Soil salinization due to saltwater intrusion in coastal regions: The role of soil characteristics and heterogeneity




Soil salinity, Seawater intrusion, Soil characteristics, Soil health, Soil remediation


Soil plays a vital role in maintaining ecosystem functionality, supporting biodiversity, facilitating successful crop production, and ensuring socio-economic stability.  Soil quality is, however, constantly threatened by various factors, such as adverse climate conditions, hydrogeological processes, and human activities. One particularly significant stressor is soil salinity, which has a detrimental effect on soil quality. This study focuses specifically on understanding how soil properties contribute to the accumulation of surface soil salinity in the presence of shallow saline groundwater. To achieve this objective, advanced groundwater modeling techniques are employed to simulate saltwater intrusion in a riparian area known as Altes Land in northern Germany. A realistic representation of the salinization process is created and evaluated using a comprehensive dataset of hydrogeological information specific to the region. Additionally, the study examines the influence of soil heterogeneity on regional soil salinity by varying soil properties through devising six distinct scenarios for generating the numerical models that represent variations in soil texture and structure. The study reveals that regional soil texture and layering arrangement significantly influence the availability of water and the propagation of saline water in the vadose zone, and are major contributors to surface soil salinity. Subtle alterations and simplifications, often inconspicuous or deemed inconsequential in the context of small-scale experiments, may carry substantial ramifications for the formulation of enhanced management strategies in regions characterized by low elevation and influenced by groundwater salinity. Furthermore, the insights gained from this research provide valuable information for applications in agricultural practices and environmental conservation.

Plain language summary

Saltwater intrusion occurs when seawater enters coastal groundwater. In low-lying coastal regions, saline groundwater can rise close to the soil surface, leading to soil salinization that negatively impacts soil health and plant growth. The extent of soil salinization can be impacted by soil texture and heterogeneity, which is not fully understood at regional scales. In this study, we developed a new decision-support framework capable of describing and predicting salt transport through unsaturated zones lying over groundwater affected by seawater intrusion, and evaluated it against field measurements. This enabled us to investigate soil salinity under a variety of conditions and quantify the effects of important parameters, including soil texture, heterogeneity, and layering arrangement, on salt deposition close to the surface. Our study offers new quantitative insights into and tools for revealing the mechanisms governing the spatial distribution of soil salinity, as well as its health, hence contributing to global efforts for sustainable resource management and United Nations Sustainable Development Goals, particularly UN SDG15.


Download data is not yet available.


Metrics Loading ...


Adekiya, A.O., Ejue, W.S., Olayanju, A., Dunsin, O., Aboyeji, C.M., et al. (2020). Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Scientific Reports 10, 16083. DOI:

Aley, T.J., Kirkland, S.L. (2012). Down but not straight down: significance of lateral flow in the vadose zone of karst terrains. Carbonates Evaporites 27, 193–198. DOI:

Balfagón, D., Zandalinas, S.I., Mittler, R., Gómez‐Cadenas, A. (2020). High temperatures modify plant responses to abiotic stress conditions. Physiologica Plantarum, 170, 335–344. DOI:

Bilal, S., Shahzad, R., Imran, M., Jan, R., Kim, K.M., Lee, I.-J. (2020). Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress. Industrial Crops and Products, 143, 111931. DOI:

Boll, T., von Haaren, C., von Ruschkowski, E. (2014). The Preference and Actual Use of Different Types of Rural Recreation Areas by Urban Dwellers—The Hamburg Case Study. PLoS ONE, 9, e108638. DOI:

Chaturvedi, A.K., Bahuguna, R.N., Shah, D., Pal, M., Jagadish, S.V.K. (2017). High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2 on assimilate partitioning and sink-strength in rice. Scientific Reports, 7, 8227. DOI:

Chen, S., Mao, X., Shukla, M.K. (2020). Evaluating the effects of layered soils on water flow, solute transport, and crop growth with a coupled agro-eco-hydrological model. Journal of Soils and Sediments, 20, 3442–3458. DOI:

Cui, H., Bai, J., Du, S., Wang, J., Keculah, G.N., et al. (2021). Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta. Environmental Pollution, 286, 117400. DOI:

