The International Symposium on Wettability and Porous Media – Past, Present, and the Future
DOI:
https://doi.org/10.69631/ipj.v1i2nr34Keywords:
Wettability symposium, History, Research trends, Future perspectivesAbstract
Classic work of capillarity in porous media was first reported by soil scientists and hydrologists over 100 years ago. Since then, the discipline has expanded significantly and includes diverse applications. Producing and optimizing subsurface petroleum reservoirs are one such application that have been the focus of much research and discovery for the past century while geological storage of carbon and hydrogen are emerging applications. The Wettability Symposium is a premier international meeting that has gathered a community of scientists and engineers interested in the affinity of fluids for surfaces in porous media. With a few exceptions, the Wettability Symposium has been held every two years since 1990. Even though the meeting has traditionally focused on petroleum systems, there is awareness in the community of the significance of wettability in various applications, including subsurface systems for carbon and energy storage contributing to the transition to low carbon intensity and net-zero energy systems of the future. This paper provides a brief history of the meeting, held October 2023 in Laramie, Wyoming, along with a summary of the discussions, identified gaps, and future perspectives.
Downloads
Metrics
References
Akai, T., Bijeljic, B., & Blunt, M. J. (2018). Wetting boundary condition for the color-gradient lattice Boltzmann method: Validation with analytical and experimental data. Advances in Water Resources, 116, 56-66. https://doi.org/10.1016/j.advwatres.2018.03.014 DOI: https://doi.org/10.1016/j.advwatres.2018.03.014
AlRatrout, A., Blunt, M. J., & Bijeljic, B. (2018). Wettability in complex porous materials, the mixed-wet state, and its relationship to surface roughness. Proceedings of the National Academy of Sciences, 115(36), 8901-8906. https://doi.org/10.1073/pnas.1803734115. DOI: https://doi.org/10.1073/pnas.1803734115
Armstrong, R. T., Evseev, N., Koroteev, D., & Berg, S. (2015). Modeling the velocity field during Haines jumps in porous media. Advances in Water Resources, 77, 57-68. http://dx.doi.org/10.1016/j.advwatres.2015.01.008 DOI: https://doi.org/10.1016/j.advwatres.2015.01.008
Alvarado, V., Bidhendi, M. M., Garcia-Olvera, G., Morin, B., & Oakey, J. S. (2014, April). Interfacial visco-elasticity of crude oil-brine: An alternative EOR mechanism in smart waterflooding. In SPE Improved Oil Recovery Conference (SPE-169127-MS). SPE. https://doi.org/10.2118/169127-MS DOI: https://doi.org/10.2118/169127-MS
Andrew, M., Bijeljic, B., & Blunt, M. J. (2014). Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography. Advances in Water resources, 68, 24-31. https://doi.org/10.1016/j.advwatres.2014.02.014. DOI: https://doi.org/10.1016/j.advwatres.2014.02.014
Armstrong, R. T., Sun, C., Mostaghimi, P., Berg, S., Rücker, M., et al. (2021). Multiscale characterization of wettability in porous media. Transport in Porous Media, 140(1), 215-240. https://doi.org/10.1007/s11242-021-01615-0 DOI: https://doi.org/10.1007/s11242-021-01615-0
Awards. (n.d.; accessed 29 April 2024). The Society of Core Analysts. https://www.scaweb.org/about-the-sca/awards/
Brady, P. V., & Krumhansl, J. L. (2012). A surface complexation model of oil–brine–sandstone interfaces at 100 C: Low salinity waterflooding. Journal of Petroleum Science and Engineering, 81, 171-176. https://doi.org/10.1016/j.petrol.2011.12.020 DOI: https://doi.org/10.1016/j.petrol.2011.12.020
Buckley, Jill S. (Ed.). (2002). Evaluation of Reservoir Wettability [Special Issue]. Journal of Petroleum Science and Engineering, 33. https://www.sciencedirect.com/journal/journal-of-petroleum-science-and-engineering/vol/33/issue/1 DOI: https://doi.org/10.1016/S0920-4105(01)00170-X
