Soil salinization due to saltwater intrusion in coastal regions: The role of soil characteristics and heterogeneity

Authors

DOI:

https://doi.org/10.69631/ipj.v1i1nr15

Keywords:

Soil salinity, Seawater intrusion, Soil characteristics, Soil health, Soil remediation

Abstract

Soil plays a vital role in maintaining ecosystem functionality, supporting biodiversity, facilitating successful crop production, and ensuring socio-economic stability.  Soil quality is, however, constantly threatened by various factors, such as adverse climate conditions, hydrogeological processes, and human activities. One particularly significant stressor is soil salinity, which has a detrimental effect on soil quality. This study focuses specifically on understanding how soil properties contribute to the accumulation of surface soil salinity in the presence of shallow saline groundwater. To achieve this objective, advanced groundwater modeling techniques are employed to simulate saltwater intrusion in a riparian area known as Altes Land in northern Germany. A realistic representation of the salinization process is created and evaluated using a comprehensive dataset of hydrogeological information specific to the region. Additionally, the study examines the influence of soil heterogeneity on regional soil salinity by varying soil properties through devising six distinct scenarios for generating the numerical models that represent variations in soil texture and structure. The study reveals that regional soil texture and layering arrangement significantly influence the availability of water and the propagation of saline water in the vadose zone, and are major contributors to surface soil salinity. Subtle alterations and simplifications, often inconspicuous or deemed inconsequential in the context of small-scale experiments, may carry substantial ramifications for the formulation of enhanced management strategies in regions characterized by low elevation and influenced by groundwater salinity. Furthermore, the insights gained from this research provide valuable information for applications in agricultural practices and environmental conservation.

Plain language summary

Saltwater intrusion occurs when seawater enters coastal groundwater. In low-lying coastal regions, saline groundwater can rise close to the soil surface, leading to soil salinization that negatively impacts soil health and plant growth. The extent of soil salinization can be impacted by soil texture and heterogeneity, which is not fully understood at regional scales. In this study, we developed a new decision-support framework capable of describing and predicting salt transport through unsaturated zones lying over groundwater affected by seawater intrusion, and evaluated it against field measurements. This enabled us to investigate soil salinity under a variety of conditions and quantify the effects of important parameters, including soil texture, heterogeneity, and layering arrangement, on salt deposition close to the surface. Our study offers new quantitative insights into and tools for revealing the mechanisms governing the spatial distribution of soil salinity, as well as its health, hence contributing to global efforts for sustainable resource management and United Nations Sustainable Development Goals, particularly UN SDG15.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adekiya, A.O., Ejue, W.S., Olayanju, A., Dunsin, O., Aboyeji, C.M., et al. (2020). Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Scientific Reports 10, 16083. https://doi.org/10.1038/s41598-020-73291-x DOI: https://doi.org/10.1038/s41598-020-73291-x

Aley, T.J., Kirkland, S.L. (2012). Down but not straight down: significance of lateral flow in the vadose zone of karst terrains. Carbonates Evaporites 27, 193–198. https://doi.org/10.1007/s13146-012-0106-5 DOI: https://doi.org/10.1007/s13146-012-0106-5

Balfagón, D., Zandalinas, S.I., Mittler, R., Gómez‐Cadenas, A. (2020). High temperatures modify plant responses to abiotic stress conditions. Physiologica Plantarum, 170, 335–344. https://doi.org/10.1111/ppl.13151 DOI: https://doi.org/10.1111/ppl.13151

Bilal, S., Shahzad, R., Imran, M., Jan, R., Kim, K.M., Lee, I.-J. (2020). Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress. Industrial Crops and Products, 143, 111931. https://doi.org/10.1016/j.indcrop.2019.111931 DOI: https://doi.org/10.1016/j.indcrop.2019.111931

Boll, T., von Haaren, C., von Ruschkowski, E. (2014). The Preference and Actual Use of Different Types of Rural Recreation Areas by Urban Dwellers—The Hamburg Case Study. PLoS ONE, 9, e108638. https://doi.org/10.1371/journal.pone.0108638 DOI: https://doi.org/10.1371/journal.pone.0108638