Dashtian, H., Shokri, N., Sahimi, M. (2018). Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity. Advances in Water Resources, 112, 59–71. DOI:

Depke, S.-C., Lück, C., Peters, J., Wellmer, L., Seidel, S. (2016). Creating tangible and intangible hospitality products with a sustainable value – The case of the Altes Land apples. Research in Hospitality Management, 6, 37–43. DOI:

Diersch, H.-J.G. (2014). FEFLOW. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI:

DIN Deutsches Institut für Normung e.V. (2008). DIN 4220:2008-11, Bodenkundliche Standortbeurteilung - Kennzeichnung, Klassifizierung und Ableitung von Bodenkennwerten (normative und nominale Skalierungen). Beuth Verlag GmbH. DOI:

Ertl, G., Bug, J., Elbracht, Dr. J., Engel, N., Herrmann, F. (2019). Grundwasserneubildung von Niedersachsen und Bremen. Berechnungen mit dem Wasserhaushaltsmodell mGROWA18. LBEG - Landesamt für Bergbau, Energie und Geologie. ISSN: 1864-6891.

FAO and ITPS. (2015). Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy. ISBN: 978-92-5-109004-6.

Francke, H., Thorade, M. (2010). Density and viscosity of brine: An overview from a process engineers’ perspective. Geochemistry, 70, 23–32. DOI:

Gehrt, E., Benne, I., Evertsbusch, S., Krüger, K., Langner, S. (2021). Erläuterung zur BK50 von Niedersachsen. LBEG - Landesamt für Bergbau, Energie und Geologie. ISSN: 1864-6891

Gelhar, L.W., Collins, M.A. (1971). General Analysis of Longitudinal Dispersion in Non-uniform Flow. Water Resources Research, 7, 1511–1521. DOI:

Ghassemi, F., Jakeman, A.J., Nix, H.A. (1995). Salinization of Land and Water Resources: Human Causes, Extent, Management and Case Studies. CAB International, Wallingford. ISBN: 0851989063, 9780851989068.

Ghavam, M., 2021. Relationships of irrigation water and soil physical and chemical characteristics with yield, chemical composition and antimicrobial activity of Damask rose essential oil. PLoS ONE, 16, e0249363. DOI:

Goswami, R.R., Clement, T.P. (2007). Laboratory-scale investigation of saltwater intrusion dynamics: Dynamics of Saltwater intrusion. Water Resources Research, 43. DOI:

Guan, Y., Bai, J., Wang, J., Wang, W., Wang, X., et al. (2021). Effects of groundwater tables and salinity levels on soil organic carbon and total nitrogen accumulation in coastal wetlands with different plant cover types in a Chinese estuary. Ecological Indicators, 121, 106969. DOI:

Harter, T., Hopmans, J.W. (2005). Role of vadose zone flow processes in regional scale hydrology: Review, opportunities and challenges. Frontis.

Hassani, A., Azapagic, A., Shokri, N. (2020). Predicting Long-term Dynamics of Soil Salinity and Sodicity on a Global Scale. PNAS, 117(52), 33017-33027. DOI:

Hassani, A., Azapagic, A., Shokri, N. 2021. Global Predictions of Primary Soil Salinization Under Changing Climate in the 21st Century. Nature Communications, 12, 6663. DOI:

Hendrickx, J.M., Flury, M. (2001). Uniform and preferential flow mechanisms in the vadose zone. In: Conceptual Models of Flow and Transport in the Fractured Vadose Zone. Washington, DC: The National Academies Press, p. 149–187.

