Challenges and opportunities for porous media research to address PFAS groundwater contamination
DOI:
https://doi.org/10.69631/ipj.v1i2nr35Keywords:
Porous media, PFAS, Per- and polyfluoroalkyl substances, Fluid–fluid interfaces, Fate and transport, Soil, Groundwater, AdsorptionAbstract
Per- and polyfluoroalkyl substances (PFAS) have become one of the most important contaminants due to their ubiquitous presence in the environment and potentially profound impacts on human health and the environment even at parts per trillion (ppt) concentration levels. A growing number of field investigations have revealed that soils act as PFAS reservoirs at many contaminated sites, with significant amounts of PFAS accumulating over several decades. Because PFAS accumulated in soils may migrate downward to contaminate groundwater resources, understanding the fate and transport of PFAS in soils is of paramount importance for characterizing, managing, and mitigating long-term groundwater contamination risks.
Many PFAS are surfactants that adsorb at air–water and solid–water interfaces, which leads to complex transport behaviors of PFAS in soils. Concomitantly, PFAS present in porewater can modify surface tension and other interfacial properties, which in turn may impact variably saturated flow and PFAS transport. Furthermore, some PFAS are volatile (i.e., can migrate in the gas phase) and/or can transform under environmental conditions into persistent PFAS. These nonlinear and coupled processes are further complicated by complexities of the soil environment such as thin water films, spatial heterogeneity, and complex geochemical conditions.
In this commentary, we present an overview of the current challenges in understanding the fate and transport of PFAS in the environment. Building upon that, we identify a few potential areas where porous media research may play an important role in addressing the problem of PFAS contamination in groundwater.
Downloads
Metrics
References
Abraham, J. E. F., Mumford, K. G., Patch, D. J., & Weber, K. P. (2022). Retention of PFOS and PFOA mixtures by trapped gas bubbles in porous media. Environmental Science & Technology, 56(22), 15489–15498. https://doi.org/10.1021/acs.est.2c00882 DOI: https://doi.org/10.1021/acs.est.2c00882
Abusallout, I., Holton, C., Wang, J., & Hanigan, D. (2022). Henry’s Law constants of 15 per- and polyfluoroalkyl substances determined by static headspace analysis. Journal of Hazardous Materials Letters, 3, 100070. https://doi.org/10.1016/j.hazl.2022.100070 DOI: https://doi.org/10.1016/j.hazl.2022.100070
Adamson, D. T., Nickerson, A., Kulkarni, P. R., Higgins, C. P., Popovic, J., Field, J., Rodowa, A., Newell, C., DeBlanc, P., & Kornuc, J. J. (2020). Mass-based, field-scale demonstration of PFAS retention within AFFF-associated source areas. Environmental Science & Technology, 54(24), 15768–15777. https://doi.org/10.1021/acs.est.0c04472 DOI: https://doi.org/10.1021/acs.est.0c04472
Anderson, R. H., Feild, J. B., Dieffenbach-Carle, H., Elsharnouby, O., & Krebs, R. K. (2022). Assessment of PFAS in collocated soil and porewater samples at an AFFF-impacted source zone: Field-scale validation of suction lysimeters. Chemosphere, 308, 136247. https://doi.org/10.1016/j.chemosphere.2022.136247 DOI: https://doi.org/10.1016/j.chemosphere.2022.136247
Araujo, J. B., & Brusseau, M. L. (2020). Assessing XMT‐measurement variability of air‐water interfacial areas in natural porous media. Water Resources Research, 56(1), e2019WR025470. https://doi.org/10.1029/2019WR025470 DOI: https://doi.org/10.1029/2019WR025470
Araujo, J. B., Mainhagu, J., & Brusseau, M. L. (2015). Measuring air–water interfacial area for soils using the mass balance surfactant-tracer method. Chemosphere, 134, 199–202. https://doi.org/10.1016/j.chemosphere.2015.04.035 DOI: https://doi.org/10.1016/j.chemosphere.2015.04.035
Arshadi, M., Garza-Rubalcava, U., Guedes, A., Cápiro, N. L., Pennell, K. D., Christ, J., & Abriola, L. M. (2024). Modeling 1-D aqueous film forming foam transport through the vadose zone under realistic site and release conditions. Science of The Total Environment, 919, 170566. https://doi.org/10.1016/j.scitotenv.2024.170566 DOI: https://doi.org/10.1016/j.scitotenv.2024.170566
Baduel, C., Mueller, J. F., Rotander, A., Corfield, J., & Gomez-Ramos, M.-J. (2017). Discovery of novel per- and polyfluoroalkyl substances (PFASs) at a fire fighting training ground and preliminary investigation of their fate and mobility. Chemosphere, 185, 1030–1038. https://doi.org/10.1016/j.chemosphere.2017.06.096 DOI: https://doi.org/10.1016/j.chemosphere.2017.06.096
Bear, J. Dynamics of Fluids in Porous Media; Elsevier: New York, 1972.