Chaturvedi, A.K., Bahuguna, R.N., Shah, D., Pal, M., Jagadish, S.V.K. (2017). High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2 on assimilate partitioning and sink-strength in rice. Scientific Reports, 7, 8227. https://doi.org/10.1038/s41598-017-07464-6 DOI: https://doi.org/10.1038/s41598-017-07464-6

Chen, S., Mao, X., Shukla, M.K. (2020). Evaluating the effects of layered soils on water flow, solute transport, and crop growth with a coupled agro-eco-hydrological model. Journal of Soils and Sediments, 20, 3442–3458. https://doi.org/10.1007/s11368-020-02647-7 DOI: https://doi.org/10.1007/s11368-020-02647-7

Cui, H., Bai, J., Du, S., Wang, J., Keculah, G.N., et al. (2021). Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta. Environmental Pollution, 286, 117400. https://doi.org/10.1016/j.envpol.2021.117400 DOI: https://doi.org/10.1016/j.envpol.2021.117400

Dashtian, H., Shokri, N., Sahimi, M. (2018). Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity. Advances in Water Resources, 112, 59–71. https://doi.org/10.1016/j.advwatres.2017.12.004 DOI: https://doi.org/10.1016/j.advwatres.2017.12.004

Depke, S.-C., Lück, C., Peters, J., Wellmer, L., Seidel, S. (2016). Creating tangible and intangible hospitality products with a sustainable value – The case of the Altes Land apples. Research in Hospitality Management, 6, 37–43. https://doi.org/10.2989/RHM.2016.6.1.5.1293 DOI: https://doi.org/10.2989/RHM.2016.6.1.5.1293

Diersch, H.-J.G. (2014). FEFLOW. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38739-5 DOI: https://doi.org/10.1007/978-3-642-38739-5

DIN Deutsches Institut für Normung e.V. (2008). DIN 4220:2008-11, Bodenkundliche Standortbeurteilung - Kennzeichnung, Klassifizierung und Ableitung von Bodenkennwerten (normative und nominale Skalierungen). Beuth Verlag GmbH. https://doi.org/10.31030/1436635 DOI: https://doi.org/10.31030/1436635

Ertl, G., Bug, J., Elbracht, Dr. J., Engel, N., Herrmann, F. (2019). Grundwasserneubildung von Niedersachsen und Bremen. Berechnungen mit dem Wasserhaushaltsmodell mGROWA18. LBEG - Landesamt für Bergbau, Energie und Geologie. ISSN: 1864-6891. https://doi.org/10.48476/GEOBER_36_2019

FAO and ITPS. (2015). Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy. ISBN: 978-92-5-109004-6. https://www.fao.org/3/i5199e/i5199e.pdf

Francke, H., Thorade, M. (2010). Density and viscosity of brine: An overview from a process engineers’ perspective. Geochemistry, 70, 23–32. https://doi.org/10.1016/j.chemer.2010.05.015 DOI: https://doi.org/10.1016/j.chemer.2010.05.015

Gehrt, E., Benne, I., Evertsbusch, S., Krüger, K., Langner, S. (2021). Erläuterung zur BK50 von Niedersachsen. LBEG - Landesamt für Bergbau, Energie und Geologie. ISSN: 1864-6891 https://doi.org/10.48476/GEOBER_40_2021

Gelhar, L.W., Collins, M.A. (1971). General Analysis of Longitudinal Dispersion in Non-uniform Flow. Water Resources Research, 7, 1511–1521. https://doi.org/10.1029/WR007i006p01511 DOI: https://doi.org/10.1029/WR007i006p01511

Ghassemi, F., Jakeman, A.J., Nix, H.A. (1995). Salinization of Land and Water Resources: Human Causes, Extent, Management and Case Studies. CAB International, Wallingford. ISBN: 0851989063, 9780851989068.