Herrmann, F. (2013). Zeitlich und räumlich hochaufgelöste flächendifferenzierte Simulation des Landschaftswasserhaushalts in Niedersachsen mit dem Model mGROWA. Hydrologie und Wasserbewirtschaftung / BfG, 57.2013, 5ISSN 1439.,5_2

Holland, K.T., Elmore, P.A. (2008). A review of heterogeneous sediments in coastal environments. Earth-Science Reviews, 89, 116–134. DOI:

Hopmans, J.W., Qureshi, A.S., Kisekka, I., Munns, R., Grattan, S.R., et al. (2021). Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy, 169, 1–191. DOI:

Huang, J., Zhang, G., Zhang, Y., Guan, X., Wei, Y., Guo, R. (2020). Global desertification vulnerability to climate change and human activities. Land Degradation & Development, 31, 1380–1391. DOI:

Huang, Y.-M., Liu, D., An, S.-S. (2015). Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. CATENA, 125, 135–145. DOI:

Janszen, A., Moreau, J., Moscariello, A., Ehlers, J., Kröger, J. (2012). Time-transgressive tunnel-valley infill revealed by a three-dimensional sedimentary model, Hamburg, north-west Germany: Time-transgressive tunnel-valley infill. Sedimentology, 60, 693–719. DOI:

Jiang, Y., Ye, Y., Guo, X. (2019). Spatiotemporal variation of soil heavy metals in farmland influenced by human activities in the Poyang Lake region, China. CATENA 176, 279–288. DOI:

Huysmans, M., Dassargues, A. (2005). Review of the use of Péclet numbers to determine the relative importance of advection and diffusion in low permeability environments. Hydrogeology Journal, 13, 895–904. DOI:

Kemfert, C., Kremers, H. (2009). The Cost of Climate Change to the German Fruit Vegetation Sector. DIW Berlin Discussion Paper No. 857, or DOI:

Lehmann, P., Assouline, S., Or, D. (2008). Characteristic lengths affecting evaporative drying of porous media, Physical Review E, 77, 056309, DOI:

Lehmann, P., Or, D. (2009). Evaporation and capillary coupling across vertical textural contrasts in porous media. Physical Review E, 80, 046318. DOI:

Li, X., Shi, F. (2021). Effects of evolving salt precipitation on the evaporation and temperature of sandy soil with a fixed groundwater table. Vadose Zone Journal, 20, e20122. DOI:

Liu, J., Zhang, W., Long, S., Zhao, C. (2021). Maintenance of Cell Wall Integrity under High Salinity. International Journal of Molecular Sciences, 22, 3260. DOI:

Maas, E.V. (1986). Salt Tolerance of Plants. Applied Agricultural Research, 1, 12-26.

Memoli, V., De Marco, A., Esposito, F., Panico, S.C., Barile, R., Maisto, G. (2019). Seasonality, altitude and human activities control soil quality in a national park surrounded by an urban area. Geoderma, 337, 1–10. DOI:

Mertens, J., Madsen, H., Feyen, L., Jacques, D., Feyen, J. (2004). Including prior information in the estimation of effective soil parameters in unsaturated zone modelling. Journal of Hydrology, 294, 251–269. DOI:

Meyer, K.-D. (2017). Pleistozäne (elster- und saalezeitliche) glazilimnische Beckentone und -schluffe in Niedersachsen/NW-Deutschland. E&G Quaternary Science Journal, 66, 32–43. DOI:

Mohanavelu, A., Naganna, S.R., Al-Ansari, N. (2021). Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture, 11, 983. DOI:

Nabiollahi, K., Golmohamadi, F., Taghizadeh-Mehrjardi, R., Kerry, R., Davari, M. (2018). Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma, 318, 16–28. DOI:

Narjary, B., Kumar, S., Meena, M.D., Kamra, S.K., Sharma, D.K. (2021). Effects of Shallow Saline Groundwater Table Depth and Evaporative Flux on Soil Salinity Dynamics using Hydrus-1D. Agricultural Research, 10, 105–115. DOI:

NIBIS® Kartenserver, 2021. Lockergesteinsmodelle (3D-Modell Elbe Weser Region). - Landesamt für Bergbau, Energie und Geologie (LBEG), Hannover, Germany. or

Norouzi Rad, M., Shokri, N., Sahimi, M. (2013). Pore-scale dynamics of salt precipitation in drying porous media. Physical Review E, 88, 032404. DOI:

Pascual, L.S., Segarra-Medina, C., Gómez-Cadenas, A., López-Climent, M.F., Vives-Peris, V., Zandalinas, S.I. (2022). Climate change-associated multifactorial stress combination: A present challenge for our ecosystems. Journal of Plant Physiology, 276, 153764. DOI:

Perri, S., Molini, A., Hedin, L.O., Porporato, A. (2022). Contrasting effects of aridity and seasonality on global salinization. Nature Geoscience, 15, 375–381. DOI:

Prăvălie, R. (2021). Exploring the multiple land degradation pathways across the planet. Earth-Science Reviews, 220, 103689. DOI:

Rad, M.N., Shokri, N., Keshmiri, A., Withers, P.J. (2015). Effects of Grain and Pore Size on Salt Precipitation During Evaporation from Porous Media. Transport in Porous Media, 110, 281–294. DOI:

Randazzo, A., Asensio-Ramos, M., Melián, G.V., Venturi, S., Padrón, E., et al. (2020). Volatile organic compounds (VOCs) in solid waste landfill cover soil: Chemical and isotopic composition vs. degradation processes. Science of The Total Environment, 726, 138326. DOI:

Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., & Gratzki, A. (2013). A Central European precipitation climatology–Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorologische Zeitschrift, 22(3), 235-256. DOI:

Razafimaharo, C., Krähenmann, S., Höpp, S., Rauthe, M., Deutschländer, T. (2020). New high-resolution gridded dataset of daily mean, minimum, and maximum temperature and relative humidity for Central Europe (HYRAS). Theoretical and Applied Climatology, 142, 1531–1553. DOI:

Richards, L.A. (1931). Capillary Conduction of Liquids Through Porous Mediums. Journal of Applied Physics, 1, 318–333. DOI:

Richter, D. (1995). Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Meßfehlers des Hellmann-Niederschlagmessers.". Offenbach am Main 1995 Selbstverlag des Deutschen Wetterdienstes.

Rillig, M.C., Lehmann, A., de Souza Machado, A.A., Yang, G. (2019). Microplastic effects on plants. New Phytologist, 223, 1066–1070. DOI:

Rivero, R.M., Mestre, T.C., Mittler, R., Rubio, F., Garcia-Sanchez, F., Martinez, V. (2014). The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants: Stress combination in tomato plants. Plant, Cell & Environment, 37, 1059–1073. DOI:

Rivero, R.M., Mittler, R., Blumwald, E., Zandalinas, S.I. (2022). Developing climate‐resilient crops: improving plant tolerance to stress combination. The Plant Journal, 109, 373–389. DOI:

Rotzoll, K., Fletcher, C.H. (2013). Assessment of groundwater inundation as a consequence of sea-level rise. Nature Climate Change, 3, 477–481. DOI:

Sadeghi, M., Shokri, N., Jones, S.B. (2012). A novel analytical solution to steady-state evaporation from porous media. Water Resources Research, 48, W09516. DOI:

Sahimi, M. (2011). Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches (2nd ed). Wiley-VCH, Weinheim. Print ISBN:9783527404858. DOI:

Saxton, K.E., Rawls, W.J., Romberger, J.S., Papendick, R.I. (1986). Estimating Generalized Soil-water Characteristics from Texture. Soil Science Society of America Journal, 50, 1031–1036. DOI:

Schenk, H.J., Jackson, R.B. (2002). The global biogeography of roots. Ecological Monographs, 72, 311–328. DOI:[0311:TGBOR]2.0.CO;2

Schmidt, H., Seitz, S., Hassel, E., Wolf, H. (2018). The density–salinity relation of standard seawater. Ocean Science, 14, 15–40. DOI:

Shaar-Moshe, L., Blumwald, E., Peleg, Z. (2017). Unique Physiological and Transcriptional Shifts under Combinations of Salinity, Drought, and Heat. Plant Physiology, 174, 421–434. DOI:

Shah, S.H.H., Vervoort, R.W., Suweis, S., Guswa, A.J., Rinaldo, A., van der Zee, S.E.A.T.M. (2011). Stochastic modeling of salt accumulation in the root zone due to capillary flux from brackish groundwater. Water Resoures Research, 47. DOI:

Shokri, N. (2014). Pore-scale dynamics of salt transport and distribution in drying porous media. Physics of Fluids, 26, 012106. DOI:

Shokri, N. (2019). Comment on “Analytical Estimation Show Low Depth‐Independent Water Loss Due to Vapor Flux from Deep Aquifers by John S. Selker (2017).” Water Resources Research, 55, 1730–1733. DOI:

Shokri, N., Lehmann, P., Or, D. (2010). Evaporation from layered porous media. Journal of Geophysical Research, 115, B06204. DOI:

Shokri, N., Or, D. (2013). Drying patterns of porous media containing wettability contrasts. Journal of Colloid and Interface Science, 391, 135-141. DOI:

Shokri, N., Salvucci, G.D. (2011). Evaporation from Porous Media in the Presence of a Water Table. Vadose Zone Journal, 10, 1309–1318. DOI:

Shokri‐Kuehni, S.M.S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore‐Scale Processes to Field‐Scale Responses. Water Resources Research, 56. DOI:

Sobhi Gollo, V., Sahimi, M., González, E., Hajati, M.-C., Elbracht, J., et al. (2024). Soil salinization due to saltwater intrusion in coastal regions: The role of soil characteristics and heterogeneity. InterPore Journal, 1(1). Zenodo [Dataset].

Steinmetz, D., Winsemann, J., Brandes, C., Siemon, B., Ullmann, A., et al. (2015). Towards an improved geological interpretation of airborne electromagnetic data: a case study from the Cuxhaven tunnel valley and its Neogene host sediments (northwest Germany). Netherlands Journal of Geosciences, 94, 201–227. DOI:

van Genuchten, M.Th. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44, 892–898. DOI:

Vereecken, H., Huisman, J.A., Bogena, H., Vanderborght, J., Vrugt, J.A., Hopmans, J.W. (2008). On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resources Research, 44. DOI:

Wei, J., Zhou, J., Tian, J., He, X., Tang, K. (2006). Decoupling soil erosion and human activities on the Chinese Loess Plateau in the 20th century. CATENA, 68, 10–15. DOI:

Werner, A.D., Ward, J.D., Morgan, L.K., Simmons, C.T., Robinson, N.I., Teubner, M.D. (2012). Vulnerability Indicators of Sea Water Intrusion. Ground Water, 50, 48–58. DOI:

Wu, S., Gray, D.H., Richart, F.E. (1984). Capillary Effects on Dynamic Modulus of Sands and Silts. Journal of Geotechnical Engineering, 110, 1188–1203. DOI:

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., et al. (2017). A high-accuracy map of global terrain elevations. Geophysical Research Letters, 44, 5844–5853. DOI:

Yin, X., Feng, Q., Li, Y., Deo, R.C., Liu, W., et al. (2022). An interplay of soil salinization and groundwater degradation threatening coexistence of oasis-desert ecosystems. Science of The Total Environment, 806, 150599. DOI:

Zamrsky, D., Karssenberg, M.E., Cohen, K.M., Bierkens, M.F.P., Oude Essink, G.H.P. (2020). Geological Heterogeneity of Coastal Unconsolidated Groundwater Systems Worldwide and Its Influence on Offshore Fresh Groundwater Occurrence. Frontiers in Earth Science, 7, 339. DOI:

Zandalinas, S.I., Sengupta, S., Fritschi, F.B., Azad, R.K., Nechushtai, R., Mittler, R. (2021). The impact of multifactorial stress combination on plant growth and survival. New Phytologist, 230, 1034–1048. DOI:

Zhai, T., Wang, J., Fang, Y., Qin, Y., Huang, L., Chen, Y. (2020). Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration. Science of The Total Environment, 708, 135153. DOI:

Zhang, Q., Wang, C. (2020). Natural and Human Factors Affect the Distribution of Soil Heavy Metal Pollution: a Review. Water, Air, & Soil Pollution, 231, 350. DOI:

Zhou, X.-Y., Wang, X.-R. (2019). Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China. Journal of Cleaner Production, 230, 1–10. DOI:


Additional Files



How to Cite

Sobhi Gollo, V., Sahimi, M., González, E., Hajati, M.-C., Elbracht, J., Fröhle, P., & Shokri, N. (2024). Soil salinization due to saltwater intrusion in coastal regions: The role of soil characteristics and heterogeneity. InterPore Journal, 1(1), ipj260424–6.



Original Research Papers

Funding data