Bigler, M., He, X., & Brusseau, M. L. (2024). PFAS transport under lower water-saturation conditions characterized with instrumented-column systems. Water Research, 260, 121922. https://doi.org/10.1016/j.watres.2024.121922 DOI: https://doi.org/10.1016/j.watres.2024.121922
Bradford, S. A., & Torkzaban, S. (2008). Colloid transport and retention in unsaturated porous media: A review of interface‐, collector‐, and pore‐scale processes and models. Vadose Zone Journal, 7(2), 667–681. https://doi.org/10.2136/vzj2007.0092 DOI: https://doi.org/10.2136/vzj2007.0092
Broughton, D. B. (1948). Adsorption isotherms for binary gas mixtures. Industrial & Engineering Chemistry, 40(8), 1506–1508. https://doi.org/10.1021/ie50464a036 DOI: https://doi.org/10.1021/ie50464a036
Brusseau, M. L. (2023). Determining air-water interfacial areas for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media. Science of The Total Environment, 884, 163730. https://doi.org/10.1016/j.scitotenv.2023.163730 DOI: https://doi.org/10.1016/j.scitotenv.2023.163730
Brusseau, M. L., Anderson, R. H., & Guo, B. (2020). PFAS concentrations in soils: Background levels versus contaminated sites. Science of The Total Environment, 740, 140017. https://doi.org/10.1016/j.scitotenv.2020.140017 DOI: https://doi.org/10.1016/j.scitotenv.2020.140017
Brusseau, M. L., Araujo, J. B., Narter, M., Marble, J. C., & Bigler, M. (2024). Microtomographic measurements of total air‐water interfacial areas for soils. Water Resources Research, 60(5), e2023WR036039. https://doi.org/10.1029/2023WR036039 DOI: https://doi.org/10.1029/2023WR036039
Brusseau, M. L., & Guo, B. (2022). PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces. Chemosphere, 302, 134938. https://doi.org/10.1016/j.chemosphere.2022.134938 DOI: https://doi.org/10.1016/j.chemosphere.2022.134938
Brusseau, M. L.; Guo, B. (2024). Vapor-Phase Transport of Per and Polyfluoroalkyl Substances: Processes, Modeling, and Implications. Science of the Total Environment, 947, 174644. https://doi.org/10.1016/j.scitotenv.2024.174644 DOI: https://doi.org/10.1016/j.scitotenv.2024.174644
Brusseau, M. L., Guo, B., Huang, D., Yan, N., & Lyu, Y. (2021). Ideal versus nonideal transport of pfas in unsaturated porous media. Water Research, 202, 117405. https://doi.org/10.1016/j.watres.2021.117405 DOI: https://doi.org/10.1016/j.watres.2021.117405
Brusseau, M. L., Peng, S., Schnaar, G., & Costanza‐Robinson, M. S. (2006). Relationships among air‐water interfacial area, capillary pressure, and water saturation for a sandy porous medium. Water Resources Research, 42(3), 2005WR004058. https://doi.org/10.1029/2005WR004058 DOI: https://doi.org/10.1029/2005WR004058
Brusseau, M. L., Peng, S., Schnaar, G., & Murao, A. (2007). Measuring air−water interfacial areas with x-ray microtomography and interfacial partitioning tracer tests. Environmental Science & Technology, 41(6), 1956–1961. https://doi.org/10.1021/es061474m DOI: https://doi.org/10.1021/es061474m
Brusseau, M. L., Popovičová, J., & Silva, J. A. K. (1997). Characterizing gas−water interfacial and bulk-water partitioning for gas-phase transport of organic contaminants in unsaturated porous media. Environmental Science & Technology, 31(6), 1645–1649. https://doi.org/10.1021/es960475j DOI: https://doi.org/10.1021/es960475j
Brusseau, M. L.; Van Glubt, S. (2021). The Influence of Molecular Structure on PFAS Adsorption at Air-Water Interfaces in Electrolyte Solutions. Chemosphere, 281, 130829. https://doi.org/10.1016/j.chemosphere.2021.130829 DOI: https://doi.org/10.1016/j.chemosphere.2021.130829
Brusseau, M. L., & Van Glubt, S. (2019). The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces. Water Research, 161, 17–26. https://doi.org/10.1016/j.watres.2019.05.095 DOI: https://doi.org/10.1016/j.watres.2019.05.095
Celia, M. A., Bouloutas, E. T., & Zarba, R. L. (1990). A general mass‐conservative numerical solution for the unsaturated flow equation. Water Resources Research, 26(7), 1483–1496. https://doi.org/10.1029/WR026i007p01483 DOI: https://doi.org/10.1029/WR026i007p01483
Chen, L., & Kibbey, T. C. G. (2006). Measurement of air−water interfacial area for multiple hysteretic drainage curves in an unsaturated fine sand. Langmuir, 22(16), 6874–6880. https://doi.org/10.1021/la053521e DOI: https://doi.org/10.1021/la053521e
