High-fidelity experimental model verification for flow in fractured porous media

Authors

DOI:

https://doi.org/10.69631/ipj.v1i3nr31

Keywords:

Flow in fractured media, Mixed-dimensional modeling, PET imaging, Wasserstein distance, model verification

Abstract

Mixed-dimensional mathematical models for flow in fractured media have been prevalent in the modeling community for almost two decades, utilizing the explicit representation of fractures by lower-dimensional manifolds embedded in the surrounding porous media. In this work, for the first time, direct qualitative and quantitative comparisons of mixed-dimensional models are drawn against laboratory experiments. Dedicated displacement experiments of steady-state laminar flow in fractured media are investigated using both high-resolution PET images as well as state-of-the-art numerical simulations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aavatsmark, I. (2002). An introduction to multipoint flux approximations for quadrilateral grids. Computational Geosciences, 6(3), 405–432. https://doi.org/10.1023/A:1021291114475 DOI: https://doi.org/10.1023/A:1021291114475

C., Jaffré, J., Roberts, J. E., and Serres, C (2002). Modeling fractures as interfaces for flow and transport. In: Chen, Z., Ewing, R. E. (Eds.). Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment. American Mathematical Society, Vol. 295. https://doi.org/10.1090/conm/295 DOI: https://doi.org/10.1090/conm/295

Angot, P., Boyer, F., & Hubert, F. (2009). Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: Mathematical Modelling and Numerical Analysis, 43(2), 239–275. https://doi.org/10.1051/m2an/2008052 DOI: https://doi.org/10.1051/m2an/2008052

Aspenes, E., Ersland, G., Graue, A., Stevens, J., & Baldwin, B. A. (2008). Wetting phase bridges establish capillary continuity across open fractures and increase oil recovery in mixed-wet fractured chalk. Transport in Porous Media, 74(1), 35–47. https://doi.org/10.1007/s11242-007-9179-3 DOI: https://doi.org/10.1007/s11242-007-9179-3

Berkowitz, B. (2002). Characterizing flow and transport in fractured geological media: A review. Advances in Water Resources, 25(8–12), 861–884. https://doi.org/10.1016/S0309-1708(02)00042-8 DOI: https://doi.org/10.1016/S0309-1708(02)00042-8

Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., et al. (2021). Verification benchmarks for single-phase flow in three-dimensional fractured porous media. Advances in Water Resources, 147, 103759. https://doi.org/10.1016/j.advwatres.2020.103759 DOI: https://doi.org/10.1016/j.advwatres.2020.103759

Berre, I., Doster, F., & Keilegavlen, E. (2019). Flow in fractured porous media: A review of conceptual models and discretization approaches. Transport in Porous Media, 130(1), 215–236. https://doi.org/10.1007/s11242-018-1171-6 DOI: https://doi.org/10.1007/s11242-018-1171-6

Boon, W. M., Nordbotten, J. M., & Vatne, J. E. (2021). Functional analysis and exterior calculus on mixed-dimensional geometries. Annali Di Matematica Pura Ed Applicata (1923 -), 200(2), 757–789. https://doi.org/10.1007/s10231-020-01013-1 DOI: https://doi.org/10.1007/s10231-020-01013-1

Boon, W. M., Nordbotten, J. M., & Yotov, I. (2018). Robust discretization of flow in fractured porous media. SIAM Journal on Numerical Analysis, 56(4), 2203–2233. https://doi.org/10.1137/17M1139102 DOI: https://doi.org/10.1137/17M1139102

Both, J., Brattekås, B., Keilegavlen, E., Martin, F., & Nordbotten, J. M. (2023). Simulation and data analysis: High-fidelity experimental model verification for flow in fractured porous media [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.10410227

Both, J. W., Facca, E., and Nordbotten, J. M. (2023). Iterative finite volume approximation of the 1-Wasserstein distance. [Manuscript in preparation].