Ghavam, M., 2021. Relationships of irrigation water and soil physical and chemical characteristics with yield, chemical composition and antimicrobial activity of Damask rose essential oil. PLoS ONE, 16, e0249363. https://doi.org/10.1371/journal.pone.0249363 DOI: https://doi.org/10.1371/journal.pone.0249363

Goswami, R.R., Clement, T.P. (2007). Laboratory-scale investigation of saltwater intrusion dynamics: Dynamics of Saltwater intrusion. Water Resources Research, 43. https://doi.org/10.1029/2006WR005151 DOI: https://doi.org/10.1029/2006WR005151

Guan, Y., Bai, J., Wang, J., Wang, W., Wang, X., et al. (2021). Effects of groundwater tables and salinity levels on soil organic carbon and total nitrogen accumulation in coastal wetlands with different plant cover types in a Chinese estuary. Ecological Indicators, 121, 106969. https://doi.org/10.1016/j.ecolind.2020.106969 DOI: https://doi.org/10.1016/j.ecolind.2020.106969

Harter, T., Hopmans, J.W. (2005). Role of vadose zone flow processes in regional scale hydrology: Review, opportunities and challenges. Frontis. https://library.wur.nl/ojs/index.php/frontis/article/view/897

Hassani, A., Azapagic, A., Shokri, N. (2020). Predicting Long-term Dynamics of Soil Salinity and Sodicity on a Global Scale. PNAS, 117(52), 33017-33027. https://doi.org/10.1073/pnas.2013771117 DOI: https://doi.org/10.1073/pnas.2013771117

Hassani, A., Azapagic, A., Shokri, N. 2021. Global Predictions of Primary Soil Salinization Under Changing Climate in the 21st Century. Nature Communications, 12, 6663. https://doi.org/10.1038/s41467-021-26907-3 DOI: https://doi.org/10.1038/s41467-021-26907-3

Hendrickx, J.M., Flury, M. (2001). Uniform and preferential flow mechanisms in the vadose zone. In: Conceptual Models of Flow and Transport in the Fractured Vadose Zone. Washington, DC: The National Academies Press, p. 149–187. http://nap.nationalacademies.org/10102

Herrmann, F. (2013). Zeitlich und räumlich hochaufgelöste flächendifferenzierte Simulation des Landschaftswasserhaushalts in Niedersachsen mit dem Model mGROWA. Hydrologie und Wasserbewirtschaftung / BfG, 57.2013, 5ISSN 1439. https://doi.org/10.5675/HYWA_2013,5_2

Holland, K.T., Elmore, P.A. (2008). A review of heterogeneous sediments in coastal environments. Earth-Science Reviews, 89, 116–134. https://doi.org/10.1016/j.earscirev.2008.03.003 DOI: https://doi.org/10.1016/j.earscirev.2008.03.003

Hopmans, J.W., Qureshi, A.S., Kisekka, I., Munns, R., Grattan, S.R., et al. (2021). Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy, 169, 1–191. https://doi.org/10.1016/bs.agron.2021.03.001 DOI: https://doi.org/10.1016/bs.agron.2021.03.001

Huang, J., Zhang, G., Zhang, Y., Guan, X., Wei, Y., Guo, R. (2020). Global desertification vulnerability to climate change and human activities. Land Degradation & Development, 31, 1380–1391. https://doi.org/10.1002/ldr.3556 DOI: https://doi.org/10.1002/ldr.3556

Huang, Y.-M., Liu, D., An, S.-S. (2015). Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. CATENA, 125, 135–145. https://doi.org/10.1016/j.catena.2014.09.010 DOI: https://doi.org/10.1016/j.catena.2014.09.010

Janszen, A., Moreau, J., Moscariello, A., Ehlers, J., Kröger, J. (2012). Time-transgressive tunnel-valley infill revealed by a three-dimensional sedimentary model, Hamburg, north-west Germany: Time-transgressive tunnel-valley infill. Sedimentology, 60, 693–719. https://doi.org/10.1111/j.1365-3091.2012.01357.x DOI: https://doi.org/10.1111/j.1365-3091.2012.01357.x

Jiang, Y., Ye, Y., Guo, X. (2019). Spatiotemporal variation of soil heavy metals in farmland influenced by human activities in the Poyang Lake region, China. CATENA 176, 279–288. https://doi.org/10.1016/j.catena.2019.01.028 DOI: https://doi.org/10.1016/j.catena.2019.01.028

Huysmans, M., Dassargues, A. (2005). Review of the use of Péclet numbers to determine the relative importance of advection and diffusion in low permeability environments. Hydrogeology Journal, 13, 895–904. https://doi.org/10.1007/s10040-004-0387-4 DOI: https://doi.org/10.1007/s10040-004-0387-4