Chen, S., & Guo, B. (2023). Pore‐scale modeling of PFAS transport in water‐unsaturated porous media: Air–water interfacial adsorption and mass‐transfer processes in thin water films. Water Resources Research, 59(8), e2023WR034664. https://doi.org/10.1029/2023WR034664 DOI: https://doi.org/10.1029/2023WR034664
Choi, Y. J., Helbling, D. E., Liu, J., Olivares, C. I., & Higgins, C. P. (2022). Microbial biotransformation of aqueous film-forming foam derived polyfluoroalkyl substances. Science of The Total Environment, 824, 153711. https://doi.org/10.1016/j.scitotenv.2022.153711 DOI: https://doi.org/10.1016/j.scitotenv.2022.153711
Cordner, A., Brown, P., Cousins, I. T., Scheringer, M., Martinon, L., et al. (2024). PFAS contamination in Europe: Generating knowledge and mapping known and likely contamination with “expert-reviewed” journalism. Environmental Science & Technology, 58(15), 6616–6627. https://doi.org/10.1021/acs.est.3c09746 DOI: https://doi.org/10.1021/acs.est.3c09746
Costanza, J., Arshadi, M., Abriola, L. M., & Pennell, K. D. (2019). Accumulation of PFOA and PFOS at the air–water interface. Environmental Science & Technology Letters, 6(8), 487–491. https://doi.org/10.1021/acs.estlett.9b00355 DOI: https://doi.org/10.1021/acs.estlett.9b00355
Costanza‐Robinson, M. S., & Brusseau, M. L. (2002). Air‐water interfacial areas in unsaturated soils: Evaluation of interfacial domains. Water Resources Research, 38(10). https://doi.org/10.1029/2001WR000738 DOI: https://doi.org/10.1029/2001WR000738
Costanza-Robinson, M. S., & Henry, E. J. (2017). Surfactant-induced flow compromises determination of air-water interfacial areas by surfactant miscible-displacement. Chemosphere, 171, 275–283. https://doi.org/10.1016/j.chemosphere.2016.12.072 DOI: https://doi.org/10.1016/j.chemosphere.2016.12.072
Culligan, K. A., Wildenschild, D., Christensen, B. S. B., Gray, W. G., & Rivers, M. L. (2006). Pore-scale characteristics of multiphase flow in porous media: A comparison of air–water and oil–water experiments. Advances in Water Resources, 29(2), 227–238. https://doi.org/10.1016/j.advwatres.2005.03.021 DOI: https://doi.org/10.1016/j.advwatres.2005.03.021
Culligan, K. A., Wildenschild, D., Christensen, B. S. B., Gray, W. G., Rivers, M. L., & Tompson, A. F. B. (2004). Interfacial area measurements for unsaturated flow through a porous medium. Water Resources Research, 40(12), 2004WR003278. https://doi.org/10.1029/2004WR003278 DOI: https://doi.org/10.1029/2004WR003278
Danish EPA. (4 Aug 2024). Limit values for PFAS in the environment. https://mst.dk/erhverv/sikker-kemi/kemikalier/graensevaerdier-og-kvalitetskriterier
Delshad, M., Pope, G. A., & Sepehrnoori, K. (1996). A compositional simulator for modeling surfactant enhanced aquifer remediation, 1 formulation. Journal of Contaminant Hydrology, 23(4), 303–327. https://doi.org/10.1016/0169-7722(95)00106-9 DOI: https://doi.org/10.1016/0169-7722(95)00106-9
Delshad, M.; Pope, G. A.; Sepehrnoori, K. (2000) UTCHEM Version 9.0 Technical Documentation. Center for Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas, 78751. http://gmsdocs.aquaveo.com/UTCHEM_Users_Guide.pdf
EWG. (4 August 2024). PFAS Contamination in the U.S.; 2024. https://www.ewg.org/interactive-maps/pfas_contamination/
Faisal Anwar, A. H. M., Bettahar, M., & Matsubayashi, U. (2000). A method for determining air–water interfacial area in variably saturated porous media. Journal of Contaminant Hydrology, 43(2), 129–146. https://doi.org/10.1016/S0169-7722(99)00103-5 DOI: https://doi.org/10.1016/S0169-7722(99)00103-5
Field, J. A., & Seow, J. (2017). Properties, occurrence, and fate of fluorotelomer sulfonates. Critical Reviews in Environmental Science and Technology, 47(8), 643–691. https://doi.org/10.1080/10643389.2017.1326276 DOI: https://doi.org/10.1080/10643389.2017.1326276
Frey, D. D., & Rodrigues, A. E. (1994). Explicit calculation of multicomponent equilibria for ideal adsorbed solutions. AIChE Journal, 40(1), 182–186. https://doi.org/10.1002/aic.690400121 DOI: https://doi.org/10.1002/aic.690400121
