Challenges and opportunities for porous media research to address PFAS groundwater contamination

Authors

DOI:

https://doi.org/10.69631/ipj.v1i2nr35

Keywords:

Porous media, PFAS, Per- and polyfluoroalkyl substances, Fluid–fluid interfaces, Fate and transport, Soil, Groundwater, Adsorption

Abstract

Per- and polyfluoroalkyl substances (PFAS) have become one of the most important contaminants due to their ubiquitous presence in the environment and potentially profound impacts on human health and the environment even at parts per trillion (ppt) concentration levels.  A growing number of field investigations have revealed that soils act as PFAS reservoirs at many contaminated sites, with significant amounts of PFAS accumulating over several decades. Because PFAS accumulated in soils may migrate downward to contaminate groundwater resources, understanding the fate and transport of PFAS in soils is of paramount importance for characterizing, managing, and mitigating long-term groundwater contamination risks.

Many PFAS are surfactants that adsorb at air–water and solid–water interfaces, which leads to complex transport behaviors of PFAS in soils. Concomitantly, PFAS present in porewater can modify surface tension and other interfacial properties, which in turn may impact variably saturated flow and PFAS transport. Furthermore, some PFAS are volatile (i.e., can migrate in the gas phase) and/or can transform under environmental conditions into persistent PFAS. These nonlinear and coupled processes are further complicated by complexities of the soil environment such as thin water films, spatial heterogeneity, and complex geochemical conditions.

In this commentary, we present an overview of the current challenges in understanding the fate and transport of PFAS in the environment. Building upon that, we identify a few potential areas where porous media research may play an important role in addressing the problem of PFAS contamination in groundwater.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abraham, J. E. F., Mumford, K. G., Patch, D. J., & Weber, K. P. (2022). Retention of PFOS and PFOA mixtures by trapped gas bubbles in porous media. Environmental Science & Technology, 56(22), 15489–15498. https://doi.org/10.1021/acs.est.2c00882 DOI: https://doi.org/10.1021/acs.est.2c00882

Abusallout, I., Holton, C., Wang, J., & Hanigan, D. (2022). Henry’s Law constants of 15 per- and polyfluoroalkyl substances determined by static headspace analysis. Journal of Hazardous Materials Letters, 3, 100070. https://doi.org/10.1016/j.hazl.2022.100070 DOI: https://doi.org/10.1016/j.hazl.2022.100070

Adamson, D. T., Nickerson, A., Kulkarni, P. R., Higgins, C. P., Popovic, J., Field, J., Rodowa, A., Newell, C., DeBlanc, P., & Kornuc, J. J. (2020). Mass-based, field-scale demonstration of PFAS retention within AFFF-associated source areas. Environmental Science & Technology, 54(24), 15768–15777. https://doi.org/10.1021/acs.est.0c04472 DOI: https://doi.org/10.1021/acs.est.0c04472

Anderson, R. H., Feild, J. B., Dieffenbach-Carle, H., Elsharnouby, O., & Krebs, R. K. (2022). Assessment of PFAS in collocated soil and porewater samples at an AFFF-impacted source zone: Field-scale validation of suction lysimeters. Chemosphere, 308, 136247. https://doi.org/10.1016/j.chemosphere.2022.136247 DOI: https://doi.org/10.1016/j.chemosphere.2022.136247

Araujo, J. B., & Brusseau, M. L. (2020). Assessing XMT‐measurement variability of air‐water interfacial areas in natural porous media. Water Resources Research, 56(1), e2019WR025470. https://doi.org/10.1029/2019WR025470 DOI: https://doi.org/10.1029/2019WR025470

Araujo, J. B., Mainhagu, J., & Brusseau, M. L. (2015). Measuring air–water interfacial area for soils using the mass balance surfactant-tracer method. Chemosphere, 134, 199–202. https://doi.org/10.1016/j.chemosphere.2015.04.035 DOI: https://doi.org/10.1016/j.chemosphere.2015.04.035

Arshadi, M., Garza-Rubalcava, U., Guedes, A., Cápiro, N. L., Pennell, K. D., Christ, J., & Abriola, L. M. (2024). Modeling 1-D aqueous film forming foam transport through the vadose zone under realistic site and release conditions. Science of The Total Environment, 919, 170566. https://doi.org/10.1016/j.scitotenv.2024.170566 DOI: https://doi.org/10.1016/j.scitotenv.2024.170566

Baduel, C., Mueller, J. F., Rotander, A., Corfield, J., & Gomez-Ramos, M.-J. (2017). Discovery of novel per- and polyfluoroalkyl substances (PFASs) at a fire fighting training ground and preliminary investigation of their fate and mobility. Chemosphere, 185, 1030–1038. https://doi.org/10.1016/j.chemosphere.2017.06.096 DOI: https://doi.org/10.1016/j.chemosphere.2017.06.096

Bear, J. Dynamics of Fluids in Porous Media; Elsevier: New York, 1972.