Buckley, Jill S. (Ed.). (2003). Reservoir Wettability [Special Issue]. Journal of Petroleum Science and Engineering, 39. https://www.sciencedirect.com/journal/journal-of-petroleum-science-and-engineering/vol/39/issue/3 DOI: https://doi.org/10.1016/S0920-4105(03)00061-5
Buckley, Jill S. (Ed.). (2006). Reservoir Wettability [Special Issue]. Journal of Petroleum Science and Engineering, 52. https://www.sciencedirect.com/journal/journal-of-petroleum-science-and-engineering/vol/52/issue/1 DOI: https://doi.org/10.1016/j.petrol.2006.03.002
Chávez-Miyauchi, T. E., Firoozabadi, A., & Fuller, G. G. (2016). Nonmonotonic elasticity of the crude oil–brine interface in relation to improved oil recovery. Langmuir, 32(9), 2192-2198. https://doi.org/10.1021/acs.langmuir.5b04354 DOI: https://doi.org/10.1021/acs.langmuir.5b04354
Desbois, G., Urai, J. L., & Kukla, P. A. (2009). Morphology of the pore space in claystones–evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. eEarth Discussions, 4(1), 1-19. https://doi.org/10.5194/eed-4-1-2009 DOI: https://doi.org/10.5194/eed-4-1-2009
15th International Symposium on Wettability and Porous Media. (n.d.; accessed 29 April 2024). University of Wyoming. Department of Chemical and Biomedical Engineering. https://www.uwyo.edu/chemical/symposium/index.html
Foroughi, S., Bijeljic, B., Lin, Q., Raeini, A. Q., & Blunt, M. J. (2020). Pore-by-pore modeling, analysis, and prediction of two-phase flow in mixed-wet rocks. Physical Review E, 102(2), 023302. https://doi.org/10.1103/PhysRevE.102.023302 DOI: https://doi.org/10.1103/PhysRevE.102.023302
Frequently Asked Questions About Oil and Gas. (n.d.; accessed on 29 April 2024). New Mexico Bureau of Geology & Mineral Resources. https://geoinfo.nmt.edu/faq/energy/petroleum/home.html
Frouté, L., Boigné, E., Jolivet, I. C., Chaput, E., Creux, P., Iet al. (2023). Evaluation of Electron Tomography Capabilities for Shale Imaging. Microscopy and Microanalysis, 29(6), 1856-1869. https://doi.org/10.1093/micmic/ozad106 DOI: https://doi.org/10.1093/micmic/ozad106
Garfi, G., John, C. M., Rücker, M., Lin, Q., Spurin, C., et al. (2022). Determination of the spatial distribution of wetting in the pore networks of rocks. Journal of Colloid and Interface Science, 613, 786-795. https://doi.org/10.1016/j.jcis.2021.12.183 DOI: https://doi.org/10.1016/j.jcis.2021.12.183
Hassenkam, T., Skovbjerg, L. L., & Stipp, S. L. S. (2009). Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution. PNAS, 106(15), 6071-6076. https://doi.org/10.1073/pnas.0901051106 DOI: https://doi.org/10.1073/pnas.0901051106
History of the Office. (n.d.; accessed on 29 April 2024). New Mexico Institute of Mining and Technology. https://www.nmt.edu/leadership/history.php
Hoyer, P., Alvarado, V., & Carvalho, M. S. (2016). Snap-off in constricted capillary with elastic interface. Physics of Fluids, 28(1). https://doi.org/10.1063/1.4939150 DOI: https://doi.org/10.1063/1.4939150
In memoriam: Joseph John (Joe) Taber. (2017, March 31). JPT. https://jpt.spe.org/memoriam-joseph-john-joe-taber
International Society for Porous Media (n.d.; accessed 29 April 2024). 15th International Symposium on Wettability and Porous Media. https://www.interpore.org/symposium-on-wettability-and-porous-media/
International Symposium on Reservoir Wettability and its Effect on Oil Recovery #10. (n.d.; accessed 29 April 2024). UIA Global Civil Society Database. https://uia.org/s/ca/en/1300549935/
International Wettability Symposia. (n.d.; accessed 29 April 2024). http://baervan.nmt.edu/groups/petrophysics/wettability/
InterPore. (n.d.; accessed 18 June 2024) Australia InterPore Chapter. https://www.interpore.org/australia-interpore-chapter/
