Evolution of Frictional Strength of Dry Sheared Granular Porous Media During Slip-Rate Weakening

Authors

DOI:

https://doi.org/10.69631/ipj.v1i2nr16

Keywords:

Granular porous media, Frictional strength, slip-rate weakening, flash heating

Abstract

Using the discrete-element method, we study loss of shear strength at frictional asperity contacts, induced by flash heating, in a granular fault gouge. The magnitude of the reduction in the shear stress and the local friction coefficients are computed over a wide range of shear velocities Vs. For small strain rates, there is negligible difference between the frictional stress for packings with and without frictional weakening that arises due to flash heating. As strain rate increases, however, the difference between the two becomes significant. The results indicate a clear transition in the shear stress-shear strain response corresponding to Vs > 0.3 m/s and those with Vs ≤ 0.3 m/s. Specifically, the stress–strain diagrams at lower Vs exhibit a pronounced decreasing strength over small distances, whereas they indicate a progressive increase in the shear stress at higher Vs, which is reminiscent of a transition from ductile behavior at high velocities to brittle response at low velocities. Only a small fraction of the contacts experience lower friction, with the majority having friction coefficients closer to 0.5, hence suggesting that fast slip is accommodated only at a few contacts, with the rest either not sliding at all, or sliding very slowly. Moreover, if we define an effective macroscopic friction coefficient, µe = τ/P, where τ is the shear stress, and P is the pressure, and the inertial number I by, I = γD√(ρ/P), where γ is the strain rate, and D is the average size of the particles, we find that the weakening packing follows a nonlinear friction law, well approximated by, µeI3/4. Thus, the model with flash heating deviates from linear friction law even at smaller, albeit not too small, values of I, which is intriguing and novel. The implications of the results for earthquake physics and the principal slip planes in fault z ones are discussed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bakhshian, S., & Sahimi, M. (2016). Computer simulation of the effect of deformation on the morphology and flow properties of porous media. Physical Review E, 94(4), 042903. https://doi.org/10.1103/PhysRevE.94.042903 DOI: https://doi.org/10.1103/PhysRevE.94.042903

Beeler, N. M., Tullis, T. E., & Goldsby, D. L. (2008). Constitutive relationships and physical basis of fault strength due to flash heating. Journal of Geophysical Research: Solid Earth, 113(B1), 2007JB004988. https://doi.org/10.1029/2007JB004988 DOI: https://doi.org/10.1029/2007JB004988

Byerlee, J. D. (1968). Brittle-ductile transition in rocks. Journal of Geophysical Research, 73(14), 4741–4750. https://doi.org/10.1029/JB073i014p04741 DOI: https://doi.org/10.1029/JB073i014p04741

Campbell, C. S., Cleary, P. W., & Hopkins, M. (1995). Large‐scale landslide simulations: Global deformation, velocities and basal friction. Journal of Geophysical Research: Solid Earth, 100(B5), 8267–8283. https://doi.org/10.1029/94JB00937 DOI: https://doi.org/10.1029/94JB00937

Collettini, C., Viti, C., Tesei, T., & Mollo, S. (2013). Thermal decomposition along natural carbonate faults during earthquakes. Geology, 41(8), 927–930. https://doi.org/10.1130/G34421.1 DOI: https://doi.org/10.1130/G34421.1

Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47 DOI: https://doi.org/10.1680/geot.1979.29.1.47

da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., & Chevoir, F. (2005). Rheophysics of dense granular materials: Discrete simulation of plane shear flows. Physical Review E, 72(2), 021309. https://doi.org/10.1103/PhysRevE.72.021309 DOI: https://doi.org/10.1103/PhysRevE.72.021309

Dagum, L., & Menon, R. (1998). OpenMP: An industry standard API for shared-memory programming. IEEE Computational Science and Engineering, 5(1), 46–55. https://doi.org/10.1109/99.660313 DOI: https://doi.org/10.1109/99.660313

Dent, J. D., Burrell, K. J., Schmidt, D. S., Louge, M. Y., Adams, E. E., & Jazbutis, T. G. (1998). Density, velocity and friction measurements in a dry-snow avalanche. Annals of Glaciology, 26, 247–252. https://doi.org/10.3189/1998AoG26-1-247-252 DOI: https://doi.org/10.1017/S0260305500014907

Di Toro, G., Goldsby, D. L., & Tullis, T. E. (2004). Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427(6973), 436–439. https://doi.org/10.1038/nature02249 DOI: https://doi.org/10.1038/nature02249

Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., & Shimamoto, T. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494–498. https://doi.org/10.1038/nature09838 DOI: https://doi.org/10.1038/nature09838

Elbanna, A. E., & Carlson, J. M. (2014). A two‐scale model for sheared fault gouge: Competition between macroscopic disorder and local viscoplasticity. Journal of Geophysical Research: Solid Earth, 119(6), 4841–4859. https://doi.org/10.1002/2014JB011001 DOI: https://doi.org/10.1002/2014JB011001