Bigler, M., He, X., & Brusseau, M. L. (2024). PFAS transport under lower water-saturation conditions characterized with instrumented-column systems. Water Research, 260, 121922. https://doi.org/10.1016/j.watres.2024.121922 DOI: https://doi.org/10.1016/j.watres.2024.121922

Bradford, S. A., & Torkzaban, S. (2008). Colloid transport and retention in unsaturated porous media: A review of interface‐, collector‐, and pore‐scale processes and models. Vadose Zone Journal, 7(2), 667–681. https://doi.org/10.2136/vzj2007.0092 DOI: https://doi.org/10.2136/vzj2007.0092

Broughton, D. B. (1948). Adsorption isotherms for binary gas mixtures. Industrial & Engineering Chemistry, 40(8), 1506–1508. https://doi.org/10.1021/ie50464a036 DOI: https://doi.org/10.1021/ie50464a036

Brusseau, M. L. (2023). Determining air-water interfacial areas for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media. Science of The Total Environment, 884, 163730. https://doi.org/10.1016/j.scitotenv.2023.163730 DOI: https://doi.org/10.1016/j.scitotenv.2023.163730

Brusseau, M. L., Anderson, R. H., & Guo, B. (2020). PFAS concentrations in soils: Background levels versus contaminated sites. Science of The Total Environment, 740, 140017. https://doi.org/10.1016/j.scitotenv.2020.140017 DOI: https://doi.org/10.1016/j.scitotenv.2020.140017

Brusseau, M. L., Araujo, J. B., Narter, M., Marble, J. C., & Bigler, M. (2024). Microtomographic measurements of total air‐water interfacial areas for soils. Water Resources Research, 60(5), e2023WR036039. https://doi.org/10.1029/2023WR036039 DOI: https://doi.org/10.1029/2023WR036039

Brusseau, M. L., & Guo, B. (2022). PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces. Chemosphere, 302, 134938. https://doi.org/10.1016/j.chemosphere.2022.134938 DOI: https://doi.org/10.1016/j.chemosphere.2022.134938

Brusseau, M. L.; Guo, B. (2024). Vapor-Phase Transport of Per and Polyfluoroalkyl Substances: Processes, Modeling, and Implications. Science of the Total Environment, 947, 174644. https://doi.org/10.1016/j.scitotenv.2024.174644 DOI: https://doi.org/10.1016/j.scitotenv.2024.174644

Brusseau, M. L., Guo, B., Huang, D., Yan, N., & Lyu, Y. (2021). Ideal versus nonideal transport of pfas in unsaturated porous media. Water Research, 202, 117405. https://doi.org/10.1016/j.watres.2021.117405 DOI: https://doi.org/10.1016/j.watres.2021.117405

Brusseau, M. L., Peng, S., Schnaar, G., & Costanza‐Robinson, M. S. (2006). Relationships among air‐water interfacial area, capillary pressure, and water saturation for a sandy porous medium. Water Resources Research, 42(3), 2005WR004058. https://doi.org/10.1029/2005WR004058 DOI: https://doi.org/10.1029/2005WR004058

Brusseau, M. L., Peng, S., Schnaar, G., & Murao, A. (2007). Measuring air−water interfacial areas with x-ray microtomography and interfacial partitioning tracer tests. Environmental Science & Technology, 41(6), 1956–1961. https://doi.org/10.1021/es061474m DOI: https://doi.org/10.1021/es061474m

Brusseau, M. L., Popovičová, J., & Silva, J. A. K. (1997). Characterizing gas−water interfacial and bulk-water partitioning for gas-phase transport of organic contaminants in unsaturated porous media. Environmental Science & Technology, 31(6), 1645–1649. https://doi.org/10.1021/es960475j DOI: https://doi.org/10.1021/es960475j

Brusseau, M. L.; Van Glubt, S. (2021). The Influence of Molecular Structure on PFAS Adsorption at Air-Water Interfaces in Electrolyte Solutions. Chemosphere, 281, 130829. https://doi.org/10.1016/j.chemosphere.2021.130829 DOI: https://doi.org/10.1016/j.chemosphere.2021.130829

Brusseau, M. L., & Van Glubt, S. (2019). The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces. Water Research, 161, 17–26. https://doi.org/10.1016/j.watres.2019.05.095 DOI: https://doi.org/10.1016/j.watres.2019.05.095

Celia, M. A., Bouloutas, E. T., & Zarba, R. L. (1990). A general mass‐conservative numerical solution for the unsaturated flow equation. Water Resources Research, 26(7), 1483–1496. https://doi.org/10.1029/WR026i007p01483 DOI: https://doi.org/10.1029/WR026i007p01483

