POREMAPS: A Finite Difference Based Porous Media Anisotropic Permeability Solver for Stokes flow
DOI:
https://doi.org/10.69631/ipj.v2i1nr39Keywords:
Pore-scale resolved modeling, Digital Rock Physics, Permeability, Finite Difference Method, Anisotropy, Micro X-Ray Computed Tomography (µXRCT)Abstract
Porous materials are ubiquitous in various engineering and geological applications, where their permeability plays a critical role in viscous fluid flow and transport phenomena. Understanding and characterizing the microscale properties, the effective hydraulic parameters, and also the anisotropy of porous materials are essential for accurate modeling and predicting fluid flow behavior. The study pursues the Digital Rock Physics approach to retrieve intrinsic permeability and its evolution in anisotropic configurations of porous media, which are subjected to pore space alterations. Therefore, we discuss the development and implementation of a computational framework based on the finite difference method to solve the pseudo-unsteady Stokes equations for fluid flow on the pore scale. We present an efficient and highly parallelized implementation of this numerical method for large voxel-based data sets originating from different image-based experimental setups. A comprehensive variety of benchmarks has been conducted to assess and evaluate the performance of the proposed solver. The solver's compatibility with huge domain sizes generated by state-of-the-art imaging techniques is demonstrated. We investigate an open-cell foam undergoing deformation, observing that contrary to initial expectations, no anisotropy emerges. Further, we examine a microfluidic cell experiencing precipitation within its pore space, resulting in clear anisotropic development during the clogging process.
Downloads
Metrics
References
Adler, P. M., Jacquin, C. G., & Quiblier, J. A. (1990). Flow in simulated porous media. International Journal of Multiphase Flow, 16(4), 691–712. https://doi.org/10.1016/0301-9322(90)90025-E
Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., et al. (2013a). Digital rock physics benchmarks—Part I: Imaging and segmentation. Computers & Geosciences, 50, 25–32. https://doi.org/10.1016/j.cageo.2012.09.005
Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., et al. (2013b). Digital rock physics benchmarks—part II: Computing effective properties. Computers & Geosciences, 50, 33–43. https://doi.org/10.1016/j.cageo.2012.09.008
Aziz, K., & Wong, T. (1989). Considerations in the development of multipurpose reservoir simulation models. In: Proceedings of the First and Second Forum on Reservoir Simulation, Alpbach, pp. 77–208.
Bakhshian, S., & Sahimi, M. (2016). Computer simulation of the effect of deformation on the morphology and flow properties of porous media. Physical Review E, 94(4), 042903. https://doi.org/10.1103/PhysRevE.94.042903
Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press. Bear, J. (1988). Dynamics of Fluids in Porous Media. Dover.
Bear, J., & Verruijt, A. (1987). Modeling Groundwater Flow and Pollution. Springer Science & Business Media.
Bentz, D., & Martys, N. (2007). A Stokes Permeability Solver for Three-Dimensional Porous Media (Techreport No. NISTIR 7416). https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7416.pdf
Bernard, D., Nielsen, Ø., Salvo, L., & Cloetens, P. (2005). Permeability assessment by 3D interdendritic flow simulations on microtomography mappings of Al–Cu alloys. Materials Science and Engineering: A, 392(1–2), 112–120. https://doi.org/10.1016/j.msea.2004.09.004
Blunt, M. J. (2017). Multiphase flow in permeable media (1st ed). Cambridge University Press.
Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., et al. (2013). Pore-scale imaging and modelling. Advances in Water Resources, 51, 197–216. https://doi.org/10.1016/j.advwatres.2012.03.003
Borujeni, A. T., Lane, N. M., Thompson, K., & Tyagi, M. (2013). Effects of image resolution and numerical resolution on computed permeability of consolidated packing using LB and FEM pore-scale simulations. Computers & Fluids, 88, 753–763. https://doi.org/10.1016/j.compfluid.2013.05.019
Burger, W., & Burge, M. J. (2016). Digital image processing: An algorithmic introduction using java (2nd ed. 2016). Springer London: Imprint: Springer.