Ergenzinger, C., Seifried, R., & Eberhard, P. (2011). A discrete element model to describe failure of strong rock in uniaxial compression. Granular Matter, 4(13), 341–364. https://doi.org/10.1007/s10035-010-0230-7 DOI: https://doi.org/10.1007/s10035-010-0230-7

Falk, M. L., & Langer, J. S. (1998). Dynamics of viscoplastic deformation in amorphous solids. Physical Review E, 57(6), 7192–7205. https://doi.org/10.1103/PhysRevE.57.7192 DOI: https://doi.org/10.1103/PhysRevE.57.7192

Falk, M. L., & Langer, J. S. (2011). Deformation and failure of amorphous, solidlike materials. Annual Review of Condensed Matter Physics, 2(1), 353–373. https://doi.org/10.1146/annurev-conmatphys-062910-140452 DOI: https://doi.org/10.1146/annurev-conmatphys-062910-140452

Fraige, F. Y., & Langston, P. A. (2004). Integration schemes and damping algorithms in distinct element models. Advanced Powder Technology, 15(2), 227–245. https://doi.org/10.1163/156855204773644454 DOI: https://doi.org/10.1163/156855204773644454

GDR MiDi. (2004). On dense granular flows. The European Physical Journal. E, Soft Matter, 14(4), 341–365. https://doi.org/10.1140/epje/i2003-10153-0 DOI: https://doi.org/10.1140/epje/i2003-10153-0

Goldsby, D. L., & Tullis, T. E. (2002). Low frictional strength of quartz rocks at subseismic slip rates. Geophysical Research Letters, 29(17). https://doi.org/10.1029/2002GL015240 DOI: https://doi.org/10.1029/2002GL015240

Hirose, T., & Shimamoto, T. (2005). Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research: Solid Earth, 110(B5), 2004JB003207. https://doi.org/10.1029/2004JB003207 DOI: https://doi.org/10.1029/2004JB003207

Ikari, M. J., Carpenter, B. M., Scuderi, M. M., Collettini, C., & Kopf, A. J. (2020). Frictional strengthening explored during non‐steady state shearing: Implications for fault stability and slip event recurrence time. Journal of Geophysical Research: Solid Earth, 125(10), e2020JB020015. https://doi.org/10.1029/2020JB020015 DOI: https://doi.org/10.1029/2020JB020015

Jop, P., Forterre, Y., & Pouliquen, O. (2006). A constitutive law for dense granular flows. Nature, 441(7094), 727–730. https://doi.org/10.1038/nature04801 DOI: https://doi.org/10.1038/nature04801

Jutzi, M., & Asphaug, E. (2011). Forming the lunar farside highlands by accretion of a companion moon. Nature, 476(7358), 69–72. https://doi.org/10.1038/nature10289 DOI: https://doi.org/10.1038/nature10289

Kitajima, H., Chester, F. M., & Chester, J. S. (2011). Dynamic weakening of gouge layers in high-speed shear experiments: Assessment of temperature-dependent friction, thermal pressurization, and flash heating. Journal of Geophysical Research, 116(B8), B08309. https://doi.org/10.1029/2010JB007879 DOI: https://doi.org/10.1029/2010JB007879

Kitajima, H., Chester, J. S., Chester, F. M., & Shimamoto, T. (2010). High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution. Journal of Geophysical Research (Solid Earth), 115, B08408. https://doi.org/10.1029/2009JB007038 DOI: https://doi.org/10.1029/2009JB007038

Kothari, K. R., & Elbanna, A. E. (2017). Localization and instability in sheared granular materials: Role of friction and vibration. Physical Review E, 95(2), 022901. https://doi.org/10.1103/PhysRevE.95.022901 DOI: https://doi.org/10.1103/PhysRevE.95.022901

Lachenbruch, A. H. (1980). Frictional heating, fluid pressure, and the resistance to fault motion. Journal of Geophysical Research, 85, 6097–6112. https://doi.org/10.1029/JB085iB11p06097 DOI: https://doi.org/10.1029/JB085iB11p06097

Langston, P. A., Tüzün, U., & Heyes, D. M. (1995). Discrete element simulation of granular flow in 2D and 3D hoppers: Dependence of discharge rate and wall stress on particle interactions. Chemical Engineering Science, 50, 967–987. https://doi.org/10.1016/0009-2509(94)00467-6 DOI: https://doi.org/10.1016/0009-2509(94)00467-6

Lucas, A., Mangeney, A., & Ampuero, J. P. (2014). Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nature Communications, 5(1), 3417. https://doi.org/10.1038/ncomms4417 DOI: https://doi.org/10.1038/ncomms4417

Ma, X., & Elbanna, A. (2018). Strain localization in dry sheared granular materials: A compactivity-based approach. Physical Review E, 98(2), 022906. https://doi.org/10.1103/PhysRevE.98.022906 DOI: https://doi.org/10.1103/PhysRevE.98.022906

Manning, M. L., & Liu, A. J. (2011). Vibrational modes identify soft spots in a sheared disordered packing. Physical Review Letters, 107(10), 108302. https://doi.org/10.1103/PhysRevLett.107.108302 DOI: https://doi.org/10.1103/PhysRevLett.107.108302

Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, 26, 643–696. https://doi.org/10.1146/annurev.earth.26.1.643 DOI: https://doi.org/10.1146/annurev.earth.26.1.643

Mase, C. W., & Smith, L. (1987). Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault. Journal of Geophysical Research: Solid Earth, 92(B7), 6249–6272. https://doi.org/10.1029/JB092iB07p06249 DOI: https://doi.org/10.1029/JB092iB07p06249

Mollon, G., Aubry, J., & Schubnel, A. (2021). Simulating melting in 2d seismic fault gouge. Journal of Geophysical Research: Solid Earth, 126(6), e2020JB021485. https://doi.org/10.1029/2020JB021485 DOI: https://doi.org/10.1029/2020JB021485

Morgan, J. K. (1999). Numerical simulations of granular shear zones using the distinct element method: 2. Effects of particle size distribution and interparticle friction on mechanical behavior. Journal of Geophysical Research, 104, 2721–2732. https://doi.org/10.1029/1998JB900055 DOI: https://doi.org/10.1029/1998JB900055

Nielsen, S. (2017). From slow to fast faulting: Recent challenges in earthquake fault mechanics. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 375(2103), 20160016. https://doi.org/10.1098/rsta.2016.0016 DOI: https://doi.org/10.1098/rsta.2016.0016

O’Hara, K., Mizoguchi, K., Shimamoto, T., & Hower, J. C. (2006). Experimental frictional heating of coal gouge at seismic slip rates: Evidence for devolatilization and thermal pressurization of gouge fluids. Tectonophysics, 424(1), 109–118. https://doi.org/10.1016/j.tecto.2006.07.007 DOI: https://doi.org/10.1016/j.tecto.2006.07.007

Papachristos, E., Stefanou, I., & Sulem, J. (2023). A discrete elements study of the frictional behavior of fault gouges. Journal of Geophysical Research: Solid Earth, 128(1), e2022JB025209. https://doi.org/10.1029/2022JB025209 DOI: https://doi.org/10.1029/2022JB025209

Piroozan, N., & Sahimi, M. (2020). Molecular origin of sliding friction and flash heating in rock and heterogeneous materials. Scientific Reports, 10(1), 22264. https://doi.org/10.1038/s41598-020-79383-y DOI: https://doi.org/10.1038/s41598-020-79383-y

Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011 DOI: https://doi.org/10.1016/j.ijrmms.2004.09.011

Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5), 2005JB004006. https://doi.org/10.1029/2005JB004006 DOI: https://doi.org/10.1029/2005JB004006

Rice, J. R. (2017). Heating, weakening and shear localization in earthquake rupture. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2103), 20160015. https://doi.org/10.1098/rsta.2016.0015 DOI: https://doi.org/10.1098/rsta.2016.0015

Sammis, C., King, G., & Biegel, R. (1987). The kinematics of gouge deformation. Pure and Applied Geophysics, 125, 777–812. https://doi.org/10.1007/BF00878033 DOI: https://doi.org/10.1007/BF00878033

Smeraglia, L., Billi, A., Carminati, E., Cavallo, A., Di Toro, G., Spagnuolo, E., & Zorzi, F. (2017). Ultra-thin clay layers facilitate seismic slip in carbonate faults. Scientific Reports, 7(1), 664. https://doi.org/10.1038/s41598-017-00717-4 DOI: https://doi.org/10.1038/s41598-017-00717-4

Sone, H., & Shimamoto, T. (2009). Frictional resistance of faults during accelerating and decelerating earthquake slip. Nature Geoscience, 2, 705–708. https://doi.org/10.1038/ngeo637 DOI: https://doi.org/10.1038/ngeo637

Spagnuolo, E., Plümper, O., Violay, M., Cavallo, A., & Di Toro, G. (2015). Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes. Scientific Reports, 5, 16112. https://doi.org/10.1038/srep16112 DOI: https://doi.org/10.1038/srep16112

Taboada, S., Renouf, M. (2023). Rheology and breakdown energy of a shear zone undergoing flash heating in earthquake-like discrete element models. Geophysical Journal International, 233 (2), pp.1492-1514. https://dx.doi.org/10.1093/gji/ggad004 DOI: https://doi.org/10.1093/gji/ggad004

Wibberley, C. A. J., & Shimamoto, T. (2005). Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436(7051), 689–692. https://doi.org/10.1038/nature03901 DOI: https://doi.org/10.1038/nature03901

Wong, T., & Baud, P. (2012). The brittle-ductile transition in porous rock: A review. Journal of Structural Geology, 44, 25–53. https://doi.org/10.1016/j.jsg.2012.07.010 DOI: https://doi.org/10.1016/j.jsg.2012.07.010

Downloads

Published

2024-08-24

How to Cite

Bakhshian, S., & Sahimi, M. (2024). Evolution of Frictional Strength of Dry Sheared Granular Porous Media During Slip-Rate Weakening. InterPore Journal, 1(2), ipj240824–5. https://doi.org/10.69631/ipj.v1i2nr16

Issue

Section

Original Research Papers