Gao, B., Saiers, J. E., & Ryan, J. N. (2004). Deposition and mobilization of clay colloids in unsaturated porous media. Water Resources Research, 40(8), 2004WR003189. https://doi.org/10.1029/2004WR003189 DOI: https://doi.org/10.1029/2004WR003189
Gao, Y., Le, S.-T., Kibbey, T. C. G., Glamore, W., & O’Carroll, D. M. (2023). A fundamental model for calculating interfacial adsorption of complex ionic and nonionic PFAS mixtures in the presence of mixed salts. Environmental Science: Processes & Impacts, 25(11), 1830–1838. https://doi.org/10.1039/D2EM00466F DOI: https://doi.org/10.1039/D2EM00466F
Gnesda, W. R., Draxler, E. F., Tinjum, J., & Zahasky, C. (2022). Adsorption of PFAAs in the vadose zone and implications for long-term groundwater contamination. Environmental Science & Technology, 56(23), 16748–16758. https://doi.org/10.1021/acs.est.2c03962 DOI: https://doi.org/10.1021/acs.est.2c03962
Guo, B., Saleem, H., & Brusseau, M. L. (2023). Predicting interfacial tension and adsorption at fluid–fluid interfaces for mixtures of PFAS and/or hydrocarbon surfactants. Environmental Science & Technology, 57(21), 8044–8052. https://doi.org/10.1021/acs.est.2c08601 DOI: https://doi.org/10.1021/acs.est.2c08601
Guo, B., Zeng, J., & Brusseau, M. L. (2020). A mathematical model for the release, transport, and retention of per‐ and polyfluoroalkyl substances (Pfas) in the vadose zone. Water Resources Research, 56(2), e2019WR026667. https://doi.org/10.1029/2019WR026667 DOI: https://doi.org/10.1029/2019WR026667
Guo, B., Zeng, J., Brusseau, M. L., & Zhang, Y. (2022). A screening model for quantifying PFAS leaching in the vadose zone and mass discharge to groundwater. Advances in Water Resources, 160, 104102. https://doi.org/10.1016/j.advwatres.2021.104102 DOI: https://doi.org/10.1016/j.advwatres.2021.104102
Guo-Xi, Z., Bu-Yao, Z., Ya-Ping, Z., & Li, S. (1984). The surface adsorption and micelle formation of the mixed aqueous solutions of fluorocarbon and hydrocarbon surfactants: II. Sodium perfluorooctanoate-sodium decylsulfate system. Acta Chimica Sinica, 2(2), 111–118. https://doi.org/10.1002/cjoc.19840020205 DOI: https://doi.org/10.1002/cjoc.19840020205
Hassanizadeh, S. M., & Gray, W. G. (1990). Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Advances in Water Resources, 13(4), 169–186. https://doi.org/10.1016/0309-1708(90)90040-B DOI: https://doi.org/10.1016/0309-1708(90)90040-B
Hassanizadeh, S. M., & Gray, W. G. (1993). Thermodynamic basis of capillary pressure in porous media. Water Resources Research, 29(10), 3389–3405. https://doi.org/10.1029/93WR01495 DOI: https://doi.org/10.1029/93WR01495
Hassanizadeh, S.M., & Gray, W. G. (1993). Toward an improved description of the physics of two-phase flow. Advances in Water Resources, 16(1), 53–67. https://doi.org/10.1016/0309-1708(93)90029-F DOI: https://doi.org/10.1016/0309-1708(93)90029-F
Henry, E. J., & Smith, J. E. (2003). Surfactant-induced flow phenomena in the vadose zone: A review of data and numerical modeling. Vadose Zone Journal, 2(2), 154–167. https://doi.org/10.2113/2.2.154 DOI: https://doi.org/10.2113/2.2.154
Huang, D.; Saleem, H.; Guo, B.; Brusseau, M. L. (2022). The Impact of Multiple-Component PFAS Solutions on Fluid-Fluid Interfacial Adsorption and Transport of PFOS in Unsaturated Porous Media. Science of The Total Environment, 806, 150595. https://doi.org/10.1016/j.scitotenv.2021.15059 DOI: https://doi.org/10.1016/j.scitotenv.2021.150595
ITRC. (Sept. 2023). ITRC PFAS Technical and Regulatory Guidance Document. https://pfas-1.itrcweb.org/
Ji, Y., Yan, N., Brusseau, M. L., Guo, B., Zheng, X., Dai, M., Liu, H., & Li, X. (2021). Impact of a hydrocarbon surfactant on the retention and transport of perfluorooctanoic acid in saturated and unsaturated porous media. Environmental Science & Technology, 55(15), 10480–10490. https://doi.org/10.1021/acs.est.1c01919 DOI: https://doi.org/10.1021/acs.est.1c01919
Jiang, H., Guo, B., & Brusseau, M. L. (2020). Pore‐scale modeling of fluid‐fluid interfacial area in variably saturated porous media containing microscale surface roughness. Water Resources Research, 56(1), e2019WR025876. https://doi.org/10.1029/2019WR025876 DOI: https://doi.org/10.1029/2019WR025876