Cantisano, M. T., Restrepo, D. P., Cespedes, S., Toelke, J., Grader, A., Suhrer, M., & Walls, J. (2013). Relative permeability in a shale formation in Colombia using digital rock physics. Unconventional Resources Technology Conference, Denver, Colorado, 12-14 August 2013, 909–915. https://doi.org/10.1190/urtec2013-092
Carman, P. C. (1997). Fluid flow through granular beds. Chemical Engineering Research and Design, 75, S32–S48. https://doi.org/10.1016/S0263-8762(97)80003-2
Chareyre, B., Cortis, A., Catalano, E., & Barthélemy, E. (2012). Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transport in Porous Media, 94(2), 595–615. https://doi.org/10.1007/s11242-012-0057-2
Chorin, A. J. (1967). A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 2(1), 12–26. https://doi.org/10.1016/0021-9991(67)90037-X
Darcy, H. (1856). Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau. Paris: Victor Dalmont.
Dawson, M. A., Germaine, J. T., & Gibson, L. J. (2007). Permeability of open-cell foams under compressive strain. International Journal of Solids and Structures, 44(16), 5133–5145. https://doi.org/10.1016/j.ijsolstr.2006.12.025
Dong, H., & Blunt, M. J. (2009). Pore-network extraction from micro-computerized-tomography images. Physical Review E, 80(3), 036307. https://doi.org/10.1103/PhysRevE.80.036307
Gerke, K. M., Vasilyev, R. V., Khirevich, S., Collins, D., Karsanina, M. V., et al. (2018). Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies. Computers & Geosciences, 114, 41–58. https://doi.org/10.1016/j.cageo.2018.01.005
Guibert, R., Horgue, P., Debenest, G., & Quintard, M. (2016). A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry. Mathematical Geosciences, 48(3), 329–347. https://doi.org/10.1007/s11004-015-9587-9
Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The Physics of Fluids, 8(12), 2182–2189. https://doi.org/10.1063/1.1761178
Helmig, R. (1997). Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer-Verlag.
Hilliard, Z., Evans, T. M., & Peszynska, M. (2024). Modeling flow and deformation in porous media from pore-scale to the Darcy-scale. Results in Applied Mathematics, 22, 100448. https://doi.org/10.1016/j.rinam.2024.100448
Holmes, D. W., Williams, J. R., Tilke, P., & Leonardi, C. R. (2016). Characterizing flow in oil reservoir rock using SPH: Absolute permeability. Computational Particle Mechanics, 3(2), 141–154. https://doi.org/10.1007/s40571-015-0038-7
Hommel, J., Gehring, L., Weinhardt, F., Ruf, M., & Steeb, H. (2022). Effects of enzymatically induced carbonate precipitation on capillary pressure–saturation relations. Minerals, 12(10), 1186. https://doi.org/10.3390/min12101186
Iassonov, P., Gebrenegus, T., & Tuller, M. (2009). Segmentation of X‐ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures. Water Resources Research, 45(9), 2009WR008087. https://doi.org/10.1029/2009WR008087
Icardi, M., Boccardo, G., Marchisio, D. L., Tosco, T., & Sethi, R. (2014). Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media. Physical Review E, 90(1), 013032. https://doi.org/10.1103/PhysRevE.90.013032
Jiang, F., & Tsuji, T. (2014). Changes in pore geometry and relative permeability caused by carbonate precipitation in porous media. Physical Review E, 90(5), 053306. https://doi.org/10.1103/PhysRevE.90.053306
Kozeny, J. (1927). Über die kapillare Leitung des Wassers im Boden. Sitzungberichte, Mathematik, Astronomie, Physik und Meteorologie, 136(2a) , 271–306.