Kemfert, C., Kremers, H. (2009). The Cost of Climate Change to the German Fruit Vegetation Sector. DIW Berlin Discussion Paper No. 857, https://ssrn.com/abstract=1430965 or https://doi.org/10.2139/ssrn.1430965 DOI: https://doi.org/10.2139/ssrn.1430965

Lehmann, P., Assouline, S., Or, D. (2008). Characteristic lengths affecting evaporative drying of porous media, Physical Review E, 77, 056309, https://doi.org/10.1103/PhysRevE.77.056309 DOI: https://doi.org/10.1103/PhysRevE.77.056309

Lehmann, P., Or, D. (2009). Evaporation and capillary coupling across vertical textural contrasts in porous media. Physical Review E, 80, 046318. https://doi.org/10.1103/PhysRevE.80.046318 DOI: https://doi.org/10.1103/PhysRevE.80.046318

Li, X., Shi, F. (2021). Effects of evolving salt precipitation on the evaporation and temperature of sandy soil with a fixed groundwater table. Vadose Zone Journal, 20, e20122. https://doi.org/10.1002/vzj2.20122 DOI: https://doi.org/10.1002/vzj2.20122

Liu, J., Zhang, W., Long, S., Zhao, C. (2021). Maintenance of Cell Wall Integrity under High Salinity. International Journal of Molecular Sciences, 22, 3260. https://doi.org/10.3390/ijms22063260 DOI: https://doi.org/10.3390/ijms22063260

Maas, E.V. (1986). Salt Tolerance of Plants. Applied Agricultural Research, 1, 12-26.

Memoli, V., De Marco, A., Esposito, F., Panico, S.C., Barile, R., Maisto, G. (2019). Seasonality, altitude and human activities control soil quality in a national park surrounded by an urban area. Geoderma, 337, 1–10. https://doi.org/10.1016/j.geoderma.2018.09.009 DOI: https://doi.org/10.1016/j.geoderma.2018.09.009

Mertens, J., Madsen, H., Feyen, L., Jacques, D., Feyen, J. (2004). Including prior information in the estimation of effective soil parameters in unsaturated zone modelling. Journal of Hydrology, 294, 251–269. https://doi.org/10.1016/j.jhydrol.2004.02.011 DOI: https://doi.org/10.1016/j.jhydrol.2004.02.011

Meyer, K.-D. (2017). Pleistozäne (elster- und saalezeitliche) glazilimnische Beckentone und -schluffe in Niedersachsen/NW-Deutschland. E&G Quaternary Science Journal, 66, 32–43. https://doi.org/10.3285/eg.66.1.03 DOI: https://doi.org/10.3285/eg.66.1.03

Mohanavelu, A., Naganna, S.R., Al-Ansari, N. (2021). Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture, 11, 983. https://doi.org/10.3390/agriculture11100983 DOI: https://doi.org/10.3390/agriculture11100983

Nabiollahi, K., Golmohamadi, F., Taghizadeh-Mehrjardi, R., Kerry, R., Davari, M. (2018). Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma, 318, 16–28. https://doi.org/10.1016/j.geoderma.2017.12.024 DOI: https://doi.org/10.1016/j.geoderma.2017.12.024

Narjary, B., Kumar, S., Meena, M.D., Kamra, S.K., Sharma, D.K. (2021). Effects of Shallow Saline Groundwater Table Depth and Evaporative Flux on Soil Salinity Dynamics using Hydrus-1D. Agricultural Research, 10, 105–115. https://doi.org/10.1007/s40003-020-00484-1 DOI: https://doi.org/10.1007/s40003-020-00484-1

NIBIS® Kartenserver, 2021. Lockergesteinsmodelle (3D-Modell Elbe Weser Region). - Landesamt für Bergbau, Energie und Geologie (LBEG), Hannover, Germany. https://www.lbeg.niedersachsen.de/kartenserver/nibis-kartenserver-72321.html or https://geoportal.geodaten.niedersachsen.de/harvest/srv/api/records/ba58e478-dd6f-44c7-836c-9e75ac82f01d

Norouzi Rad, M., Shokri, N., Sahimi, M. (2013). Pore-scale dynamics of salt precipitation in drying porous media. Physical Review E, 88, 032404. https://doi.org/10.1103/PhysRevE.88.032404 DOI: https://doi.org/10.1103/PhysRevE.88.032404