Brattekås, B., Both, J., Keilegavlen, E., Fernø, M., & Nordbotten, J. M. (2023). Dataset: High-fidelity experimental model verification for flow in fractured porous media [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.10409926

Brenner, K., Hennicker, J., Masson, R., & Samier, P. (2016). Gradient discretization of hybrid-dimensional Darcy flow in fractured porous media with discontinuous pressures at matrix–fracture interfaces. IMA Journal of Numerical Analysis, drw044. https://doi.org/10.1093/imanum/drw044 DOI: https://doi.org/10.1093/imanum/drw044

Chen, K. P., Jin, Y., & Chen, M. (2013). Pressure-gradient singularity and production enhancement for hydraulically fractured wells. Geophysical Journal International, 195(2), 923–931. https://doi.org/10.1093/gji/ggt272 DOI: https://doi.org/10.1093/gji/ggt272

De Marsily, G. (1986). Quantitative hydrogeology. United States. Paris School of Mines, Fontainebleau.

Eymard, R., Thierry, G., and Herbin, R. (2000). Finite Volume Methods. Handbook of Numerical Analysis, 7:713–1018, 2000. DOI: https://doi.org/10.1016/S1570-8659(00)07005-8

Fernø, M. A., Gauteplass, J., Hauge, L. P., Abell, G. E., Adamsen, T. C. H., & Graue, A. (2015). Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks. Water Resources Research, 51(9), 7811–7819. https://doi.org/10.1002/2015WR017130 DOI: https://doi.org/10.1002/2015WR017130

Firoozabadi, A. (2000). Recovery mechanisms in fractured reservoirs and field performance. Journal of Canadian Petroleum Technology, 39(11). https://doi.org/10.2118/00-11-DAS DOI: https://doi.org/10.2118/00-11-DAS

Flemisch, B., Berre, I., Boon, W., Fumagalli, A., Schwenck, N., Scotti, A., Stefansson, I., & Tatomir, A. (2018). Benchmarks for single-phase flow in fractured porous media. Advances in Water Resources, 111, 239–258. https://doi.org/10.1016/j.advwatres.2017.10.036B. DOI: https://doi.org/10.1016/j.advwatres.2017.10.036

Flemisch, B., Fumagalli, A., and Scotti, A. (2016). A review of the XFEM-based approximation of flow in fractured porous media. In: Ventura, G., Benvenuti, E. (Eds). Advances in Discretization Methods. Springer Nature, 47–76. DOI: https://doi.org/10.1007/978-3-319-41246-7_3

Fumagalli, A. and Scotti, A. (2012). A reduced model for flow and transport in fractured porous media with non-matching grids. In: Cangiani, A., Davidchack, R., Georgoulis, E., Gorban, A., Levesley, J., Tretyakov, M. (eds). Numerical Mathematics and Advanced Applications. Springer, 499–507. DOI: https://doi.org/10.1007/978-3-642-33134-3_53

Hoteit, H., & Firoozabadi, A. (2005). Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media. Water Resources Research, 41(11), 2005WR004339. https://doi.org/10.1029/2005WR004339 DOI: https://doi.org/10.1029/2005WR004339

Hoteit, H., & Firoozabadi, A. (2008). An efficient numerical model for incompressible two-phase flow in fractured media. Advances in Water Resources, 31(6), 891–905. https://doi.org/10.1016/j.advwatres.2008.02.004 DOI: https://doi.org/10.1016/j.advwatres.2008.02.004

Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., & Berre, I. (2021). PorePy: An open-source software for simulation of multiphysics processes in fractured porous media. Computational Geosciences, 25(1), 243–265. https://doi.org/10.1007/s10596-020-10002-5 DOI: https://doi.org/10.1007/s10596-020-10002-5

Martin, V., Jaffré, J., & Roberts, J. E. (2005). Modeling fractures and barriers as interfaces for flow in porous media. SIAM Journal on Scientific Computing, 26(5), 1667–1691. https://doi.org/10.1137/S1064827503429363 DOI: https://doi.org/10.1137/S1064827503429363

Mason, G., & Morrow, N. R. (2013). Developments in spontaneous imbibition and possibilities for future work. Journal of Petroleum Science and Engineering, 110, 268–293. https://doi.org/10.1016/j.petrol.2013.08.018 DOI: https://doi.org/10.1016/j.petrol.2013.08.018