Chen, L., & Kibbey, T. C. G. (2006). Measurement of air−water interfacial area for multiple hysteretic drainage curves in an unsaturated fine sand. Langmuir, 22(16), 6874–6880. https://doi.org/10.1021/la053521e DOI: https://doi.org/10.1021/la053521e

Chen, S., & Guo, B. (2023). Pore‐scale modeling of PFAS transport in water‐unsaturated porous media: Air–water interfacial adsorption and mass‐transfer processes in thin water films. Water Resources Research, 59(8), e2023WR034664. https://doi.org/10.1029/2023WR034664 DOI: https://doi.org/10.1029/2023WR034664

Choi, Y. J., Helbling, D. E., Liu, J., Olivares, C. I., & Higgins, C. P. (2022). Microbial biotransformation of aqueous film-forming foam derived polyfluoroalkyl substances. Science of The Total Environment, 824, 153711. https://doi.org/10.1016/j.scitotenv.2022.153711 DOI: https://doi.org/10.1016/j.scitotenv.2022.153711

Cordner, A., Brown, P., Cousins, I. T., Scheringer, M., Martinon, L., et al. (2024). PFAS contamination in Europe: Generating knowledge and mapping known and likely contamination with “expert-reviewed” journalism. Environmental Science & Technology, 58(15), 6616–6627. https://doi.org/10.1021/acs.est.3c09746 DOI: https://doi.org/10.1021/acs.est.3c09746

Costanza, J., Arshadi, M., Abriola, L. M., & Pennell, K. D. (2019). Accumulation of PFOA and PFOS at the air–water interface. Environmental Science & Technology Letters, 6(8), 487–491. https://doi.org/10.1021/acs.estlett.9b00355 DOI: https://doi.org/10.1021/acs.estlett.9b00355

Costanza‐Robinson, M. S., & Brusseau, M. L. (2002). Air‐water interfacial areas in unsaturated soils: Evaluation of interfacial domains. Water Resources Research, 38(10). https://doi.org/10.1029/2001WR000738 DOI: https://doi.org/10.1029/2001WR000738

Costanza-Robinson, M. S., & Henry, E. J. (2017). Surfactant-induced flow compromises determination of air-water interfacial areas by surfactant miscible-displacement. Chemosphere, 171, 275–283. https://doi.org/10.1016/j.chemosphere.2016.12.072 DOI: https://doi.org/10.1016/j.chemosphere.2016.12.072

Culligan, K. A., Wildenschild, D., Christensen, B. S. B., Gray, W. G., & Rivers, M. L. (2006). Pore-scale characteristics of multiphase flow in porous media: A comparison of air–water and oil–water experiments. Advances in Water Resources, 29(2), 227–238. https://doi.org/10.1016/j.advwatres.2005.03.021 DOI: https://doi.org/10.1016/j.advwatres.2005.03.021

Culligan, K. A., Wildenschild, D., Christensen, B. S. B., Gray, W. G., Rivers, M. L., & Tompson, A. F. B. (2004). Interfacial area measurements for unsaturated flow through a porous medium. Water Resources Research, 40(12), 2004WR003278. https://doi.org/10.1029/2004WR003278 DOI: https://doi.org/10.1029/2004WR003278

Danish EPA. (4 Aug 2024). Limit values for PFAS in the environment. https://mst.dk/erhverv/sikker-kemi/kemikalier/graensevaerdier-og-kvalitetskriterier

Delshad, M., Pope, G. A., & Sepehrnoori, K. (1996). A compositional simulator for modeling surfactant enhanced aquifer remediation, 1 formulation. Journal of Contaminant Hydrology, 23(4), 303–327. https://doi.org/10.1016/0169-7722(95)00106-9 DOI: https://doi.org/10.1016/0169-7722(95)00106-9

Delshad, M.; Pope, G. A.; Sepehrnoori, K. (2000) UTCHEM Version 9.0 Technical Documentation. Center for Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas, 78751. http://gmsdocs.aquaveo.com/UTCHEM_Users_Guide.pdf

EWG. (4 August 2024). PFAS Contamination in the U.S.; 2024. https://www.ewg.org/interactive-maps/pfas_contamination/

Faisal Anwar, A. H. M., Bettahar, M., & Matsubayashi, U. (2000). A method for determining air–water interfacial area in variably saturated porous media. Journal of Contaminant Hydrology, 43(2), 129–146. https://doi.org/10.1016/S0169-7722(99)00103-5 DOI: https://doi.org/10.1016/S0169-7722(99)00103-5

Field, J. A., & Seow, J. (2017). Properties, occurrence, and fate of fluorotelomer sulfonates. Critical Reviews in Environmental Science and Technology, 47(8), 643–691. https://doi.org/10.1080/10643389.2017.1326276 DOI: https://doi.org/10.1080/10643389.2017.1326276