Karkare, M. V., & Fort, T. (1996). Determination of the air−water interfacial area in wet “unsaturated” porous media. Langmuir, 12(8), 2041–2044. https://doi.org/10.1021/la950821v DOI: https://doi.org/10.1021/la950821v
Kemball, C., Rideal, E. K., & Guggenheim, E. A. (1948). Thermodynamics of monolayers. Transactions of the Faraday Society, 44, 948. https://doi.org/10.1039/tf9484400948 DOI: https://doi.org/10.1039/tf9484400948
Kibbey, T. C. G., & Chen, L. (2012). A pore network model study of the fluid‐fluid interfacial areas measured by dynamic‐interface tracer depletion and miscible displacement water phase advective tracer methods. Water Resources Research, 48(10), 2012WR011862. https://doi.org/10.1029/2012WR011862 DOI: https://doi.org/10.1029/2012WR011862
Kim, H.; Rao, P. S. C.; Annable, D. (1997). Determination of Effective Air-Water Interfacial Area in Partially Saturated Porous Media Using Surfactant Adsorption. Water Resources Research, 33 (12), 2705–2711. https://doi.org/10.1029/97WR02227 DOI: https://doi.org/10.1029/97WR02227
Kissa, E. (2001). Fluorinated Surfactants and Repellents. (2nd ed). CRC Press, Vol. 97. ISBN 0-8247-0472-X
Le, S.-T., Gao, Y., Kibbey, T. C. G., Glamore, W. C., & O’Carroll, D. M. (2021). A new framework for modeling the effect of salt on interfacial adsorption of PFAS in environmental systems. Science of The Total Environment, 796, 148893. https://doi.org/10.1016/j.scitotenv.2021.148893 DOI: https://doi.org/10.1016/j.scitotenv.2021.148893
Lenhart, J. J., & Saiers, J. E. (2002). Transport of silica colloids through unsaturated porous media: Experimental results and model comparisons. Environmental Science & Technology, 36(4), 769–777. https://doi.org/10.1021/es0109949 DOI: https://doi.org/10.1021/es0109949
Lenhart, J. J., & Saiers, J. E. (2004). Adsorption of natural organic matter to air−water interfaces during transport through unsaturated porous media. Environmental Science & Technology, 38(1), 120–126. https://doi.org/10.1021/es034409a DOI: https://doi.org/10.1021/es034409a
LeVan, M. D., & Vermeulen, T. (1981). Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. The Journal of Physical Chemistry, 85(22), 3247–3250. https://doi.org/10.1021/j150622a009 DOI: https://doi.org/10.1021/j150622a009
Leverett, M. C. Capillary Behavior in Porous Solids. Transactions of the AIME 1941, 142 (01), 152–169. https://doi.org/10.2118/941152-G DOI: https://doi.org/10.2118/941152-G
Liao, S., Arshadi, M., Woodcock, M. J., Saleeba, Z. S. S. L., Pinchbeck, D., et al. (2022). Influence of residual nonaqueous-phase liquids (NAPLs) on the transport and retention of perfluoroalkyl substances. Environmental Science & Technology, 56(12), 7976–7985. https://doi.org/10.1021/acs.est.2c00858 DOI: https://doi.org/10.1021/acs.est.2c00858
Liu, J., & Mejia Avendaño, S. (2013). Microbial degradation of polyfluoroalkyl chemicals in the environment: A review. Environment International, 61, 98–114. https://doi.org/10.1016/j.envint.2013.08.022 DOI: https://doi.org/10.1016/j.envint.2013.08.022
Liu, M., Munoz, G., Vo Duy, S., Sauvé, S., & Liu, J. (2022). Per- and polyfluoroalkyl substances in contaminated soil and groundwater at airports: A canadian case study. Environmental Science & Technology, 56(2), 885–895. https://doi.org/10.1021/acs.est.1c04798 DOI: https://doi.org/10.1021/acs.est.1c04798
Lyu, X., Li, Z., Wang, D., Zhang, Q., Gao, B., Sun, Y., & Wu, J. (2022). Transport of perfluorooctanoic acid in unsaturated porous media mediated by SDBS. Journal of Hydrology, 607, 127479. https://doi.org/10.1016/j.jhydrol.2022.127479 DOI: https://doi.org/10.1016/j.jhydrol.2022.127479
Lyu, X., Liu, X., Sun, Y., Gao, B., Ji, R., Wu, J., & Xue, Y. (2020). Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media. Environmental Pollution, 266, 115343. https://doi.org/10.1016/j.envpol.2020.115343 DOI: https://doi.org/10.1016/j.envpol.2020.115343
Lyu, Y., Brusseau, M. L., Chen, W., Yan, N., Fu, X., & Lin, X. (2018). Adsorption of PFOA at the air–water interface during transport in unsaturated porous media. Environmental Science & Technology, 52(14), 7745–7753. https://doi.org/10.1021/acs.est.8b02348 DOI: https://doi.org/10.1021/acs.est.8b02348
Miller, C. T., Poirier‐McNeil, M. M., & Mayer, A. S. (1990). Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resources Research, 26(11), 2783–2796. https://doi.org/10.1029/WR026i011p02783 DOI: https://doi.org/10.1029/WR026i011p02783