Pascual, L.S., Segarra-Medina, C., Gómez-Cadenas, A., López-Climent, M.F., Vives-Peris, V., Zandalinas, S.I. (2022). Climate change-associated multifactorial stress combination: A present challenge for our ecosystems. Journal of Plant Physiology, 276, 153764. https://doi.org/10.1016/j.jplph.2022.153764 DOI: https://doi.org/10.1016/j.jplph.2022.153764

Perri, S., Molini, A., Hedin, L.O., Porporato, A. (2022). Contrasting effects of aridity and seasonality on global salinization. Nature Geoscience, 15, 375–381. https://doi.org/10.1038/s41561-022-00931-4 DOI: https://doi.org/10.1038/s41561-022-00931-4

Prăvălie, R. (2021). Exploring the multiple land degradation pathways across the planet. Earth-Science Reviews, 220, 103689. https://doi.org/10.1016/j.earscirev.2021.103689 DOI: https://doi.org/10.1016/j.earscirev.2021.103689

Rad, M.N., Shokri, N., Keshmiri, A., Withers, P.J. (2015). Effects of Grain and Pore Size on Salt Precipitation During Evaporation from Porous Media. Transport in Porous Media, 110, 281–294. https://doi.org/10.1007/s11242-015-0515-8 DOI: https://doi.org/10.1007/s11242-015-0515-8

Randazzo, A., Asensio-Ramos, M., Melián, G.V., Venturi, S., Padrón, E., et al. (2020). Volatile organic compounds (VOCs) in solid waste landfill cover soil: Chemical and isotopic composition vs. degradation processes. Science of The Total Environment, 726, 138326. https://doi.org/10.1016/j.scitotenv.2020.138326 DOI: https://doi.org/10.1016/j.scitotenv.2020.138326

Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., & Gratzki, A. (2013). A Central European precipitation climatology–Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorologische Zeitschrift, 22(3), 235-256. https://doi.org/10.1127/0941-2948/2013/0436 DOI: https://doi.org/10.1127/0941-2948/2013/0436

Razafimaharo, C., Krähenmann, S., Höpp, S., Rauthe, M., Deutschländer, T. (2020). New high-resolution gridded dataset of daily mean, minimum, and maximum temperature and relative humidity for Central Europe (HYRAS). Theoretical and Applied Climatology, 142, 1531–1553. https://doi.org/10.1007/s00704-020-03388-w DOI: https://doi.org/10.1007/s00704-020-03388-w

Richards, L.A. (1931). Capillary Conduction of Liquids Through Porous Mediums. Journal of Applied Physics, 1, 318–333. https://doi.org/10.1063/1.1745010 DOI: https://doi.org/10.1063/1.1745010

Richter, D. (1995). Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Meßfehlers des Hellmann-Niederschlagmessers.". Offenbach am Main 1995 Selbstverlag des Deutschen Wetterdienstes. http://nbn-resolving.org/urn:nbn:de:101:1-201601274368

Rillig, M.C., Lehmann, A., de Souza Machado, A.A., Yang, G. (2019). Microplastic effects on plants. New Phytologist, 223, 1066–1070. https://doi.org/10.1111/nph.15794 DOI: https://doi.org/10.1111/nph.15794

Rivero, R.M., Mestre, T.C., Mittler, R., Rubio, F., Garcia-Sanchez, F., Martinez, V. (2014). The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants: Stress combination in tomato plants. Plant, Cell & Environment, 37, 1059–1073. https://doi.org/10.1111/pce.12199 DOI: https://doi.org/10.1111/pce.12199

Rivero, R.M., Mittler, R., Blumwald, E., Zandalinas, S.I. (2022). Developing climate‐resilient crops: improving plant tolerance to stress combination. The Plant Journal, 109, 373–389. https://doi.org/10.1111/tpj.15483 DOI: https://doi.org/10.1111/tpj.15483

Rotzoll, K., Fletcher, C.H. (2013). Assessment of groundwater inundation as a consequence of sea-level rise. Nature Climate Change, 3, 477–481. https://doi.org/10.1038/nclimate1725 DOI: https://doi.org/10.1038/nclimate1725