Kovscek, A. R., Wong, H., & Radke, C. J. (1993). A pore‐level scenario for the development of mixed wettability in oil reservoirs. AIChE Journal, 39(6), 1072–1085. https://doi.org/10.1002/aic.690390616 DOI: https://doi.org/10.1002/aic.690390616
Liu, L., Frouté, L., Kovscek, A. R., & Aryana, S. A. (2024). Scale translation yields insights into gas adsorption under nanoconfinement. Physics of Fluids, 36(7). https://doi.org/10.1063/5.0212423 DOI: https://doi.org/10.1063/5.0212423
Mason, G., & Morrow, N. R. (1991). Capillary behavior of a perfectly wetting liquid in irregular triangular tubes. Journal of Colloid and Interface Science, 141(1), 262-274. https://doi.org/10.1016/0021-9797(91)90321-X DOI: https://doi.org/10.1016/0021-9797(91)90321-X
McKelvey, V. E. (1979). Memorial to John Martin Kelly 1914-1977. In: The Geological Society of America. https://rock.geosociety.org/net/documents/gsa/memorials/v10/Kelly-JM.pdf
Medina-Rodriguez, B. X., Reilly, T., Wang, H., Smith, E. R., Garcia-Olvera, G., et al. (2020). Time-domain nuclear magnetic resonance determination of wettability alteration: Analysis for low-salinity water. Applied Sciences, 10(3), 1017. https://doi.org/10.3390/app10031017 DOI: https://doi.org/10.3390/app10031017
Moradi, M., & Alvarado, V. (2016). Influence of aqueous-phase ionic strength and composition on the dynamics of water–crude oil interfacial film formation. Energy & Fuels, 30(11), 9170-9180. https://doi.org/10.1021/acs.energyfuels.6b01841 DOI: https://doi.org/10.1021/acs.energyfuels.6b01841
Morin, B., Liu, Y., Alvarado, V., & Oakey, J. (2016). A microfluidic flow focusing platform to screen the evolution of crude oil–brine interfacial elasticity. Lab on a Chip, 16(16), 3074-3081. https://doi.org/10.1039/C6LC00287K DOI: https://doi.org/10.1039/C6LC00287K
Morrow, N. (Ed.). (1998). Evaluation of Reservoir Wettability and Its Effects on Oil Recovery [Special Issue]. Journal of Petroleum Science and Engineering, 20. https://archive.org/details/sim_journal-of-petroleum-science-engineering_1998_20_contents & https://www.sciencedirect.com/journal/journal-of-petroleum-science-and-engineering/vol/20/issue/3 DOI: https://doi.org/10.1016/S0920-4105(98)00030-8
Morrow, N. (Ed.). (1999). Evaluation of Reservoir Wettability [Special Issue]. Journal of Petroleum Science and Engineering, 24. https://archive.org/details/sim_journal-of-petroleum-science-engineering_1999_24_contents & https://www.sciencedirect.com/journal/journal-of-petroleum-science-and-engineering/vol/24/issue/2
Morrow, N. R. (Ed.). (1996). Proceedings: 3rd International Symposium on Evaluation of Reservoir Wettability and Its Effect on Oil Recovery. University of Wyoming.
Morrow, N. R. (1975). The effects of surface roughness on contact: Angle with special reference to petroleum recovery. Journal of Canadian Petroleum Technology, 14(04). https://doi.org/10.2118/75-04-04 DOI: https://doi.org/10.2118/75-04-04
Nasjonal Forskerskole i Petroleumsfag (2023, February 15; accessed 29 April 2024). 15th International Symposium on Wettability and Porous Media. https://nfip.no/2023/02/15/15th-international-symposium-on-wettability-and-porous-media/
Petroleum Recovery Research Center. (n.d.; accessed on 29 April 2024). New Mexico Institute of Mining and Technology. https://www.nmt.edu/research/organizations/prrc.php
PoreLab. (2021, April 13; accessed 29 April 2024). 7th IOR NORWAY and 14th International Symposium on Reservoir Wettability and its Effects on Oil Recovery – PoreLab. https://porelab.no/2021/04/13/14th-international-symposium-on-reservoir-wettability-and-its-effects-on-oil-recovery/
Prodanovic, M. A. Š. A., Lindquist, W. B., & Seright, R. S. (2006, June). Residual fluid blobs and contact angle measurements from X-ray images of fluid displacement. In XVI International Conference on Computational Methods in Water Resources, Copenhagen, Denmark (pp. 1529-1535). http://baervan.nmt.edu/groups/res-sweep/media/pdf/publications/Masha.pdf