Morrow, N. R. (1970). Physics and thermodynamics of capillary action in porous media. Industrial & Engineering Chemistry, 62(6), 32–56. https://doi.org/10.1021/ie50726a006 DOI: https://doi.org/10.1021/ie50726a006
Newell, C. J., Adamson, D. T., Kulkarni, P. R., Nzeribe, B. N., & Stroo, H. (2020). Comparing PFAS to other groundwater contaminants: Implications for remediation. Remediation Journal, 30(3), 7–26. https://doi.org/10.1002/rem.21645 DOI: https://doi.org/10.1002/rem.21645
Nickerson, A., Rodowa, A. E., Adamson, D. T., Field, J. A., Kulkarni, P. R., et al. (2021). Spatial trends of anionic, zwitterionic, and cationic pfass at an AFFF-impacted site. Environmental Science & Technology, 55(1), 313–323. https://doi.org/10.1021/acs.est.0c04473 DOI: https://doi.org/10.1021/acs.est.0c04473
Or, D.; Tuller, M. (1999). Liquid Retention and Interfacial Area in Variably Saturated Porous Media: Upscaling from Single-Pore to Sample-Scale Model. Water Resources Research, 35 (12), 3591–3605. https://doi.org/10.1029/1999WR900262 DOI: https://doi.org/10.1029/1999WR900262
Peng, S., & Brusseau, M. L. (2005). Impact of soil texture on air‐water interfacial areas in unsaturated sandy porous media. Water Resources Research, 41(3), 2004WR003233. https://doi.org/10.1029/2004WR003233 DOI: https://doi.org/10.1029/2004WR003233
Pennell, K. D., Abriola, L. M., & Weber, W. J. (1993). Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation. Environmental Science & Technology, 27(12), 2332–2340. https://doi.org/10.1021/es00048a005 DOI: https://doi.org/10.1021/es00048a005
Pinder, G.; Celia, M. (2006). Subsurface Hydrology; John Wiley & Sons. https://www.geokniga.org/bookfiles/geokniga-subsurface-hydrology.pdf DOI: https://doi.org/10.1002/0470044209
Pope, G. A., & Nelson, R. C. (1978). A chemical flooding compositional simulator. Society of Petroleum Engineers Journal, 18(05), 339–354. https://doi.org/10.2118/6725-PA DOI: https://doi.org/10.2118/6725-PA
Powers, S. E., Loureiro, C. O., Abriola, L. M., & Weber, W. J. (1991). Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquids in subsurface systems. Water Resources Research, 27(4), 463–477. https://doi.org/10.1029/91WR00074 DOI: https://doi.org/10.1029/91WR00074
Reeves, P. C., & Celia, M. A. (1996). A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore‐scale network model. Water Resources Research, 32(8), 2345–2358. https://doi.org/10.1029/96WR01105 DOI: https://doi.org/10.1029/96WR01105
Ruyle, B. J., Thackray, C. P., Butt, C. M., LeBlanc, D. R., Tokranov, A. K., Vecitis, C. D., & Sunderland, E. M. (2023). Centurial persistence of forever chemicals at military fire training sites. Environmental Science & Technology, 57(21), 8096–8106. https://doi.org/10.1021/acs.est.3c00675 DOI: https://doi.org/10.1021/acs.est.3c00675
Ruyle, B. J., Thackray, C. P., McCord, J. P., Strynar, M. J., Mauge-Lewis, K. A., Fenton, S. E., & Sunderland, E. M. (2021). Reconstructing the composition of per- and polyfluoroalkyl substances in contemporary aqueous film-forming foams. Environmental Science & Technology Letters, 8(1), 59–65. https://doi.org/10.1021/acs.estlett.0c00798 DOI: https://doi.org/10.1021/acs.estlett.0c00798
Saiers, J. E., & Lenhart, J. J. (2003). Colloid mobilization and transport within unsaturated porous media under transient‐flow conditions. Water Resources Research, 39(1), 2002WR001370. https://doi.org/10.1029/2002WR001370 DOI: https://doi.org/10.1029/2002WR001370
Saripalli, K. P., Kim, H., Rao, P. S. C., & Annable, M. D. (1997). Measurement of specific fluid−fluid interfacial areas of immiscible fluids in porous media. Environmental Science & Technology, 31(3), 932–936. https://doi.org/10.1021/es960652g DOI: https://doi.org/10.1021/es960652g
Schaefer, C. E., Culina, V., Nguyen, D., & Field, J. (2019). Uptake of poly- and perfluoroalkyl substances at the air–water interface. Environmental Science & Technology, 53(21), 12442–12448. https://doi.org/10.1021/acs.est.9b04008 DOI: https://doi.org/10.1021/acs.est.9b04008
