 
Yi et al. (38) were used for comparison to lattice Boltzmann. In the pore network simulations, the 
hydraulic conductance was calculated using the cone and cylinder geometry models already available in 
OpenPNM. The hydraulic conductance, 𝑔𝑔𝑖𝑖ℎ, of arbitrary shape 𝑖𝑖, was calculated using Equation 4 where 𝜆𝜆𝑖𝑖ℎ

is the hydraulic size factor and 𝜇𝜇 is the viscosity of the working fluid, which is assumed to be water or 1 
cP. 

𝑔𝑔𝑖𝑖ℎ =
𝜆𝜆𝑖𝑖ℎ

µ (4) 

Equation 5 shows how to calculate the hydraulic size factor, 𝜆𝜆𝑖𝑖ℎ ,  assuming negligeable inertial loss for a 
shape of varying cross-sectional area, 𝐴𝐴𝑖𝑖(𝑥𝑥), along length, 𝑙𝑙𝑖𝑖 , of throat 𝑖𝑖 (1). The specific polar moment 
of inertia is given by 𝐼𝐼𝑝𝑝∗ which is calculated by 1

𝐴𝐴2 ∫ 𝑦𝑦
2 + 𝑧𝑧2𝑑𝑑𝑑𝑑, and depends on the shape of the cross-

section. The specific polar moment of inertia, for a circular cross-section as is the case for cones and 
cylinders, is ½𝜋𝜋. 

1
𝜆𝜆𝑖𝑖ℎ
� = 16π2 �

𝐼𝐼𝑝𝑝∗

𝐴𝐴𝑖𝑖(𝑥𝑥)2 𝑑𝑑𝑑𝑑
𝑙𝑙𝑖𝑖

0
 (5) 

Assuming a resistor in series like model, the overall conductance for a pore-throat-pore conduit can be 
calculated from Equation 6.  𝐺𝐺𝑖𝑖𝑖𝑖ℎ  is the hydraulic conductance for a pore-throat-pore conduit connecting
pore 𝑖𝑖 and pore 𝑗𝑗. 

𝐺𝐺𝑖𝑖𝑖𝑖ℎ =
1

1
𝑔𝑔𝑖𝑖ℎ
� + 1

𝑔𝑔𝑖𝑖𝑖𝑖ℎ� + 1
𝑔𝑔𝑗𝑗ℎ� (6) 

Finally, after defining the hydraulic conductance, flow was simulated on the Berea sandstone image. The 
boundary pores were labelled in all three directional axes and flow simulations were performed along 
each direction. The permeability, 𝐾𝐾, was obtained along each axis and then averaged to estimate the 
permeability of the sample. The permeability was calculated from Darcy’s law (Eq. 7) where 𝑄𝑄 is the 

Figure 11: Predicted perme-
ability of the 𝟒𝟒𝟒𝟒𝟒𝟒𝟑𝟑 voxel image of 
the Berea sand-stone with a 
resolution of 5.35 μm are plotted 
and compared for lattice 
Boltzmann (grey), MAGNET 
(purple) and SNOW (blue) 
simulations. The perme-ability 
measured in each direction x, y 
and z are plotted along with the 
average of all three directions. 
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steady state flow rate estimated going through the rock sample. The length of the sample is denoted by 
𝐿𝐿 and the cross-sectional area perpendicular to flow is denoted using 𝐴𝐴. 

𝐾𝐾 =
𝑄𝑄𝑄𝑄𝑄𝑄
𝐴𝐴∆𝑃𝑃

 (7)

The resulting permeability values from each case are shown in Figure 11. The permeabilities, averaged 
for all three directions, were 1.86, 1.84, and 1.78 darcy for MAGNET, SNOW, and LBM respectively. Note 
that the LBM estimate of permeability was retrieved from the work by Yi et al. (38) who performed lattice-
Boltzmann on the exact same Berea image. Compared to LBM, MAGNET had an error of just 4.9%. To 
estimate permeability, the equivalent throat diameter was used. This corresponds to the diameter of a 
circle with the same area as the throat, as computed by the walker method outlined above. How the 
throat size is calculated highly influences the results from the permeability prediction. For instance, when 
using the inscribed diameter, the permeability predicted by MAGNET was 0.46 darcy, so 75% lower than 
the LBM result. This clearly highlights the value of the walker method for finding the throat area.   

