Bio-nanocrystal Stabilized Biosurfactant Foams for Groundwater and Soil Remediation

Authors

DOI:

https://doi.org/10.69631/ipj.v2i1nr36

Keywords:

Bio-surfactants, Bio-nanoparticles, Nanoparticle-stabilized foams, Groundwater remediation, Soil remediation

Abstract

Surfactants are crucial for reducing surface tension at liquid interfaces and have diverse applications in various fields. Solutions of surfactants can help remediate contaminated soil and groundwater. Foams, dispersions of gas bubbles within a liquid stabilized by surfactants, exhibit enhanced sweep properties that can improve the cleaning efficiency in groundwater remediation. However, surfactant-stabilized foams are thermodynamically unstable, and this poses challenges to their applications. Utilizing nanoparticles in conjunction with surfactants has shown promise in enhancing foam properties and contaminant recovery. Biosurfactants, which are surfactants naturally produced by microorganisms, offer a promising alternative to synthetic surfactants due to their biodegradability and low toxicity.  In this paper, we investigated the use of biosurfactants, specifically rhamnolipids, in combination with bio-nanocrystals, namely cellulose nanocrystals (CNCs), to improve foaming properties and assess contamination recovery through foam flooding tests. The effect of pH and CNCs on the foaming properties of the rhamnolipid solution was also examined. Foam stability and foamability were evaluated using modified bulk foam tests, considering foam stability parameters and maximum foam volume. Constant shear rate and strain amplitude sweep tests were performed on different foams formulated at varying pH levels to assess viscosity and elasticity, and to distinguish the foam exhibiting superior properties. Furthermore, sand pack flooding experiments were conducted to assess the performance of rhamnolipid-stabilized foams in groundwater remediation. The results reveal pH-dependent variations in the foaming properties of the mixture. The findings suggest that an optimal, eco-friendly foam with maximum stability, foamability, and elasticity can be formulated by using 1000 mg/L rhamnolipid together with 1000 mg/L CNCs at a pH value of 10. Additionally, experiments demonstrate that foams with optimal properties can recover approximately 70% of contaminants (n-decane), representing more than three times the recovery achievable through the same amount of water injection.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abedi, B., Orujov, A., Dabbaghi, E., Ng, K., Ackerman, J., & Aryana, S. A. (2024). Containment strategy for subsurface H2 storage based on time-dependent soft solids. International Journal of Hydrogen Energy, 82, 1001-1014. https://doi.org/10.1016/j.ijhydene.2024.07.336

Adegbola, A. A., Olajide, G., Mudashiru, L. O., & Adeaga, O. A. (2018). Numerical Investigation of Enhanced Oil Recovery with Steam Injection. International Journal of Management, IT and Engineering, 8(5), 1-24.

Aggelopoulos, C. A., Tsakiroglou, C. D., Ognier, S., & Cavadias, S. (2015). Non-aqueous phase liquid-contaminated soil remediation by ex situ dielectric barrier discharge plasma. International Journal of Environmental Science and Technology, 12, 1011-1020. https://doi.org/10.1007/s13762-013-0489-4

AlYousef, Z., Almobarky, M., & Schechter, D. (2017). Enhancing the stability of foam by the use of nanoparticles. Energy & Fuels, 31(10), 10620-10627. https://doi.org/10.1021/acs.energyfuels.7b01697

Apaydin, O. G., & Kovscek, A. R. (2001). Surfactant concentration and end effects on foam flow in porous media. Transport in Porous Media, 43(3), 511–536. https://doi.org/10.1023/A:1010740811277

Aranda, R., Davarzani, H., Colombano, S., Laurent, F., & Bertin, H. (2020). Experimental study of foam flow in highly permeable porous media for soil remediation. Transport in Porous Media, 134(1), 231-247. https://doi.org/10.1007/s11242-020-01443-8