Regaieg, M., Nono, F., Faisal, T. F., & Rivenq, R. (2023). Large-pore network simulations coupled with innovative wettability anchoring experiment to predict relative permeability of a mixed-wet rock. Transport in Porous Media, 147(2), 495-517. https://doi.org/10.1007/s11242-023-01921-9 DOI: https://doi.org/10.1007/s11242-023-01921-9
Ruspini, L. C., Øren, P. E., Berg, S., et al. (2021). Multiscale digital rock analysis for complex rocks. Transport in Porous Media, 139(2), 301-325. https://doi.org/10.1007/s11242-021-01667-2 DOI: https://doi.org/10.1007/s11242-021-01667-2
Rücker, M., Bartels, W. B., Garfi, Shams, M., Bultreys, T., et al. (2020). Relationship between wetting and capillary pressure in a crude oil/brine/rock system: From nano-scale to core-scale. Journal of colloid and interface science, 562, 159-169. https://doi.org/10.1016/j.jcis.2019.11.086 DOI: https://doi.org/10.1016/j.jcis.2019.11.086
Salama, A., Kou, J., Sun, S., & Hefny, M. (2024). Investigation of the Filling of a Spherical Pore Body with a Nonwetting Fluid: A Modeling Approach and Computational Fluid Dynamics analysis. Transport in Porous Media, 1-25. https://doi.org/10.1007/s11242-024-02114-8 DOI: https://doi.org/10.1007/s11242-024-02114-8
Schmatz, J., Urai, J. L., Berg, S., & Ott, H. (2015). Nanoscale imaging of pore‐scale fluid‐fluid‐solid contacts in sandstone. Geophysical Research Letters, 42(7), 2189-2195. https://doi.org/10.1002/2015GL063354 DOI: https://doi.org/10.1002/2015GL063354
Snoeijer, J. H., & Andreotti, B. (2013). Moving contact lines: scales, regimes, and dynamical transitions. Annual review of fluid mechanics, 45(1), 269-292. https://doi.org/10.1146/annurev-fluid-011212-140734 DOI: https://doi.org/10.1146/annurev-fluid-011212-140734
Sun, C., McClure, J., Berg, S., Mostaghimi, P., & Armstrong, R. T. (2022). Universal description of wetting on multiscale surfaces using integral geometry. Journal of Colloid and Interface Science, 608, 2330-2338. https://doi.org/10.1016/j.jcis.2021.10.152 DOI: https://doi.org/10.1016/j.jcis.2021.10.152
Sun, J., Li, Z., & Aryana, S. A. (2022). Examination of Haines jump in microfluidic experiments via evolution graphs and interface tracking. Fluids, 7(8), 256. https://doi.org/10.3390/fluids7080256 DOI: https://doi.org/10.3390/fluids7080256
Sun, J., Li, Z., Furtado, F., & Aryana, S. A. (2021). A microfluidic study of transient flow states in permeable media using fluorescent particle image velocimetry. Capillarity, 4(4). https://doi.org/10.46690/capi.2021.04.03 DOI: https://doi.org/10.46690/capi.2021.04.03
12th International Symposium on Reservoir Wettability and its Effects on Oil Recovery. (n.d.; accessed 29 April 2024). https://wettability.ku.edu/
Unsal, E., van der Linde, H., & Wilson, O. B. (2020). Redox effects on relative permeability in Fe-rich clay bearing sandstones. Marine and Petroleum Geology, 115, 104251. https://doi.org/10.1016/j.marpetgeo.2020.104251 DOI: https://doi.org/10.1016/j.marpetgeo.2020.104251
Xia, Y., Liu, J., Kancharla, R., Li, J., Hatamlee, S. M., et al. (2023). Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography. Nanoscale Advances, 5(11), 2879-2886. https://doi.org/10.1039/D3NA00145H DOI: https://doi.org/10.1039/D3NA00145H
Yesufu-Rufai, S., Marcelis, F., Georgiadis, A., Berg, S., Rücker, M., et al. (2020). Atomic Force Microscopy (AFM) study of redox conditions in sandstones: Impact on wettability modification and mineral morphology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 597, 124765. https://doi.org/10.1016/j.colsurfa.2020.124765 DOI: https://doi.org/10.1016/j.colsurfa.2020.124765
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Saman Aryana, Anthony Kovscek, Maša Prodanović, Steffen Berg, Vladimir Alvarado, Reza Barati
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.