3.3. Computational Efficiency 
To study the computational efficiency of MAGNET, the time taken was measured for each step of the 
process. Figure 12 shows the resulting time breakdown for a 10003 image of packed spheres with a 
uniform radius of 10 voxels and 50% porosity. The total time to run the MAGNET extraction, prior to 
parallelization, and using the maximum filter to find throat junctions, was 35 minutes and 15 seconds. 
Compare this to the SNOW extraction which took 74 minutes and 40 seconds for the same image 
resulting in a speed up of over 2X. The operations which required the least amount of time were 
computing the distance transform and identifying the junctions/endpoints. The distance transform 
required only 54.9 seconds, making it the fastest operation and accounting for just 2.6% of the total 
extraction time. The next fastest operation was the finding of junctions and endpoints, which took 2 
minutes and 46 seconds, which represents 7.9% of the total time. Finding throat junctions, however, took 
the most computational effort with a time of 11 minutes and 21 seconds or 32.2% of the total extraction 
time. Subsequently, the throat profile method was tried, reducing the total extraction time to 27 minutes 
and 28 seconds. This improvement was achieved by decreasing the time required to find throat junctions 

Figure 12: Time breakdown of MAGNET algorithm for a 10003 image of packed spheres 
with 50% porosity. The effect of using fast marching to find throat junctions and 
parallelizing the skeleton on the total extraction time is observed. 
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to just 3 minutes and 26 seconds, corresponding to only 12.5% of the total extraction time. The next 
most time-consuming step was the skeletonization, which required 7 minutes and 53 seconds or 28.7% 
of the total extraction time. To improve the extraction time, parallelization of the skeletonization was 
tried by dividing the image into 8 equal blocks with an overlap of 52 voxels (i.e. two times the maximum 
distance transform) for parallelization. The resulting time it took to compute the skeleton was reduced 
to just 2 minutes and 39 seconds or 11.8% of the total extraction time. Now, after using the throat profile 
method and parallelizing the skeletonization, the total extraction time is only 22 minutes and 28 seconds, 
and the resulting speed up compared to SNOW is 3.3 times for the same 10003 image.  These tests for 
computational effort were carried out on a workstation with 250 GB of ram, 16 logical processors, and a 
2.1 GHz Intel Xeon Silver 4110 processor.    

After using the throat profile and parallelizing the skeletonization, the slowest step of the network 
extraction was finding the throat area. Calculating the throat area took 6 minutes and 21 seconds or 
28.3% of the total extraction time, following parallelization. This time includes a gaussian filter that is 
used to help find the voxel with the minimum distance transform value along each throat as this voxel 
is considered a good candidate to calculate the throat area. A more detailed look at the time it takes to 
find the throat area using walkers revealed that only 44 seconds was spent by the walkers but an 
overwhelming 5 minutes and 37 seconds was spent just locating where to calculate the minimum. In this 
example, 359,485 throats are found, and 10 walkers are used per throat resulting in a total of 
approximately 3.6 million walkers. Extrapolating from Figure 7c, the predicted time for these many 
walkers, using adaptive stepping, is about 50 seconds, which is roughly what was measured here with a 
time of 44 seconds to complete walking. This is fast and demonstrates the benefit of using the distance 
transformation to adaptively control the step size walkers take. The most time-consuming part of finding 
the throat area is not walking, but finding the throat voxel to walk from which took 88.4% of the total 
time. The gaussian filter was removed in an effort to reduce this time; however, the permeability for the 
Berea sandstone unfortunately increased by 12.4% compared to the previous estimate. This is likely an 
effect of walkers just missing the grain boundary and marching beyond the throat constriction. 
Therefore, it is recommended to find and eliminate outliers in the distances walkers travel as part of 
future work. 