Frey, D. D., & Rodrigues, A. E. (1994). Explicit calculation of multicomponent equilibria for ideal adsorbed solutions. AIChE Journal, 40(1), 182–186. https://doi.org/10.1002/aic.690400121 DOI: https://doi.org/10.1002/aic.690400121

Gao, B., Saiers, J. E., & Ryan, J. N. (2004). Deposition and mobilization of clay colloids in unsaturated porous media. Water Resources Research, 40(8), 2004WR003189. https://doi.org/10.1029/2004WR003189 DOI: https://doi.org/10.1029/2004WR003189

Gao, Y., Le, S.-T., Kibbey, T. C. G., Glamore, W., & O’Carroll, D. M. (2023). A fundamental model for calculating interfacial adsorption of complex ionic and nonionic PFAS mixtures in the presence of mixed salts. Environmental Science: Processes & Impacts, 25(11), 1830–1838. https://doi.org/10.1039/D2EM00466F DOI: https://doi.org/10.1039/D2EM00466F

Gnesda, W. R., Draxler, E. F., Tinjum, J., & Zahasky, C. (2022). Adsorption of PFAAs in the vadose zone and implications for long-term groundwater contamination. Environmental Science & Technology, 56(23), 16748–16758. https://doi.org/10.1021/acs.est.2c03962 DOI: https://doi.org/10.1021/acs.est.2c03962

Guo, B., Saleem, H., & Brusseau, M. L. (2023). Predicting interfacial tension and adsorption at fluid–fluid interfaces for mixtures of PFAS and/or hydrocarbon surfactants. Environmental Science & Technology, 57(21), 8044–8052. https://doi.org/10.1021/acs.est.2c08601 DOI: https://doi.org/10.1021/acs.est.2c08601

Guo, B., Zeng, J., & Brusseau, M. L. (2020). A mathematical model for the release, transport, and retention of per‐ and polyfluoroalkyl substances (Pfas) in the vadose zone. Water Resources Research, 56(2), e2019WR026667. https://doi.org/10.1029/2019WR026667 DOI: https://doi.org/10.1029/2019WR026667

Guo, B., Zeng, J., Brusseau, M. L., & Zhang, Y. (2022). A screening model for quantifying PFAS leaching in the vadose zone and mass discharge to groundwater. Advances in Water Resources, 160, 104102. https://doi.org/10.1016/j.advwatres.2021.104102 DOI: https://doi.org/10.1016/j.advwatres.2021.104102

Guo-Xi, Z., Bu-Yao, Z., Ya-Ping, Z., & Li, S. (1984). The surface adsorption and micelle formation of the mixed aqueous solutions of fluorocarbon and hydrocarbon surfactants: II. Sodium perfluorooctanoate-sodium decylsulfate system. Acta Chimica Sinica, 2(2), 111–118. https://doi.org/10.1002/cjoc.19840020205 DOI: https://doi.org/10.1002/cjoc.19840020205

Hassanizadeh, S. M., & Gray, W. G. (1990). Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Advances in Water Resources, 13(4), 169–186. https://doi.org/10.1016/0309-1708(90)90040-B DOI: https://doi.org/10.1016/0309-1708(90)90040-B

Hassanizadeh, S. M., & Gray, W. G. (1993). Thermodynamic basis of capillary pressure in porous media. Water Resources Research, 29(10), 3389–3405. https://doi.org/10.1029/93WR01495 DOI: https://doi.org/10.1029/93WR01495

Hassanizadeh, S.M., & Gray, W. G. (1993). Toward an improved description of the physics of two-phase flow. Advances in Water Resources, 16(1), 53–67. https://doi.org/10.1016/0309-1708(93)90029-F DOI: https://doi.org/10.1016/0309-1708(93)90029-F

Henry, E. J., & Smith, J. E. (2003). Surfactant-induced flow phenomena in the vadose zone: A review of data and numerical modeling. Vadose Zone Journal, 2(2), 154–167. https://doi.org/10.2113/2.2.154 DOI: https://doi.org/10.2113/2.2.154

Huang, D.; Saleem, H.; Guo, B.; Brusseau, M. L. (2022). The Impact of Multiple-Component PFAS Solutions on Fluid-Fluid Interfacial Adsorption and Transport of PFOS in Unsaturated Porous Media. Science of The Total Environment, 806, 150595. https://doi.org/10.1016/j.scitotenv.2021.15059 DOI: https://doi.org/10.1016/j.scitotenv.2021.150595

ITRC. (Sept. 2023). ITRC PFAS Technical and Regulatory Guidance Document. https://pfas-1.itrcweb.org/