Schaefer, C. E., DiCarlo, D. A., & Blunt, M. J. (2000). Experimental measurement of air‐water interfacial area during gravity drainage and secondary imbibition in porous media. Water Resources Research, 36(4), 885–890. https://doi.org/10.1029/2000WR900007 DOI: https://doi.org/10.1029/2000WR900007
Schaefer, C. E., Lavorgna, G. M., Lippincott, D. R., Nguyen, D., Christie, E., Shea, S., O’Hare, S., Lemes, M. C. S., Higgins, C. P., & Field, J. (2022). A field study to assess the role of air-water interfacial sorption on PFAS leaching in an AFFF source area. Journal of Contaminant Hydrology, 248, 104001. https://doi.org/10.1016/j.jconhyd.2022.104001 DOI: https://doi.org/10.1016/j.jconhyd.2022.104001
Schnaar, G., & Brusseau, M. L. (2005). Pore-scale characterization of organic immiscible-liquid morphology in natural porous media using synchrotron x-ray microtomography. Environmental Science & Technology, 39(21), 8403–8410. https://doi.org/10.1021/es0508370 DOI: https://doi.org/10.1021/es0508370
Schumacher, B. A., Zimmerman, J. H., Williams, A. C., Lutes, C. C., Holton, C. W., et al. (2024). Distribution of select per- and polyfluoroalkyl substances at a chemical manufacturing plant. Journal of Hazardous Materials, 464, 133025. https://doi.org/10.1016/j.jhazmat.2023.133025 DOI: https://doi.org/10.1016/j.jhazmat.2023.133025
Silva, J. A. K., Martin, W. A., Johnson, J. L., & McCray, J. E. (2019). Evaluating air-water and NAPL-water interfacial adsorption and retention of Perfluorocarboxylic acids within the Vadose zone. Journal of Contaminant Hydrology, 223, 103472. https://doi.org/10.1016/j.jconhyd.2019.03.004 DOI: https://doi.org/10.1016/j.jconhyd.2019.03.004
Silva, J. A. K., Martin, W. A., & McCray, J. E. (2021). Air-water interfacial adsorption coefficients for PFAS when present as a multi-component mixture. Journal of Contaminant Hydrology, 236, 103731. https://doi.org/10.1016/j.jconhyd.2020.103731 DOI: https://doi.org/10.1016/j.jconhyd.2020.103731
Silva, J. A. K.; Šimůnek, J.; McCray, J. A Modified HYDRUS Model for Simulating PFAS Transport in the Vadose Zone. Water (Basel) 2020, 12 (10), 2758. https://doi.org/10.3390/w12102758 DOI: https://doi.org/10.3390/w12102758
Šimůnek, J., He, C., Pang, L., & Bradford, S. A. (2006). Colloid‐facilitated solute transport in variably saturated porous media: Numerical model and experimental verification. Vadose Zone Journal, 5(3), 1035–1047. https://doi.org/10.2136/vzj2005.0151 DOI: https://doi.org/10.2136/vzj2005.0151
Smalling, K. L., Romanok, K. M., Bradley, P. M., Morriss, M. C., Gray, J. L., et al. (2023). Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. Environment International, 178, 108033. https://doi.org/10.1016/j.envint.2023.108033 DOI: https://doi.org/10.1016/j.envint.2023.108033
Smith, J. E., & Gillham, R. W. (1994). The effect of concentration‐dependent surface tension on the flaw of water and transport of dissolved organic compounds: A pressure head‐based formulation and numerical model. Water Resources Research, 30(2), 343–354. https://doi.org/10.1029/93WR02745 DOI: https://doi.org/10.1029/93WR02745
Smith, J. E., & Gillham, R. W. (1999). Effects of solute concentration–dependent surface tension on unsaturated flow: Laboratory sand column experiments. Water Resources Research, 35(4), 973–982. https://doi.org/10.1029/1998WR900106 DOI: https://doi.org/10.1029/1998WR900106
Stults, J. F., Choi, Y. J., Schaefer, C. E., Illangasekare, T. H., & Higgins, C. P. (2022). Estimation of transport parameters of perfluoroalkyl acids (PFAAs) in unsaturated porous media: Critical experimental and modeling improvements. Environmental Science & Technology, 56(12), 7963–7975. https://doi.org/10.1021/acs.est.2c00819 DOI: https://doi.org/10.1021/acs.est.2c00819
Torkzaban, S., Hassanizadeh, S. M., Schijven, J. F., & Van Den Berg, H. H. J. L. (2006). Role of air‐water interfaces on retention of viruses under unsaturated conditions. Water Resources Research, 42(12), 2006WR004904. https://doi.org/10.1029/2006WR004904 DOI: https://doi.org/10.1029/2006WR004904
The Forever Pollution Project. (7 August 2024).The Forever Pollution Project: Journalists tracking PFAS across Europe. https://foreverpollution.eu/
US EPA. (4 August 2024). Final PFAS National Primary Drinking Water Regulation. https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas.