Sadeghi, M., Shokri, N., Jones, S.B. (2012). A novel analytical solution to steady-state evaporation from porous media. Water Resources Research, 48, W09516. https://doi.org/10.1029/2012WR012060 DOI: https://doi.org/10.1029/2012WR012060

Sahimi, M. (2011). Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches (2nd ed). Wiley-VCH, Weinheim. Print ISBN:9783527404858. https://doi.org/10.1002/9783527636693 DOI: https://doi.org/10.1002/9783527636693

Saxton, K.E., Rawls, W.J., Romberger, J.S., Papendick, R.I. (1986). Estimating Generalized Soil-water Characteristics from Texture. Soil Science Society of America Journal, 50, 1031–1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x DOI: https://doi.org/10.2136/sssaj1986.03615995005000040039x

Schenk, H.J., Jackson, R.B. (2002). The global biogeography of roots. Ecological Monographs, 72, 311–328. https://doi.org/10.2307/3100092 DOI: https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2

Schmidt, H., Seitz, S., Hassel, E., Wolf, H. (2018). The density–salinity relation of standard seawater. Ocean Science, 14, 15–40. https://doi.org/10.5194/os-14-15-2018 DOI: https://doi.org/10.5194/os-14-15-2018

Shaar-Moshe, L., Blumwald, E., Peleg, Z. (2017). Unique Physiological and Transcriptional Shifts under Combinations of Salinity, Drought, and Heat. Plant Physiology, 174, 421–434. https://doi.org/10.1104/pp.17.00030 DOI: https://doi.org/10.1104/pp.17.00030

Shah, S.H.H., Vervoort, R.W., Suweis, S., Guswa, A.J., Rinaldo, A., van der Zee, S.E.A.T.M. (2011). Stochastic modeling of salt accumulation in the root zone due to capillary flux from brackish groundwater. Water Resoures Research, 47. https://doi.org/10.1029/2010WR009790 DOI: https://doi.org/10.1029/2010WR009790

Shokri, N. (2014). Pore-scale dynamics of salt transport and distribution in drying porous media. Physics of Fluids, 26, 012106. https://doi.org/10.1063/1.4861755 DOI: https://doi.org/10.1063/1.4861755

Shokri, N. (2019). Comment on “Analytical Estimation Show Low Depth‐Independent Water Loss Due to Vapor Flux from Deep Aquifers by John S. Selker (2017).” Water Resources Research, 55, 1730–1733. https://doi.org/10.1029/2018WR023347 DOI: https://doi.org/10.1029/2018WR023347

Shokri, N., Lehmann, P., Or, D. (2010). Evaporation from layered porous media. Journal of Geophysical Research, 115, B06204. https://doi.org/10.1029/2009JB006743 DOI: https://doi.org/10.1029/2009JB006743

Shokri, N., Or, D. (2013). Drying patterns of porous media containing wettability contrasts. Journal of Colloid and Interface Science, 391, 135-141. https://doi.org/10.1016/j.jcis.2012.08.074 DOI: https://doi.org/10.1016/j.jcis.2012.08.074

Shokri, N., Salvucci, G.D. (2011). Evaporation from Porous Media in the Presence of a Water Table. Vadose Zone Journal, 10, 1309–1318. https://doi.org/10.2136/vzj2011.0027 DOI: https://doi.org/10.2136/vzj2011.0027

Shokri‐Kuehni, S.M.S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore‐Scale Processes to Field‐Scale Responses. Water Resources Research, 56. https://doi.org/10.1029/2019WR026707 DOI: https://doi.org/10.1029/2019WR026707

Sobhi Gollo, V., Sahimi, M., González, E., Hajati, M.-C., Elbracht, J., et al. (2024). Soil salinization due to saltwater intrusion in coastal regions: The role of soil characteristics and heterogeneity. InterPore Journal, 1(1). Zenodo [Dataset]. https://doi.org/10.5281/zenodo.10842112

Steinmetz, D., Winsemann, J., Brandes, C., Siemon, B., Ullmann, A., et al. (2015). Towards an improved geological interpretation of airborne electromagnetic data: a case study from the Cuxhaven tunnel valley and its Neogene host sediments (northwest Germany). Netherlands Journal of Geosciences, 94, 201–227. https://doi.org/10.1017/njg.2014.39 DOI: https://doi.org/10.1017/njg.2014.39

van Genuchten, M.Th. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44, 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x