Ji, Y., Yan, N., Brusseau, M. L., Guo, B., Zheng, X., Dai, M., Liu, H., & Li, X. (2021). Impact of a hydrocarbon surfactant on the retention and transport of perfluorooctanoic acid in saturated and unsaturated porous media. Environmental Science & Technology, 55(15), 10480–10490. https://doi.org/10.1021/acs.est.1c01919 DOI: https://doi.org/10.1021/acs.est.1c01919

Jiang, H., Guo, B., & Brusseau, M. L. (2020). Pore‐scale modeling of fluid‐fluid interfacial area in variably saturated porous media containing microscale surface roughness. Water Resources Research, 56(1), e2019WR025876. https://doi.org/10.1029/2019WR025876 DOI: https://doi.org/10.1029/2019WR025876

Karkare, M. V., & Fort, T. (1996). Determination of the air−water interfacial area in wet “unsaturated” porous media. Langmuir, 12(8), 2041–2044. https://doi.org/10.1021/la950821v DOI: https://doi.org/10.1021/la950821v

Kemball, C., Rideal, E. K., & Guggenheim, E. A. (1948). Thermodynamics of monolayers. Transactions of the Faraday Society, 44, 948. https://doi.org/10.1039/tf9484400948 DOI: https://doi.org/10.1039/tf9484400948

Kibbey, T. C. G., & Chen, L. (2012). A pore network model study of the fluid‐fluid interfacial areas measured by dynamic‐interface tracer depletion and miscible displacement water phase advective tracer methods. Water Resources Research, 48(10), 2012WR011862. https://doi.org/10.1029/2012WR011862 DOI: https://doi.org/10.1029/2012WR011862

Kim, H.; Rao, P. S. C.; Annable, D. (1997). Determination of Effective Air-Water Interfacial Area in Partially Saturated Porous Media Using Surfactant Adsorption. Water Resources Research, 33 (12), 2705–2711. https://doi.org/10.1029/97WR02227 DOI: https://doi.org/10.1029/97WR02227

Kissa, E. (2001). Fluorinated Surfactants and Repellents. (2nd ed). CRC Press, Vol. 97. ISBN 0-8247-0472-X

Le, S.-T., Gao, Y., Kibbey, T. C. G., Glamore, W. C., & O’Carroll, D. M. (2021). A new framework for modeling the effect of salt on interfacial adsorption of PFAS in environmental systems. Science of The Total Environment, 796, 148893. https://doi.org/10.1016/j.scitotenv.2021.148893 DOI: https://doi.org/10.1016/j.scitotenv.2021.148893

Lenhart, J. J., & Saiers, J. E. (2002). Transport of silica colloids through unsaturated porous media: Experimental results and model comparisons. Environmental Science & Technology, 36(4), 769–777. https://doi.org/10.1021/es0109949 DOI: https://doi.org/10.1021/es0109949

Lenhart, J. J., & Saiers, J. E. (2004). Adsorption of natural organic matter to air−water interfaces during transport through unsaturated porous media. Environmental Science & Technology, 38(1), 120–126. https://doi.org/10.1021/es034409a DOI: https://doi.org/10.1021/es034409a

LeVan, M. D., & Vermeulen, T. (1981). Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. The Journal of Physical Chemistry, 85(22), 3247–3250. https://doi.org/10.1021/j150622a009 DOI: https://doi.org/10.1021/j150622a009

Leverett, M. C. Capillary Behavior in Porous Solids. Transactions of the AIME 1941, 142 (01), 152–169. https://doi.org/10.2118/941152-G DOI: https://doi.org/10.2118/941152-G

Liao, S., Arshadi, M., Woodcock, M. J., Saleeba, Z. S. S. L., Pinchbeck, D., et al. (2022). Influence of residual nonaqueous-phase liquids (NAPLs) on the transport and retention of perfluoroalkyl substances. Environmental Science & Technology, 56(12), 7976–7985. https://doi.org/10.1021/acs.est.2c00858 DOI: https://doi.org/10.1021/acs.est.2c00858

Liu, J., & Mejia Avendaño, S. (2013). Microbial degradation of polyfluoroalkyl chemicals in the environment: A review. Environment International, 61, 98–114. https://doi.org/10.1016/j.envint.2013.08.022 DOI: https://doi.org/10.1016/j.envint.2013.08.022

Liu, M., Munoz, G., Vo Duy, S., Sauvé, S., & Liu, J. (2022). Per- and polyfluoroalkyl substances in contaminated soil and groundwater at airports: A canadian case study. Environmental Science & Technology, 56(2), 885–895. https://doi.org/10.1021/acs.est.1c04798 DOI: https://doi.org/10.1021/acs.est.1c04798

Lyu, X., Li, Z., Wang, D., Zhang, Q., Gao, B., Sun, Y., & Wu, J. (2022). Transport of perfluorooctanoic acid in unsaturated porous media mediated by SDBS. Journal of Hydrology, 607, 127479. https://doi.org/10.1016/j.jhydrol.2022.127479 DOI: https://doi.org/10.1016/j.jhydrol.2022.127479