Nordbotten, J. M., Benali, B., Both, J. W., Brattekås, B., Storvik, E., & Fernø, M. A. (2024). Darsia: An open-source python toolbox for two-scale image processing of dynamics in porous media. Transport in Porous Media, 151(5), 939–973. https://doi.org/10.1007/s11242-023-02000-9 DOI: https://doi.org/10.1007/s11242-023-02000-9

Nordbotten, J. M., Boon, W. M., Fumagalli, A., & Keilegavlen, E. (2019). Unified approach to discretization of flow in fractured porous media. Computational Geosciences, 23(2), 225–237. https://doi.org/10.1007/s10596-018-9778-9 DOI: https://doi.org/10.1007/s10596-018-9778-9

Nordbotten, J. M., & Keilegavlen, E. (2021). An introduction to multi-point flux (Mpfa) and stress (Mpsa) finite volume methods for thermo-poroelasticity. In D. A. Di Pietro, L. Formaggia, & R. Masson (Eds.), Polyhedral Methods in Geosciences (pp. 119–158). Springer International Publishing. https://doi.org/10.1007/978-3-030-69363-3_4 DOI: https://doi.org/10.1007/978-3-030-69363-3_4

Olasolo, P., Juárez, M. C., Morales, M. P., D´Amico, S., & Liarte, I. A. (2016). Enhanced geothermal systems (Egs): A Review. Renewable and Sustainable Energy Reviews, 56, 133–144. https://doi.org/10.1016/j.rser.2015.11.031 DOI: https://doi.org/10.1016/j.rser.2015.11.031

Rangel-German, E. R., & Kovscek, A. R. (2002). Experimental and analytical study of multidimensional imbibition in fractured porous media. Journal of Petroleum Science and Engineering, 36(1), 45–60. https://doi.org/10.1016/S0920-4105(02)00250-4 DOI: https://doi.org/10.1016/S0920-4105(02)00250-4

Rubner, Y., Tomasi, C., & Guibas, L. J. (1998). A metric for distributions with applications to image databases. Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), 59–66. https://doi.org/10.1109/ICCV.1998.710701 DOI: https://doi.org/10.1109/ICCV.1998.710701

Schädle, P., Zulian, P., Vogler, D., Bhopalam, S. R., Nestola, M. G. C., et al. (2019). 3D non-conforming mesh model for flow in fractured porous media using Lagrange multipliers. Computers & Geosciences, 132, 42–55. https://doi.org/10.1016/j.cageo.2019.06.014 DOI: https://doi.org/10.1016/j.cageo.2019.06.014

Schwenck, N. (2015). An XFEM-Based Model for Fluid Flow in Fractured Porous Media. PhD thesis, University of Stuttgart.

Schwenck, N., Flemisch, B., Helmig, R., & Wohlmuth, B. I. (2015). Dimensionally reduced flow models in fractured porous media: Crossings and boundaries. Computational Geosciences, 19(6), 1219–1230. https://doi.org/10.1007/s10596-015-9536-1 DOI: https://doi.org/10.1007/s10596-015-9536-1

Ţene, M., Bosma, S. B. M., Al Kobaisi, M. S., & Hajibeygi, H. (2017). Projection-based embedded discrete fracture model(Pedfm). Advances in Water Resources, 105, 205–216. https://doi.org/10.1016/j.advwatres.2017.05.009 DOI: https://doi.org/10.1016/j.advwatres.2017.05.009

Varela, J., Ahmed, E., Keilegavlen, E., Nordbotten, J. M., & Radu, F. A. (2023). A posteriori error estimates for hierarchical mixed-dimensional elliptic equations. Journal of Numerical Mathematics, 31(4), 247–280. https://doi.org/10.1515/jnma-2022-0038 DOI: https://doi.org/10.1515/jnma-2022-0038

Downloads

Additional Files

Published

2024-11-27

How to Cite

Both, J. W., Brattekås, B., Keilegavlen, E., Fernø, M., & Nordbotten, J. M. (2024). High-fidelity experimental model verification for flow in fractured porous media. InterPore Journal, 1(3), IPJ271124–6. https://doi.org/10.69631/ipj.v1i3nr31

Issue

Section

Original Research Papers