Vereecken, H., Huisman, J.A., Bogena, H., Vanderborght, J., Vrugt, J.A., Hopmans, J.W. (2008). On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resources Research, 44. https://doi.org/10.1029/2008WR006829 DOI: https://doi.org/10.1029/2008WR006829

Wei, J., Zhou, J., Tian, J., He, X., Tang, K. (2006). Decoupling soil erosion and human activities on the Chinese Loess Plateau in the 20th century. CATENA, 68, 10–15. https://doi.org/10.1016/j.catena.2006.04.011 DOI: https://doi.org/10.1016/j.catena.2006.04.011

Werner, A.D., Ward, J.D., Morgan, L.K., Simmons, C.T., Robinson, N.I., Teubner, M.D. (2012). Vulnerability Indicators of Sea Water Intrusion. Ground Water, 50, 48–58. https://doi.org/10.1111/j.1745-6584.2011.00817.x DOI: https://doi.org/10.1111/j.1745-6584.2011.00817.x

Wu, S., Gray, D.H., Richart, F.E. (1984). Capillary Effects on Dynamic Modulus of Sands and Silts. Journal of Geotechnical Engineering, 110, 1188–1203. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:9(1188) DOI: https://doi.org/10.1061/(ASCE)0733-9410(1984)110:9(1188)

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., et al. (2017). A high-accuracy map of global terrain elevations. Geophysical Research Letters, 44, 5844–5853. https://doi.org/10.1002/2017GL072874 DOI: https://doi.org/10.1002/2017GL072874

Yin, X., Feng, Q., Li, Y., Deo, R.C., Liu, W., et al. (2022). An interplay of soil salinization and groundwater degradation threatening coexistence of oasis-desert ecosystems. Science of The Total Environment, 806, 150599. https://doi.org/10.1016/j.scitotenv.2021.150599 DOI: https://doi.org/10.1016/j.scitotenv.2021.150599

Zamrsky, D., Karssenberg, M.E., Cohen, K.M., Bierkens, M.F.P., Oude Essink, G.H.P. (2020). Geological Heterogeneity of Coastal Unconsolidated Groundwater Systems Worldwide and Its Influence on Offshore Fresh Groundwater Occurrence. Frontiers in Earth Science, 7, 339. https://doi.org/10.3389/feart.2019.00339 DOI: https://doi.org/10.3389/feart.2019.00339

Zandalinas, S.I., Sengupta, S., Fritschi, F.B., Azad, R.K., Nechushtai, R., Mittler, R. (2021). The impact of multifactorial stress combination on plant growth and survival. New Phytologist, 230, 1034–1048. https://doi.org/10.1111/nph.17232 DOI: https://doi.org/10.1111/nph.17232

Zhai, T., Wang, J., Fang, Y., Qin, Y., Huang, L., Chen, Y. (2020). Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration. Science of The Total Environment, 708, 135153. https://doi.org/10.1016/j.scitotenv.2019.135153 DOI: https://doi.org/10.1016/j.scitotenv.2019.135153

Zhang, Q., Wang, C. (2020). Natural and Human Factors Affect the Distribution of Soil Heavy Metal Pollution: a Review. Water, Air, & Soil Pollution, 231, 350. https://doi.org/10.1007/s11270-020-04728-2 DOI: https://doi.org/10.1007/s11270-020-04728-2

Zhou, X.-Y., Wang, X.-R. (2019). Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China. Journal of Cleaner Production, 230, 1–10. https://doi.org/10.1016/j.jclepro.2019.05.098 DOI: https://doi.org/10.1016/j.jclepro.2019.05.098

Downloads

Additional Files

Published

2024-04-26

How to Cite

Sobhi Gollo, V., Sahimi, M., González, E., Hajati, M.-C., Elbracht, J., Fröhle, P., & Shokri, N. (2024). Soil salinization due to saltwater intrusion in coastal regions: The role of soil characteristics and heterogeneity. InterPore Journal, 1(1), ipj260424–6. https://doi.org/10.69631/ipj.v1i1nr15

Issue

Section

Original Research Papers

Funding data