Arkhipov, V. P., Arkhipov, R., & Filippov, A. (2023). Rhamnolipid biosurfactant: Use for the removal of phenol from aqueous solutions by micellar solubilization. ACS Omega, 8(33), 30646–30654. https://doi.org/10.1021/acsomega.3c04367

Atteia, O., Jousse, F., Cohen, G., & Höhener, P. (2017). Comparison of residual NAPL source removal techniques in 3D metric scale experiments. Journal of Contaminant Hydrology, 202, 23-32. https://doi.org/10.1016/j.jconhyd.2017.04.006

Bazsefidpar, S., Mokhtarani, B., Panahi, R., & Hajfarajollah, H. (2019). Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control. Biodegradation, 30(1), 59–69. https://doi.org/10.1007/s10532-018-09866-3

Brinchi, L., Cotana, F., Fortunati, E., & Kenny, J. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1), 154–169. https://doi.org/10.1016/j.carbpol.2013.01.033

Cavelan, A., Faure, P., Lorgeoux, C., Colombano, S., Deparis, J., et al. (2024). An experimental multi-method approach to better characterize the LNAPL fate in soil under fluctuating groundwater levels. Journal of Contaminant Hydrology, 104319. https://doi.org/10.1016/j.jconhyd.2024.104319

Chen, I.-C., & Lee, M.-T. (2022). Rhamnolipid biosurfactants for oil recovery: Salt effects on the structural properties investigated by mesoscale simulations. ACS Omega, 7(7), 6223–6237. https://doi.org/10.1021/acsomega.1c06741

Davoodi, S., Al-Shargabi, M., Wood, D. A., Mehrad, M., & Rukavishnikov, V. S. (2024). Carbon dioxide sequestration through enhanced oil recovery: A review of storage mechanisms and technological applications. Fuel, 366, 131313. https://doi.org/10.1016/j.fuel.2024.131313

Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64. https://doi.org/10.1128/mmbr.61.1.47-64.1997

Domingues, R. M. A., Gomes, M. E., & Reis, R. L. (2014). The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules, 15(7), 2327–2346. https://doi.org/10.1021/bm500524s

Du, D., Zhang, X., Yu, K., Song, X., Shen, Y., et al. (2020). Parameter screening study for optimizing the static properties of nanoparticle-stabilized CO2 foam based on orthogonal experimental design. ACS Omega, 5(8), 4014-4023. https://doi.org/10.1021/acsomega.9b03543

Emami, H., Ayatizadeh Tanha, A., Khaksar Manshad, A., & Mohammadi, A. H. (2022). Experimental investigation of foam flooding using anionic and nonionic surfactants: A screening scenario to assess the effects of salinity and pH on foam stability and foam height. ACS Omega, 7(17), 14832–14847. https://doi.org/10.1021/acsomega.2c00314

Emrani, A. S., & Nasr-El-Din, H. A. (2015). Stabilizing CO2-foam using nanoparticles. Paper presented at the SPE European Formation Damage Conference and Exhibition. OnePetro. https://doi.org/10.2118/174254-MS

Farajzadeh, R., Krastev, R., & Zitha, P. L. J. (2008). Foam films stabilized with alpha olefin sulfonate (AOS). Colloids and Surfaces Physicochemical and Engineering Aspects, 324(1), 35–40. https://doi.org/10.1016/j.colsurfa.2008.03.024

Fei-Baffoe, B., Badu, E., Miezah, K., Sackey, L. N. A., Sulemana, A., & Amuah, E. E. Y. (2024). Contamination of groundwater by petroleum hydrocarbons: Impact of fuel stations in residential areas. Heliyon, 10(4). https://doi.org/10.1016/j.heliyon.2024.e25924

Forey, N., Atteia, O., Omari, A., & Bertin, H. (2020). Saponin foam for soil remediation: On the use of polymer or solid particles to enhance foam resistance against oil. Journal of Contaminant Hydrology, 228, 103560. https://doi.org/10.1016/j.jconhyd.2019.103560

George, J., & Sabapathi, S. N. (2015). Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnology Science and Applications, 8, 45–54. https://doi.org/10.2147/NSA.S64386

Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., & Nicoli, S. (2021). Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release, 332, 312-336. https://doi.org/10.1016/j.jconrel.2021.02.031

Gong, Z., Yang, G., Che, C., Liu, J., Si, M., & He, Q. (2021). Foaming of rhamnolipids fermentation: impact factors and fermentation strategies. Microbial Cell Factories, 20, 1-12. https://doi.org/10.1186/s12934-021-01516-3

Grassian, V. H., O’Shaughnessy, P. T., Adamcakova-Dodd, A., Pettibone, J. M., & Thorne, P. S. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environmental Health Perspectives, 115(3), 397–402. https://doi.org/10.1289/ehp.9469

Guimbaud, C., Colombano, S., Noel, C., Verardo, E., Grossel, A., et al. (2023). Quantification of biodegradation rate of hydrocarbons in a contaminated aquifer by CO2 δ13C monitoring at ground surface. Journal of Contaminant Hydrology, 256, 104168. https://doi.org/10.1016/j.jconhyd.2023.104168

Guo, F., & Aryana, S. (2016). An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery. Fuel, 186, 430–442. https://doi.org/10.1016/j.fuel.2016.08.058

Guo, F., He, J., Johnson, P. A., & Aryana, S. A. (2017). Stabilization of CO2 foam using by-product fly ash and recyclable iron oxide nanoparticles to improve carbon utilization in EOR processes. Sustainable Energy & Fuels, 1(4), 814–822. https://doi.org/10.1039/C7SE00098G

Harwell, J. H., Sabatini, D. A., & Knox, R. C. (1999). Surfactants for ground water remediation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151(1-2), 255-268. https://doi.org/10.1016/S0927-7757(98)00785-7

Hassanshahian, M. (2014). Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Marine Pollution Bulletin, 86(1), 361–366. https://doi.org/10.1016/j.marpolbul.2014.06.043

Hollenbach, R., Oeppling, S., Delavault, A., Völp, A. R., Willenbacher, N., et al. (2021). Comparative study on interfacial and foaming properties of glycolipids in relation to the gas applied for foam generation. RSC advances, 11(54), 34235-34244. https://doi.org/10.1039/D1RA06190A

Imron, M. F., Kurniawan, S. B., Ismail, N. ’Izzati., & Abdullah, S. R. S. (2020). Future challenges in diesel biodegradation by bacteria isolates: A review. Journal of Cleaner Production, 251, 119716. https://doi.org/10.1016/j.jclepro.2019.119716

Invally, K., Sancheti, A., & Ju, L.-K. (2019). A new approach for downstream purification of rhamnolipid biosurfactants. Food and Bioproducts Processing, 114, 122–131. https://doi.org/10.1016/j.fbp.2018.12.003

Ishigami, Y., Gama, Y., Ishii, F., & Choi, Y. K. (1993). Colloid chemical effect of polar head moieties of a rhamnolipid-type biosurfactant. Langmuir, 9(7), 1634-1636. https://doi.org/10.1021/la00031a006

Jangir, K., Kumar, U., Suniya, N. K., Singh, N., & Parihar, K. (2022). Enhancing the Aqueous foam Stability Using Nanoparticles: A Review. World, 10(2), 84-90. https://doi.org/10.12691/wjce-10-2-5

Janssen, M., Mutawa, A., Pilus, R., & Zitha, P. (2019). Evaluation of foam-assisted surfactant flooding at reservoir conditions. Paper presented at the SPE Europec featured at 81st EAGE Conference and Exhibition. OnePetro. https://doi.org/10.2118/195481-MS

Karlsson, H. L., Cronholm, P., Gustafsson, J., & Möller, L. (2008). Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21(9), 1726–1732. https://doi.org/10.1021/tx800064j

Khajehpour, M., Reza Etminan, S., Goldman, J., Wassmuth, F., & Bryant, S. (2018). Nanoparticles as foam stabilizer for steam-foam process. SPE Journal, 23(06), 2232-2242. https://doi.org/10.2118/179826-PA

