Evolution of Frictional Strength of Dry Sheared Granular Porous Media During Slip-Rate Weakening
DOI:
https://doi.org/10.69631/ipj.v1i2nr16Keywords:
Granular porous media, Frictional strength, slip-rate weakening, flash heatingAbstract
Using the discrete-element method, we study loss of shear strength at frictional asperity contacts, induced by flash heating, in a granular fault gouge. The magnitude of the reduction in the shear stress and the local friction coefficients are computed over a wide range of shear velocities Vs. For small strain rates, there is negligible difference between the frictional stress for packings with and without frictional weakening that arises due to flash heating. As strain rate increases, however, the difference between the two becomes significant. The results indicate a clear transition in the shear stress-shear strain response corresponding to Vs > 0.3 m/s and those with Vs ≤ 0.3 m/s. Specifically, the stress–strain diagrams at lower Vs exhibit a pronounced decreasing strength over small distances, whereas they indicate a progressive increase in the shear stress at higher Vs, which is reminiscent of a transition from ductile behavior at high velocities to brittle response at low velocities. Only a small fraction of the contacts experience lower friction, with the majority having friction coefficients closer to 0.5, hence suggesting that fast slip is accommodated only at a few contacts, with the rest either not sliding at all, or sliding very slowly. Moreover, if we define an effective macroscopic friction coefficient, µe = τ/P, where τ is the shear stress, and P is the pressure, and the inertial number I by, I = γD√(ρ/P), where γ is the strain rate, and D is the average size of the particles, we find that the weakening packing follows a nonlinear friction law, well approximated by, µe ≈ I3/4. Thus, the model with flash heating deviates from linear friction law even at smaller, albeit not too small, values of I, which is intriguing and novel. The implications of the results for earthquake physics and the principal slip planes in fault z ones are discussed.
Downloads
Metrics
References
Bakhshian, S., & Sahimi, M. (2016). Computer simulation of the effect of deformation on the morphology and flow properties of porous media. Physical Review E, 94(4), 042903. https://doi.org/10.1103/PhysRevE.94.042903 DOI: https://doi.org/10.1103/PhysRevE.94.042903
Beeler, N. M., Tullis, T. E., & Goldsby, D. L. (2008). Constitutive relationships and physical basis of fault strength due to flash heating. Journal of Geophysical Research: Solid Earth, 113(B1), 2007JB004988. https://doi.org/10.1029/2007JB004988 DOI: https://doi.org/10.1029/2007JB004988
Byerlee, J. D. (1968). Brittle-ductile transition in rocks. Journal of Geophysical Research, 73(14), 4741–4750. https://doi.org/10.1029/JB073i014p04741 DOI: https://doi.org/10.1029/JB073i014p04741
Campbell, C. S., Cleary, P. W., & Hopkins, M. (1995). Large‐scale landslide simulations: Global deformation, velocities and basal friction. Journal of Geophysical Research: Solid Earth, 100(B5), 8267–8283. https://doi.org/10.1029/94JB00937 DOI: https://doi.org/10.1029/94JB00937
Collettini, C., Viti, C., Tesei, T., & Mollo, S. (2013). Thermal decomposition along natural carbonate faults during earthquakes. Geology, 41(8), 927–930. https://doi.org/10.1130/G34421.1 DOI: https://doi.org/10.1130/G34421.1
Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47 DOI: https://doi.org/10.1680/geot.1979.29.1.47
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., & Chevoir, F. (2005). Rheophysics of dense granular materials: Discrete simulation of plane shear flows. Physical Review E, 72(2), 021309. https://doi.org/10.1103/PhysRevE.72.021309 DOI: https://doi.org/10.1103/PhysRevE.72.021309
Dagum, L., & Menon, R. (1998). OpenMP: An industry standard API for shared-memory programming. IEEE Computational Science and Engineering, 5(1), 46–55. https://doi.org/10.1109/99.660313 DOI: https://doi.org/10.1109/99.660313
Dent, J. D., Burrell, K. J., Schmidt, D. S., Louge, M. Y., Adams, E. E., & Jazbutis, T. G. (1998). Density, velocity and friction measurements in a dry-snow avalanche. Annals of Glaciology, 26, 247–252. https://doi.org/10.3189/1998AoG26-1-247-252 DOI: https://doi.org/10.1017/S0260305500014907
Di Toro, G., Goldsby, D. L., & Tullis, T. E. (2004). Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427(6973), 436–439. https://doi.org/10.1038/nature02249 DOI: https://doi.org/10.1038/nature02249
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., & Shimamoto, T. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494–498. https://doi.org/10.1038/nature09838 DOI: https://doi.org/10.1038/nature09838