Lyu, X., Liu, X., Sun, Y., Gao, B., Ji, R., Wu, J., & Xue, Y. (2020). Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media. Environmental Pollution, 266, 115343. https://doi.org/10.1016/j.envpol.2020.115343 DOI: https://doi.org/10.1016/j.envpol.2020.115343

Lyu, Y., Brusseau, M. L., Chen, W., Yan, N., Fu, X., & Lin, X. (2018). Adsorption of PFOA at the air–water interface during transport in unsaturated porous media. Environmental Science & Technology, 52(14), 7745–7753. https://doi.org/10.1021/acs.est.8b02348 DOI: https://doi.org/10.1021/acs.est.8b02348

Miller, C. T., Poirier‐McNeil, M. M., & Mayer, A. S. (1990). Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resources Research, 26(11), 2783–2796. https://doi.org/10.1029/WR026i011p02783 DOI: https://doi.org/10.1029/WR026i011p02783

Morrow, N. R. (1970). Physics and thermodynamics of capillary action in porous media. Industrial & Engineering Chemistry, 62(6), 32–56. https://doi.org/10.1021/ie50726a006 DOI: https://doi.org/10.1021/ie50726a006

Newell, C. J., Adamson, D. T., Kulkarni, P. R., Nzeribe, B. N., & Stroo, H. (2020). Comparing PFAS to other groundwater contaminants: Implications for remediation. Remediation Journal, 30(3), 7–26. https://doi.org/10.1002/rem.21645 DOI: https://doi.org/10.1002/rem.21645

Nickerson, A., Rodowa, A. E., Adamson, D. T., Field, J. A., Kulkarni, P. R., et al. (2021). Spatial trends of anionic, zwitterionic, and cationic pfass at an AFFF-impacted site. Environmental Science & Technology, 55(1), 313–323. https://doi.org/10.1021/acs.est.0c04473 DOI: https://doi.org/10.1021/acs.est.0c04473

Or, D.; Tuller, M. (1999). Liquid Retention and Interfacial Area in Variably Saturated Porous Media: Upscaling from Single-Pore to Sample-Scale Model. Water Resources Research, 35 (12), 3591–3605. https://doi.org/10.1029/1999WR900262 DOI: https://doi.org/10.1029/1999WR900262

Peng, S., & Brusseau, M. L. (2005). Impact of soil texture on air‐water interfacial areas in unsaturated sandy porous media. Water Resources Research, 41(3), 2004WR003233. https://doi.org/10.1029/2004WR003233 DOI: https://doi.org/10.1029/2004WR003233

Pennell, K. D., Abriola, L. M., & Weber, W. J. (1993). Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation. Environmental Science & Technology, 27(12), 2332–2340. https://doi.org/10.1021/es00048a005 DOI: https://doi.org/10.1021/es00048a005

Pinder, G.; Celia, M. (2006). Subsurface Hydrology; John Wiley & Sons. https://www.geokniga.org/bookfiles/geokniga-subsurface-hydrology.pdf DOI: https://doi.org/10.1002/0470044209

Pope, G. A., & Nelson, R. C. (1978). A chemical flooding compositional simulator. Society of Petroleum Engineers Journal, 18(05), 339–354. https://doi.org/10.2118/6725-PA DOI: https://doi.org/10.2118/6725-PA

Powers, S. E., Loureiro, C. O., Abriola, L. M., & Weber, W. J. (1991). Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquids in subsurface systems. Water Resources Research, 27(4), 463–477. https://doi.org/10.1029/91WR00074 DOI: https://doi.org/10.1029/91WR00074

Reeves, P. C., & Celia, M. A. (1996). A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore‐scale network model. Water Resources Research, 32(8), 2345–2358. https://doi.org/10.1029/96WR01105 DOI: https://doi.org/10.1029/96WR01105

Ruyle, B. J., Thackray, C. P., Butt, C. M., LeBlanc, D. R., Tokranov, A. K., Vecitis, C. D., & Sunderland, E. M. (2023). Centurial persistence of forever chemicals at military fire training sites. Environmental Science & Technology, 57(21), 8096–8106. https://doi.org/10.1021/acs.est.3c00675 DOI: https://doi.org/10.1021/acs.est.3c00675

Ruyle, B. J., Thackray, C. P., McCord, J. P., Strynar, M. J., Mauge-Lewis, K. A., Fenton, S. E., & Sunderland, E. M. (2021). Reconstructing the composition of per- and polyfluoroalkyl substances in contemporary aqueous film-forming foams. Environmental Science & Technology Letters, 8(1), 59–65. https://doi.org/10.1021/acs.estlett.0c00798 DOI: https://doi.org/10.1021/acs.estlett.0c00798