Kim, I., Worthen, A. J., Johnston, K. P., DiCarlo, D. A., & Huh, C. (2016). Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams. Journal of Nanoparticle Research, 18, 1-12. https://doi.org/10.1007/s11051-016-3395-0

Kwon, H., Mohamed, M. M., Annable, M. D., & Kim, H. (2020). Remediation of NAPL-contaminated porous media using micro-nano ozone bubbles: Bench-scale experiments. Journal of Contaminant Hydrology, 228, 103563. https://doi.org/10.1016/j.jconhyd.2019.103563

Li, R. F., Yan, W., Liu, S., Hirasaki, G. J., & Miller, C. A. (2010). Foam mobility control for surfactant enhanced oil recovery. SPE Journal, 15(04), 928–942. https://doi.org/10.2118/113910-PA

Longpré-Girard, M., Martel, R., Robert, T., Lefebvre, R., Lauzon, J. M., & Thomson, N. (2020). Surfactant foam selection for enhanced light non-aqueous phase liquids (LNAPL) recovery in contaminated aquifers. Transport in Porous Media, 131, 65-84. https://doi.org/10.1007/s11242-019-01292-0

Lunkenheimer, K., & Malysa, K. (2003). Simple and generally applicable method of determination and evaluation of foam properties. Journal of Surfactants and Detergents, 6(1), 69–74. https://doi.org/10.1007/s11743-003-0251-8

Majeed, T., Sølling, T. I., & Kamal, M. S. (2020). Foam stability: The interplay between salt-, surfactant- and critical micelle concentration. Journal of Petroleum Science and Engineering, 187, 106871. https://doi.org/10.1016/j.petrol.2019.106871

Masarudin, M. J., Cutts, S. M., Evison, B. J., Phillips, D. R., & Pigram, P. J. (2015). Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of (14C)-doxorubicin. Nanotechnology, Science and Applications, 67-80. https://doi.org/10.2147/NSA.S91785

Meyers, R. A. (2012). Encyclopedia of sustainability science and technology (Vol. 6). New York: Springer. https://doi.org/10.1007/978-1-4419-0851-3

Nadim, F., Hoag, G. E., Liu, S., Carley, R. J., & Zack, P. (2000). Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview. Journal of Petroleum Science and Engineering, 26(1-4), 169-178. https://doi.org/10.1016/S0920-4105(00)00031-0

Nurfarahin, A. H., Mohamed, M. S., & Phang, L. Y. (2018). Culture medium development for microbial-derived surfactants production—An overview. Molecules, 23(5). https://doi.org/10.3390/molecules23051049

Orujov, A., Coddington, K., & Aryana, S. A. (2023). A review of CCUS in the context of foams, regulatory frameworks and monitoring. Energies, 16(7), 3284. https://doi.org/10.3390/en16073284

Özdemir, G., Peker, S., & Helvaci, S. S. (2004). Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 234(1-3), 135-143. https://doi.org/10.1016/j.colsurfa.2003.10.024

Paneiro, G., & Orujov, A. (2023, May). Absolute Permeability of Codaçal Porous Limestone Under Different Pressure and Temperature Conditions. In: Advances in Geoengineering, Geotechnologies, and Geoenvironment for Earth Systems and Sustainable Georesources Management: Proceedings of the 1st Conference on Georesources, Geomaterials, Geotechnologies and Geoenvironment (4GEO), Porto, 2019 (pp. 69-74). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-25986-9_11

Rahman, A., Torabi, F., & Shirif, E. (2023). Surfactant and nanoparticle synergy: Towards improved foam stability. Petroleum, 9(2), 255-264. https://doi.org/10.1016/j.petlm.2023.02.002

Ray, P. C., Yu, H., & Fu, P. P. (2009). Toxicity and environmental risks of nanomaterials: Challenges and future needs. Journal of Environmental Science and Health Part C, 27(1), 1–35. https://doi.org/10.1080/10590500802708267