Vahedian, F., Silva, J. A. K., Šimůnek, J., & McCray, J. E. (2024). Influence of tension-driven flow on the transport of afff in unsaturated media. ACS ES&T Water, 4(2), 564–574. https://doi.org/10.1021/acsestwater.3c00611 DOI: https://doi.org/10.1021/acsestwater.3c00611
Vecitis, C. D., Park, H., Cheng, J., Mader, B. T., & Hoffmann, M. R. (2008). Enhancement of perfluorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces. The Journal of Physical Chemistry C, 112(43), 16850–16857. https://doi.org/10.1021/jp804050p DOI: https://doi.org/10.1021/jp804050p
Wallis, I., Hutson, J., Davis, G., Kookana, R., Rayner, J., & Prommer, H. (2022). Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions. Water Research, 225, 119096. https://doi.org/10.1016/j.watres.2022.119096 DOI: https://doi.org/10.1016/j.watres.2022.119096
Wan, J., & Tokunaga, T. K. (1997). Film straining of colloids in unsaturated porous media: Conceptual model and experimental testing. Environmental Science & Technology, 31(8), 2413–2420. https://doi.org/10.1021/es970017q DOI: https://doi.org/10.1021/es970017q
Wildenschild, D., Rivers, M. L., Porter, M. L., Iltis, G. C., Armstrong, R. T., & Davit, Y. (2015). Using synchrotron-based X-ray microtomography and functional contrast agents in environmental applications. In S. H. Anderson & J. W. Hopmans (Eds.), SSSA Special Publications (pp. 1–22). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssaspecpub61.c1 DOI: https://doi.org/10.2136/sssaspecpub61.c1
Wildenschild, D., & Sheppard, A. P. (2013). X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217–246. https://doi.org/10.1016/j.advwatres.2012.07.018 DOI: https://doi.org/10.1016/j.advwatres.2012.07.018
Zeng, J., Brusseau, M. L., & Guo, B. (2021). Model validation and analyses of parameter sensitivity and uncertainty for modeling long-term retention and leaching of PFAS in the vadose zone. Journal of Hydrology, 603, 127172. https://doi.org/10.1016/j.jhydrol.2021.127172 DOI: https://doi.org/10.1016/j.jhydrol.2021.127172
Zeng, J., & Guo, B. (2021). Multidimensional simulation of PFAS transport and leaching in the vadose zone: Impact of surfactant-induced flow and subsurface heterogeneities. Advances in Water Resources, 155, 104015. https://doi.org/10.1016/j.advwatres.2021.104015 DOI: https://doi.org/10.1016/j.advwatres.2021.104015
Zeng, J., & Guo, B. (2023). Reduced accessible air–water interfacial area accelerates pfas leaching in heterogeneous vadose zones. Geophysical Research Letters, 50(8), e2022GL102655. https://doi.org/10.1029/2022GL102655 DOI: https://doi.org/10.1029/2022GL102655
Zhang, W., & Guo, B. (2024). Anomalous adsorption of PFAS at the thin‐water‐film air‐water interface in water‐unsaturated porous media. Water Resources Research, 60(3), e2023WR035775. https://doi.org/10.1029/2023WR035775 DOI: https://doi.org/10.1029/2023WR035775
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bo Guo, Mark L. Brusseau
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.
Funding data
-
National Science Foundation
Grant numbers 2237015 -
Environmental Security Technology Certification Program
Grant numbers ER21-5041