Saiers, J. E., & Lenhart, J. J. (2003). Colloid mobilization and transport within unsaturated porous media under transient‐flow conditions. Water Resources Research, 39(1), 2002WR001370. https://doi.org/10.1029/2002WR001370 DOI: https://doi.org/10.1029/2002WR001370

Saripalli, K. P., Kim, H., Rao, P. S. C., & Annable, M. D. (1997). Measurement of specific fluid−fluid interfacial areas of immiscible fluids in porous media. Environmental Science & Technology, 31(3), 932–936. https://doi.org/10.1021/es960652g DOI: https://doi.org/10.1021/es960652g

Schaefer, C. E., Culina, V., Nguyen, D., & Field, J. (2019). Uptake of poly- and perfluoroalkyl substances at the air–water interface. Environmental Science & Technology, 53(21), 12442–12448. https://doi.org/10.1021/acs.est.9b04008 DOI: https://doi.org/10.1021/acs.est.9b04008

Schaefer, C. E., DiCarlo, D. A., & Blunt, M. J. (2000). Experimental measurement of air‐water interfacial area during gravity drainage and secondary imbibition in porous media. Water Resources Research, 36(4), 885–890. https://doi.org/10.1029/2000WR900007 DOI: https://doi.org/10.1029/2000WR900007

Schaefer, C. E., Lavorgna, G. M., Lippincott, D. R., Nguyen, D., Christie, E., Shea, S., O’Hare, S., Lemes, M. C. S., Higgins, C. P., & Field, J. (2022). A field study to assess the role of air-water interfacial sorption on PFAS leaching in an AFFF source area. Journal of Contaminant Hydrology, 248, 104001. https://doi.org/10.1016/j.jconhyd.2022.104001 DOI: https://doi.org/10.1016/j.jconhyd.2022.104001

Schnaar, G., & Brusseau, M. L. (2005). Pore-scale characterization of organic immiscible-liquid morphology in natural porous media using synchrotron x-ray microtomography. Environmental Science & Technology, 39(21), 8403–8410. https://doi.org/10.1021/es0508370 DOI: https://doi.org/10.1021/es0508370

Schumacher, B. A., Zimmerman, J. H., Williams, A. C., Lutes, C. C., Holton, C. W., et al. (2024). Distribution of select per- and polyfluoroalkyl substances at a chemical manufacturing plant. Journal of Hazardous Materials, 464, 133025. https://doi.org/10.1016/j.jhazmat.2023.133025 DOI: https://doi.org/10.1016/j.jhazmat.2023.133025

Silva, J. A. K., Martin, W. A., Johnson, J. L., & McCray, J. E. (2019). Evaluating air-water and NAPL-water interfacial adsorption and retention of Perfluorocarboxylic acids within the Vadose zone. Journal of Contaminant Hydrology, 223, 103472. https://doi.org/10.1016/j.jconhyd.2019.03.004 DOI: https://doi.org/10.1016/j.jconhyd.2019.03.004

Silva, J. A. K., Martin, W. A., & McCray, J. E. (2021). Air-water interfacial adsorption coefficients for PFAS when present as a multi-component mixture. Journal of Contaminant Hydrology, 236, 103731. https://doi.org/10.1016/j.jconhyd.2020.103731 DOI: https://doi.org/10.1016/j.jconhyd.2020.103731

Silva, J. A. K.; Šimůnek, J.; McCray, J. A Modified HYDRUS Model for Simulating PFAS Transport in the Vadose Zone. Water (Basel) 2020, 12 (10), 2758. https://doi.org/10.3390/w12102758 DOI: https://doi.org/10.3390/w12102758

Šimůnek, J., He, C., Pang, L., & Bradford, S. A. (2006). Colloid‐facilitated solute transport in variably saturated porous media: Numerical model and experimental verification. Vadose Zone Journal, 5(3), 1035–1047. https://doi.org/10.2136/vzj2005.0151 DOI: https://doi.org/10.2136/vzj2005.0151

Smalling, K. L., Romanok, K. M., Bradley, P. M., Morriss, M. C., Gray, J. L., et al. (2023). Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. Environment International, 178, 108033. https://doi.org/10.1016/j.envint.2023.108033 DOI: https://doi.org/10.1016/j.envint.2023.108033

Smith, J. E., & Gillham, R. W. (1994). The effect of concentration‐dependent surface tension on the flaw of water and transport of dissolved organic compounds: A pressure head‐based formulation and numerical model. Water Resources Research, 30(2), 343–354. https://doi.org/10.1029/93WR02745 DOI: https://doi.org/10.1029/93WR02745