Finally, the speed up of MAGNET was tested and compared to SNOW. The speed up was tested on 
artificially generated images of overlapping spheres with radius of 10 voxels and a porosity of 50%. 

Figure 13: Network extractions were 
performed on different sized images using 
SNOW and MAGNET and the extraction times 
measured. Plot (a) compares the extractions 
times of SNOW to MAGNET using the serial 
skeleton. Plot (b) records the speed up is in 
the range of 3.4 to 4.2 for all images. 
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Floating solids were trimmed from the artificial images to create a realistic 3D image of packed spheres. 
Four different images with shapes of (100, 100, 100), (1000, 100, 100), (1000, 1000, 100), and (1000, 1000, 
1000) were used. The MAGNET extraction was run in serial mode and did not calculate throat area or 
find throat junctions. Figure 13a compares the extraction time of MAGNET to SNOW in minutes for both 
SNOW and MAGNET at different image sizes. The extraction time recorded here for MAGNET includes 
the skeletonization. Figure 13b shows the speed up plotted against image size. The speed up using the 
serial skeletonization ranges from 3.4 to 4.2 compared to the parallel case which has a speed up in the 
range of 3.0 to 5.7. Parallelizing the skeletonization actually slowed down the extraction on the smallest 
image with 106 voxels because of overlap. Therefore, parallelizing is only recommended on larger images 
with at least 107 voxels. 

4. CONCLUSIONS
The present work was built on previous medial axis-based network extraction tools by addressing several 
shortcomings or challenges with previous approaches. Firstly, a simple pore merging criteria was used 
that allowed pores to overlap, since this can be handled using appropriate pore-scale models in the pore 
network simulation stage. Secondly, two methods were presented for finding additional nodes along 
throat segments, which are important when considering reactive flow for instance (21). Thirdly, it became 
apparent that the skeleton does not always lie on the true peaks of the distance transform, meaning that 
inscribed diameters of pores and throats were being underreported. It was found that applying a simple 
maximum filter with a small round structuring to the distance transform largely remedied this problem 
by transposing the correct distance values onto the skeleton pixels.  Lastly, we developed a novel method 
for finding the cross-sectional area of throats using walkers to probe the shape of the void space around 
each throat. Previous medial axis-based methods employed complicated and/or costly approaches to 
obtain this information, while the walker approach constituted just a small fraction of the total time for 
MAGNET.  

Due to the relatively fast speed of the skeletonization algorithm, it was shown that MAGNET can be 
much faster than the widely used SNOW algorithm. And finally, it was also shown that skeletonization 
can be successfully performed in parallel using the “block-and-tackle” approach, provided the overlap 
between the blocks was sufficient to ensure the resultant skeleton was accurate. Using parallelization 
reduced the required time by more than 5X for large images. 

To validate the extracted network, a 4003 voxel image of a Berea sandstone sample with a resolution of 
5.35 µm was analyzed by both MAGNET and SNOW. Strikingly similar pore and throat size distributions 
were observed except that MAGNET generally has more smaller pores (<20 µm). This was attributed to 
merging criteria, not trimming endpoints, and the skeleton missing some maximums on the distance 
transform. The versatile nature of the open-source network extraction means that users can easily 
change merging criteria or how endpoints are handled. Mercury intrusion was simulated on MAGNET 
and SNOW networks and excellent agreement with image-based drainage simulations was obtained 
when using the inscribed diameter. Finally, permeability was estimated using MAGNET and the average 
permeability for the Berea sandstone was within 5% error compared to a lattice Boltzmann simulation. 
The equivalent throat diameter, obtained as from the throat area computed using the walker method, 
was found to be essential for achieving such an excellent prediction of permeability. 

In closing, MAGNET is a modernized medial axis approach to pore network extraction, that is both 
impressively fast and as accurate as existing tools. It is publicly available as part of the PoreSpy project 
(7), the source code for which is available on Github and the code is also deployed via the Python 
Package Index (PyPI) for effortless installation. 
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