Elbanna, A. E., & Carlson, J. M. (2014). A two‐scale model for sheared fault gouge: Competition between macroscopic disorder and local viscoplasticity. Journal of Geophysical Research: Solid Earth, 119(6), 4841–4859. https://doi.org/10.1002/2014JB011001 DOI: https://doi.org/10.1002/2014JB011001
Ergenzinger, C., Seifried, R., & Eberhard, P. (2011). A discrete element model to describe failure of strong rock in uniaxial compression. Granular Matter, 4(13), 341–364. https://doi.org/10.1007/s10035-010-0230-7 DOI: https://doi.org/10.1007/s10035-010-0230-7
Falk, M. L., & Langer, J. S. (1998). Dynamics of viscoplastic deformation in amorphous solids. Physical Review E, 57(6), 7192–7205. https://doi.org/10.1103/PhysRevE.57.7192 DOI: https://doi.org/10.1103/PhysRevE.57.7192
Falk, M. L., & Langer, J. S. (2011). Deformation and failure of amorphous, solidlike materials. Annual Review of Condensed Matter Physics, 2(1), 353–373. https://doi.org/10.1146/annurev-conmatphys-062910-140452 DOI: https://doi.org/10.1146/annurev-conmatphys-062910-140452
Fraige, F. Y., & Langston, P. A. (2004). Integration schemes and damping algorithms in distinct element models. Advanced Powder Technology, 15(2), 227–245. https://doi.org/10.1163/156855204773644454 DOI: https://doi.org/10.1163/156855204773644454
GDR MiDi. (2004). On dense granular flows. The European Physical Journal. E, Soft Matter, 14(4), 341–365. https://doi.org/10.1140/epje/i2003-10153-0 DOI: https://doi.org/10.1140/epje/i2003-10153-0
Goldsby, D. L., & Tullis, T. E. (2002). Low frictional strength of quartz rocks at subseismic slip rates. Geophysical Research Letters, 29(17). https://doi.org/10.1029/2002GL015240 DOI: https://doi.org/10.1029/2002GL015240
Hirose, T., & Shimamoto, T. (2005). Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research: Solid Earth, 110(B5), 2004JB003207. https://doi.org/10.1029/2004JB003207 DOI: https://doi.org/10.1029/2004JB003207
Ikari, M. J., Carpenter, B. M., Scuderi, M. M., Collettini, C., & Kopf, A. J. (2020). Frictional strengthening explored during non‐steady state shearing: Implications for fault stability and slip event recurrence time. Journal of Geophysical Research: Solid Earth, 125(10), e2020JB020015. https://doi.org/10.1029/2020JB020015 DOI: https://doi.org/10.1029/2020JB020015
Jop, P., Forterre, Y., & Pouliquen, O. (2006). A constitutive law for dense granular flows. Nature, 441(7094), 727–730. https://doi.org/10.1038/nature04801 DOI: https://doi.org/10.1038/nature04801
Jutzi, M., & Asphaug, E. (2011). Forming the lunar farside highlands by accretion of a companion moon. Nature, 476(7358), 69–72. https://doi.org/10.1038/nature10289 DOI: https://doi.org/10.1038/nature10289
Kitajima, H., Chester, F. M., & Chester, J. S. (2011). Dynamic weakening of gouge layers in high-speed shear experiments: Assessment of temperature-dependent friction, thermal pressurization, and flash heating. Journal of Geophysical Research, 116(B8), B08309. https://doi.org/10.1029/2010JB007879 DOI: https://doi.org/10.1029/2010JB007879
Kitajima, H., Chester, J. S., Chester, F. M., & Shimamoto, T. (2010). High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution. Journal of Geophysical Research (Solid Earth), 115, B08408. https://doi.org/10.1029/2009JB007038 DOI: https://doi.org/10.1029/2009JB007038
Kothari, K. R., & Elbanna, A. E. (2017). Localization and instability in sheared granular materials: Role of friction and vibration. Physical Review E, 95(2), 022901. https://doi.org/10.1103/PhysRevE.95.022901 DOI: https://doi.org/10.1103/PhysRevE.95.022901
Lachenbruch, A. H. (1980). Frictional heating, fluid pressure, and the resistance to fault motion. Journal of Geophysical Research, 85, 6097–6112. https://doi.org/10.1029/JB085iB11p06097 DOI: https://doi.org/10.1029/JB085iB11p06097
Langston, P. A., Tüzün, U., & Heyes, D. M. (1995). Discrete element simulation of granular flow in 2D and 3D hoppers: Dependence of discharge rate and wall stress on particle interactions. Chemical Engineering Science, 50, 967–987. https://doi.org/10.1016/0009-2509(94)00467-6 DOI: https://doi.org/10.1016/0009-2509(94)00467-6
Lucas, A., Mangeney, A., & Ampuero, J. P. (2014). Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nature Communications, 5(1), 3417. https://doi.org/10.1038/ncomms4417 DOI: https://doi.org/10.1038/ncomms4417
Ma, X., & Elbanna, A. (2018). Strain localization in dry sheared granular materials: A compactivity-based approach. Physical Review E, 98(2), 022906. https://doi.org/10.1103/PhysRevE.98.022906 DOI: https://doi.org/10.1103/PhysRevE.98.022906