Smith, J. E., & Gillham, R. W. (1999). Effects of solute concentration–dependent surface tension on unsaturated flow: Laboratory sand column experiments. Water Resources Research, 35(4), 973–982. https://doi.org/10.1029/1998WR900106 DOI: https://doi.org/10.1029/1998WR900106

Stults, J. F., Choi, Y. J., Schaefer, C. E., Illangasekare, T. H., & Higgins, C. P. (2022). Estimation of transport parameters of perfluoroalkyl acids (PFAAs) in unsaturated porous media: Critical experimental and modeling improvements. Environmental Science & Technology, 56(12), 7963–7975. https://doi.org/10.1021/acs.est.2c00819 DOI: https://doi.org/10.1021/acs.est.2c00819

Torkzaban, S., Hassanizadeh, S. M., Schijven, J. F., & Van Den Berg, H. H. J. L. (2006). Role of air‐water interfaces on retention of viruses under unsaturated conditions. Water Resources Research, 42(12), 2006WR004904. https://doi.org/10.1029/2006WR004904 DOI: https://doi.org/10.1029/2006WR004904

The Forever Pollution Project. (7 August 2024).The Forever Pollution Project: Journalists tracking PFAS across Europe. https://foreverpollution.eu/

US EPA. (4 August 2024). Final PFAS National Primary Drinking Water Regulation. https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas.

Vahedian, F., Silva, J. A. K., Šimůnek, J., & McCray, J. E. (2024). Influence of tension-driven flow on the transport of afff in unsaturated media. ACS ES&T Water, 4(2), 564–574. https://doi.org/10.1021/acsestwater.3c00611 DOI: https://doi.org/10.1021/acsestwater.3c00611

Vecitis, C. D., Park, H., Cheng, J., Mader, B. T., & Hoffmann, M. R. (2008). Enhancement of perfluorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces. The Journal of Physical Chemistry C, 112(43), 16850–16857. https://doi.org/10.1021/jp804050p DOI: https://doi.org/10.1021/jp804050p

Wallis, I., Hutson, J., Davis, G., Kookana, R., Rayner, J., & Prommer, H. (2022). Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions. Water Research, 225, 119096. https://doi.org/10.1016/j.watres.2022.119096 DOI: https://doi.org/10.1016/j.watres.2022.119096

Wan, J., & Tokunaga, T. K. (1997). Film straining of colloids in unsaturated porous media: Conceptual model and experimental testing. Environmental Science & Technology, 31(8), 2413–2420. https://doi.org/10.1021/es970017q DOI: https://doi.org/10.1021/es970017q

Wildenschild, D., Rivers, M. L., Porter, M. L., Iltis, G. C., Armstrong, R. T., & Davit, Y. (2015). Using synchrotron-based X-ray microtomography and functional contrast agents in environmental applications. In S. H. Anderson & J. W. Hopmans (Eds.), SSSA Special Publications (pp. 1–22). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssaspecpub61.c1 DOI: https://doi.org/10.2136/sssaspecpub61.c1

Wildenschild, D., & Sheppard, A. P. (2013). X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217–246. https://doi.org/10.1016/j.advwatres.2012.07.018 DOI: https://doi.org/10.1016/j.advwatres.2012.07.018

Zeng, J., Brusseau, M. L., & Guo, B. (2021). Model validation and analyses of parameter sensitivity and uncertainty for modeling long-term retention and leaching of PFAS in the vadose zone. Journal of Hydrology, 603, 127172. https://doi.org/10.1016/j.jhydrol.2021.127172 DOI: https://doi.org/10.1016/j.jhydrol.2021.127172

Zeng, J., & Guo, B. (2021). Multidimensional simulation of PFAS transport and leaching in the vadose zone: Impact of surfactant-induced flow and subsurface heterogeneities. Advances in Water Resources, 155, 104015. https://doi.org/10.1016/j.advwatres.2021.104015 DOI: https://doi.org/10.1016/j.advwatres.2021.104015

Zeng, J., & Guo, B. (2023). Reduced accessible air–water interfacial area accelerates pfas leaching in heterogeneous vadose zones. Geophysical Research Letters, 50(8), e2022GL102655. https://doi.org/10.1029/2022GL102655 DOI: https://doi.org/10.1029/2022GL102655

Zhang, W., & Guo, B. (2024). Anomalous adsorption of PFAS at the thin‐water‐film air‐water interface in water‐unsaturated porous media. Water Resources Research, 60(3), e2023WR035775. https://doi.org/10.1029/2023WR035775 DOI: https://doi.org/10.1029/2023WR035775

Downloads

Published

2024-08-24

How to Cite

Guo, B., & Brusseau, M. L. (2024). Challenges and opportunities for porous media research to address PFAS groundwater contamination . InterPore Journal, 1(2), ipj240824–2. https://doi.org/10.69631/ipj.v1i2nr35

Issue

Section

Invited Commentaries

Funding data