Rezk, M. Y., & Allam, N. K. (2019). Impact of nanotechnology on enhanced oil recovery: A mini-review. Industrial & Engineering Chemistry Research, 58(36), 16287–16295. https://doi.org/10.1021/acs.iecr.9b03693

Roadcap, G. S., Kelly, W. R., & Bethke, C. M. (2005). Geochemistry of extremely alkaline (pH> 12) ground water in slag‐fill aquifers. Groundwater, 43(6), 806-816. https://doi.org/10.1111/j.1745-6584.2005.00060.x

Rodrigues, L. R. (2015). Microbial surfactants: Fundamentals and applicability in the formulation of nano-sized drug delivery vectors. Journal of Colloid and Interface Science, 449, 304–316. https://doi.org/10.1016/j.jcis.2015.01.022

Sánchez, M., Aranda, F. J., Espuny, M. J., Marqués, A., Teruel, J. A., Manresa, Á., & Ortiz, A. (2007). Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media. Journal of Colloid and Interface science, 307(1), 246-253. https://doi.org/10.1016/j.jcis.2006.11.041

Shankaran, D. R. (2018). Chapter 14 - Cellulose nanocrystals for health care applications. In: S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, & S. Thomas (Eds.), Applications of Nanomaterials (pp. 415–459). Micro and Nano Technologies. Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101971-9.00015-6

Shojaei, M. J., Méheust, Y., Osman, A., Grassia, P., & Shokri, N. (2021). Combined effects of nanoparticles and surfactants upon foam stability. Chemical engineering science, 238, 116601. https://doi.org/10.1016/j.ces.2021.116601

Slessarev, E. W., Lin, Y., Bingham, N. L., Johnson, J. E., Dai, Y., Schimel, J. P., & Chadwick, O. A. (2016). Water balance creates a threshold in soil pH at the global scale. Nature, 540(7634), 567-569. https://doi.org/10.1038/nature20139

Soberón-Chávez, G., González-Valdez, A., Soto-Aceves, M. P., & Cocotl-Yañez, M. (2021). Rhamnolipids produced by Pseudomonas: From molecular genetics to the market. Microbial Biotechnology, 14(1), 136–146. https://doi.org/10.1111/1751-7915.13700

Topel, Ö., Çakır, B. A., Budama, L., & Hoda, N. (2013). Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. Journal of Molecular Liquids, 177, 40–43. https://doi.org/10.1016/j.molliq.2012.10.013

Vecino, X., Cruz, J. M., Moldes, A. B., & Rodrigues, L. R. (2017). Biosurfactants in cosmetic formulations: Trends and challenges. Critical Reviews in Biotechnology, 37(7), 911–923. https://doi.org/10.1080/07388551.2016.1269053

Vidonish, J. E., Zygourakis, K., Masiello, C. A., Sabadell, G., & Alvarez, P. J. J. (2016). Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation. Engineering, 2(4), 426–437. https://doi.org/10.1016/J.ENG.2016.04.005

Wang, R., Arshadi, M., Zankoor, A., & Piri, M. (2022). Pore Space Deformation and its Implications for Two‐Phase Flow Through Porous Media: A Micro‐Scale Experimental Investigation. Water Resources Research, 58(10), e2022WR032157. https://doi.org/10.1029/2022WR032157

Wang, S., & Mulligan, C. N. (2004). Rhamnolipid foam enhanced remediation of cadmium and nickel contaminated soil. Water, Air, and Soil Pollution, 157, 315-330. https://doi.org/10.1023/B:WATE.0000038904.91977.f0

Wang, Z., Sun, J., Wang, Y., Guo, H., & Aryana, S. A. (2021). Optimum concentration of fly ash nanoparticles to stabilize CO2 foams for aquifer and soil remediation. Journal of Contaminant Hydrology, 242, 103853. https://doi.org/10.1016/j.jconhyd.2021.103853

