A line search algorithm for multiphysics problems with fracture deformation

Authors

DOI:

https://doi.org/10.69631/ipj.v1i3nr33

Keywords:

Porous media, Line search, Fracture deformation, Contact mechanics, Multiphysics

Abstract

Models for multiphysics problems often involve significant nonlinearities. When fracture contact mechanics are incorporated, discontinuous derivatives arise at the interfaces between open and closed fractures, or between sliding and sticking fractures. The resulting system of equations is highly challenging to solve. The naïve choice of Newton’s method frequently fails to converge, calling for more refined solution techniques such as line search methods.

When dealing with strong nonlinearities and discontinuous derivatives, a global line search based on the magnitude of the residual of all equations is at best costly to evaluate and at worst fails to converge. We therefore suggest a cheap and reliable approach tailored to the discontinuities. Utilizing adaptive variable scaling, the algorithm uses a line search to identify the transition between contact states for each nonlinear iteration. Then, a solution update weight is chosen to ensure that fracture cells which change state do not move far beyond the transition point.

We demonstrate the algorithm on a series of test cases for poromechanics and thermoporomechanics in fractured porous media. We consider both single- and multifracture cases, and study the importance of proper scaling of variables and equations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Acary, V., Brémond, M., Huber, O. (2018). On solving contact problems with Coulomb friction: formulations and numerical comparisons. Springer International Publishing. Advanced Topics in Nonsmooth Dynamics - Transactions of the European Network for Nonsmooth Dynamics, pp.375-457, 9783319759715. 10.1007/978-3-319-75972-2_10. hal-01878539. https://inria.hal.science/hal-01878539v1 DOI: https://doi.org/10.1007/978-3-319-75972-2_10

Bandis, S. C., Lumsden, A. C., & Barton, N. R. (1983). Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6), 249–268. https://doi.org/10.1016/0148-9062(83)90595-8 DOI: https://doi.org/10.1016/0148-9062(83)90595-8

Berge, R. L., Berre, I., Keilegavlen, E., Nordbotten, J. M., & Wohlmuth, B. (2020). Finite volume discretization for poroelastic media with fractures modeled by contact mechanics. International Journal for Numerical Methods in Engineering, 121(4), 644–663. https://doi.org/10.1002/nme.6238 DOI: https://doi.org/10.1002/nme.6238

Boon, W. M., Nordbotten, J. M., & Vatne, J. E. (2021). Functional analysis and exterior calculus on mixed-dimensional geometries. Annali Di Matematica Pura Ed Applicata (1923 -), 200(2), 757–789. https://doi.org/10.1007/s10231-020-01013-1 DOI: https://doi.org/10.1007/s10231-020-01013-1

Fritsch, F. N., & Carlson, R. E. (1980). Monotone piecewise cubic interpolation. SIAM Journal on Numerical Analysis, 17(2), 238–246. https://doi.org/10.1137/0717021 DOI: https://doi.org/10.1137/0717021

Hiermeier, M. (2020). Advanced Non-Linear Solution Techniques for Computational Contact Mechanics [Dr. Ing.] Technische Universität München. https://mediatum.ub.tum.de/doc/1521915/1521915.pdf

Hüeber, S., Stadler, G., & Wohlmuth, B. I. (2008). A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM Journal on Scientific Computing, 30(2), 572–596. https://doi.org/10.1137/060671061 DOI: https://doi.org/10.1137/060671061

Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., & Berre, I. (2021). PorePy: An open-source software for simulation of multiphysics processes in fractured porous media. Computational Geosciences, 25(1), 243–265. https://doi.org/10.1007/s10596-020-10002-5 DOI: https://doi.org/10.1007/s10596-020-10002-5

Khebzegga, O., Iranshahr, A., & Tchelepi, H. (2021). A nonlinear solver with phase boundary detection for compositional reservoir simulation. Transport in Porous Media, 137(3), 707–737. https://doi.org/10.1007/s11242-021-01584-4 DOI: https://doi.org/10.1007/s11242-021-01584-4

Møyner, O. (2017). Nonlinear solver for three-phase transport problems based on approximate trust regions. Computational Geosciences, 21(5–6), 999–1021. https://doi.org/10.1007/s10596-017-9660-1 DOI: https://doi.org/10.1007/s10596-017-9660-1

Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer. DOI: https://doi.org/10.1007/b98874

Nordbotten, J.M., Keilegavlen, E. (2021). An Introduction to Multi-point Flux (MPFA) and Stress (MPSA) Finite Volume Methods for Thermo-poroelasticity. In: Di Pietro, D.A., Formaggia, L., Masson, R. (eds). Polyhedral Methods in Geosciences. SEMA SIMAI Springer Series, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-69363-3_4 DOI: https://doi.org/10.1007/978-3-030-69363-3_4

Pour, K. M., Voskov, D., & Bruhn, D. (2023). Nonlinear solver based on trust region approximation for CO 2 utilization and storage in subsurface reservoir. Geoenergy Science and Engineering, 225, 211698. https://doi.org/10.1016/j.geoen.2023.211698 DOI: https://doi.org/10.1016/j.geoen.2023.211698

Stefansson, I. (2024). A line search algorithm for multiphysics problems with fracture deformation. arXiv. https://doi.org/10.48550/ARXIV.2407.01184

Stefansson, I., Berre, I., & Keilegavlen, E. (2021). A fully coupled numerical model of thermo-hydro-mechanical processes and fracture contact mechanics in porous media. Computer Methods in Applied Mechanics and Engineering, 386, 114122. https://doi.org/10.1016/j.cma.2021.114122 DOI: https://doi.org/10.1016/j.cma.2021.114122

Stefansson, I., & Keilegavlen, E. (2023). Numerical treatment of state‐dependent permeability in multiphysics problems. Water Resources Research, 59(8), e2023WR034686. https://doi.org/10.1029/2023WR034686 DOI: https://doi.org/10.1029/2023WR034686

Stefansson, I., Varela, J., Keilegavlen, E., & Berre, I. (2024). Flexible and rigorous numerical modelling of multiphysics processes in fractured porous media using PorePy. Results in Applied Mathematics, 21, 100428. https://doi.org/10.1016/j.rinam.2023.100428 DOI: https://doi.org/10.1016/j.rinam.2023.100428

White, J. A., Castelletto, N., Klevtsov, S., Bui, Q. M., Osei-Kuffuor, D., & Tchelepi, H. A. (2019). A two-stage preconditioner for multiphase poromechanics in reservoir simulation. Computer Methods in Applied Mechanics and Engineering, 357, 112575. https://doi.org/10.1016/j.cma.2019.112575 DOI: https://doi.org/10.1016/j.cma.2019.112575

Downloads

Additional Files

Published

2024-11-27

How to Cite

Stefansson, I. (2024). A line search algorithm for multiphysics problems with fracture deformation. InterPore Journal, 1(3), IPJ271124–7. https://doi.org/10.69631/ipj.v1i3nr33

Issue

Section

Original Research Papers