Manning, M. L., & Liu, A. J. (2011). Vibrational modes identify soft spots in a sheared disordered packing. Physical Review Letters, 107(10), 108302. https://doi.org/10.1103/PhysRevLett.107.108302 DOI: https://doi.org/10.1103/PhysRevLett.107.108302
Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, 26, 643–696. https://doi.org/10.1146/annurev.earth.26.1.643 DOI: https://doi.org/10.1146/annurev.earth.26.1.643
Mase, C. W., & Smith, L. (1987). Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault. Journal of Geophysical Research: Solid Earth, 92(B7), 6249–6272. https://doi.org/10.1029/JB092iB07p06249 DOI: https://doi.org/10.1029/JB092iB07p06249
Mollon, G., Aubry, J., & Schubnel, A. (2021). Simulating melting in 2d seismic fault gouge. Journal of Geophysical Research: Solid Earth, 126(6), e2020JB021485. https://doi.org/10.1029/2020JB021485 DOI: https://doi.org/10.1029/2020JB021485
Morgan, J. K. (1999). Numerical simulations of granular shear zones using the distinct element method: 2. Effects of particle size distribution and interparticle friction on mechanical behavior. Journal of Geophysical Research, 104, 2721–2732. https://doi.org/10.1029/1998JB900055 DOI: https://doi.org/10.1029/1998JB900055
Nielsen, S. (2017). From slow to fast faulting: Recent challenges in earthquake fault mechanics. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 375(2103), 20160016. https://doi.org/10.1098/rsta.2016.0016 DOI: https://doi.org/10.1098/rsta.2016.0016
O’Hara, K., Mizoguchi, K., Shimamoto, T., & Hower, J. C. (2006). Experimental frictional heating of coal gouge at seismic slip rates: Evidence for devolatilization and thermal pressurization of gouge fluids. Tectonophysics, 424(1), 109–118. https://doi.org/10.1016/j.tecto.2006.07.007 DOI: https://doi.org/10.1016/j.tecto.2006.07.007
Papachristos, E., Stefanou, I., & Sulem, J. (2023). A discrete elements study of the frictional behavior of fault gouges. Journal of Geophysical Research: Solid Earth, 128(1), e2022JB025209. https://doi.org/10.1029/2022JB025209 DOI: https://doi.org/10.1029/2022JB025209
Piroozan, N., & Sahimi, M. (2020). Molecular origin of sliding friction and flash heating in rock and heterogeneous materials. Scientific Reports, 10(1), 22264. https://doi.org/10.1038/s41598-020-79383-y DOI: https://doi.org/10.1038/s41598-020-79383-y
Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011 DOI: https://doi.org/10.1016/j.ijrmms.2004.09.011
Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5), 2005JB004006. https://doi.org/10.1029/2005JB004006 DOI: https://doi.org/10.1029/2005JB004006
Rice, J. R. (2017). Heating, weakening and shear localization in earthquake rupture. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2103), 20160015. https://doi.org/10.1098/rsta.2016.0015 DOI: https://doi.org/10.1098/rsta.2016.0015
Sammis, C., King, G., & Biegel, R. (1987). The kinematics of gouge deformation. Pure and Applied Geophysics, 125, 777–812. https://doi.org/10.1007/BF00878033 DOI: https://doi.org/10.1007/BF00878033
Smeraglia, L., Billi, A., Carminati, E., Cavallo, A., Di Toro, G., Spagnuolo, E., & Zorzi, F. (2017). Ultra-thin clay layers facilitate seismic slip in carbonate faults. Scientific Reports, 7(1), 664. https://doi.org/10.1038/s41598-017-00717-4 DOI: https://doi.org/10.1038/s41598-017-00717-4
Sone, H., & Shimamoto, T. (2009). Frictional resistance of faults during accelerating and decelerating earthquake slip. Nature Geoscience, 2, 705–708. https://doi.org/10.1038/ngeo637 DOI: https://doi.org/10.1038/ngeo637
Spagnuolo, E., Plümper, O., Violay, M., Cavallo, A., & Di Toro, G. (2015). Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes. Scientific Reports, 5, 16112. https://doi.org/10.1038/srep16112 DOI: https://doi.org/10.1038/srep16112
Taboada, S., Renouf, M. (2023). Rheology and breakdown energy of a shear zone undergoing flash heating in earthquake-like discrete element models. Geophysical Journal International, 233 (2), pp.1492-1514. https://dx.doi.org/10.1093/gji/ggad004 DOI: https://doi.org/10.1093/gji/ggad004
Wibberley, C. A. J., & Shimamoto, T. (2005). Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436(7051), 689–692. https://doi.org/10.1038/nature03901 DOI: https://doi.org/10.1038/nature03901
Wong, T., & Baud, P. (2012). The brittle-ductile transition in porous rock: A review. Journal of Structural Geology, 44, 25–53. https://doi.org/10.1016/j.jsg.2012.07.010 DOI: https://doi.org/10.1016/j.jsg.2012.07.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Sahimi, Sahar Bakhshian
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.