Whang, L.-M., Liu, P.-W. G., Ma, C.-C., & Cheng, S.-S. (2009). Application of rhamnolipid and surfactin for enhanced diesel biodegradation—Effects of pH and ammonium addition. Journal of Hazardous Materials, 164(2), 1045–1050. https://doi.org/10.1016/j.jhazmat.2008.09.006

Wu, L. M., Lai, L., Lu, Q., Mei, P., Wang, Y. Q., Cheng, L., & Liu, Y. (2019). Comparative studies on the surface/interface properties and aggregation behavior of mono-rhamnolipid and di-rhamnolipid. Colloids and Surfaces B: Biointerfaces, 181, 593-601. https://doi.org/10.1016/j.colsurfb.2019.06.012

Xia, T., Ma, M., Huisman, J. A., Zheng, C., Gao, C., & Mao, D. (2023). Monitoring of in-situ chemical oxidation for remediation of diesel-contaminated soil with electrical resistivity tomography. Journal of Contaminant Hydrology, 256, 104170. https://doi.org/10.1016/j.jconhyd.2023.104170

Xu, Q., Nakajima, M., Ichikawa, S., Nakamura, N., Roy, P., Okadome, H., & Shiina, T. (2009). Effects of surfactant and electrolyte concentrations on bubble formation and stabilization. Journal of Colloid and Interface science, 332(1), 208-214. https://doi.org/10.1016/j.jcis.2008.12.044

Xu, Z., Li, B., Zhao, H., He, L., Liu, Z., Chen, D., ... & Li, Z. (2020). Investigation of the effect of nanoparticle-stabilized foam on EOR: nitrogen foam and methane foam. ACS Omega, 5(30), 19092-19103. https://doi.org/10.1021/acsomega.0c02434

Xue, S. W., Huang, C., Tian, Y. X., Li, Y. B., Li, J., & Ma, Y. L. (2020). Synergistic effect of rhamnolipids and inoculation on the bioremediation of petroleum-contaminated soils by bacterial consortia. Current Microbiology, 77, 997-1005. https://doi.org/10.1007/s00284-020-01899-3

Yang, W., Wang, T., Fan, Z., Miao, Q., Deng, Z., & Zhu, Y. (2017). Foams stabilized by in situ-modified nanoparticles and anionic surfactants for enhanced oil recovery. Energy & Fuels, 31(5), 4721-4730. https://doi.org/10.1021/acs.energyfuels.6b03217

Yekeen, N., Manan, M. A., Idris, A. K., & Samin, A. M. (2017). Influence of surfactant and electrolyte concentrations on surfactant Adsorption and foaming characteristics. Journal of Petroleum Science and Engineering, 149, 612-622. https://doi.org/10.1016/j.petrol.2016.11.018

Zhang, Y., Liu, Q., Ye, H., Yang, L., Luo, D., & Peng, B. (2021). Nanoparticles as foam stabilizer: Mechanism, control parameters and application in foam flooding for enhanced oil recovery. Journal of Petroleum Science and Engineering, 202, 108561. https://doi.org/10.1016/j.petrol.2021.108561

Zhu, Y., Wang, X., Zhang, Y., Chio, C., Qin, W., & Li, H. (2023). Surfactant-containing foam effectively enhanced the removal of polycyclic aromatic hydrocarbons from heavily contaminated soil. Bulletin of Environmental Contamination and Toxicology, 110(2), 50. https://doi.org/10.1007/s00128-022-03672-7

Graphical Abstract for Bio-nanocrystal Stabilized Biosurfactant Foams for Groundwater and Soil Remediation

Downloads

Published

2025-02-26

How to Cite

Orujov, A., Abedi, B., Wawrousek, K., & Aryana, S. A. (2025). Bio-nanocrystal Stabilized Biosurfactant Foams for Groundwater and Soil Remediation. InterPore Journal, 2(1), IPJ260225–5. https://doi.org/10.69631/ipj.v2i1nr36

Issue

Section

Original Research Papers