Krach, D., Ruf, M., & Steeb, H. (2024). POREMAPS 1.0.0: Code, Benchmarks, Applications. DaRUS. https://doi.org/10.18419/DARUS-3676
Krach, D., & Steeb, H. (2023). Comparing methods for permeability computation of porous materials and their limitations. PAMM, 23(1), e202200225. https://doi.org/10.1002/pamm.202200225
Lemaitre, R., & Adler, P. M. (1990). Fractal porous media IV: Three-dimensional stokes flow through random media and regular fractals. Transport in Porous Media, 5(4), 325–340. https://doi.org/10.1007/BF01141990
Liao, Q., Wei, Z., Yan, Z., You, S., Cui, M., et al. (2024). Parallelizable permeability estimation of digital porous media for sandstone using subvolume properties for flow in porous media. Journal of Energy Engineering, 150(5), 04024023. https://doi.org/10.1061/JLEED9.EYENG-5390
Liu, J., Pereira, G. G., & Regenauer-Lieb, K. (2014). From characterisation of pore-structures to simulations of pore-scale fluid flow and the upscaling of permeability using microtomography: A case study of heterogeneous carbonates. Journal of Geochemical Exploration, 144, 84–96. https://doi.org/10.1016/j.gexplo.2014.01.021
Markert, B. (2007). A constitutive approach to 3-D nonlinear fluid flow through finite deformable porous continua: With application to a high-porosity polyurethane foam. Transport in Porous Media, 70(3), 427–450. https://doi.org/10.1007/s11242-007-9107-6
Math2Market GmbH, Becker, J., Biebl, F., Cheng, L., Glatt, E., et al. (2023). GeoDict Releases 2023. Math2Market GmbH. https://doi.org/10.30423/release.geodict2023
Message Passing Interface Forum. (2021). MPI: A message-passing interface standard version 4.0. Retrieved from https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
Noiriel, C., Steefel, C. I., Yang, L., & Bernard, D. (2016). Effects of pore-scale precipitation on permeability and flow. Advances in Water Resources, 95, 125–137. https://doi.org/10.1016/j.advwatres.2015.11.013
Osorno, M., Schirwon, M., Kijanski, N., Sivanesapillai, R., Steeb, H., & Göddeke, D. (2021). A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media. Computer Physics Communications, 267, 108059. https://doi.org/10.1016/j.cpc.2021.108059
Peyret, R., & Taylor, T. D. (1983). Computational methods for fluid flow. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-85952-6
Piovesan, A., Achille, C., Ameloot, R., Nicolai, B., & Verboven, P. (2019). Pore network model for permeability characterization of three-dimensionally-printed porous materials for passive microfluidics. Physical Review E, 99(3), 033107. https://doi.org/10.1103/PhysRevE.99.033107
Ruf, M., Lee, D., & Steeb, H. (2023). A multifunctional mechanical testing stage for micro x-ray computed tomography. Review of Scientific Instruments, 94(8), 085115. https://doi.org/10.1063/5.0153042
Ruf, M., & Steeb, H. (2020). An open, modular, and flexible micro X-ray computed tomography system for research. Review of Scientific Instruments, 91(11), 113102. https://doi.org/10.1063/5.0019541
Ruf, M., & Steeb, H. (2024). In situ micro-XRCT data set of an open-cell polyurethane foam sample under uniaxial compression load. DaRUS. https://doi.org/10.18419/DARUS-3010
Ruf, M., Steeb, H., & Karadimitriou, N. (2023). Visualization of the uniaxial compression of open-cell foams. In: Album of Porous Media: Structure and Dynamics, pp. 117–117. Springer.
Russ, J. C., & Neal, F. B. (2018). The image processing handbook (0 ed.). CRC Press. https://doi.org/10.1201/b18983
Saxena, N., Hofmann, R., Alpak, F. O., Berg, S., Dietderich, J., et al. (2017). References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks. Advances in Water Resources, 109, 211–235. https://doi.org/10.1016/j.advwatres.2017.09.007
Scheidegger, A. E. (1957). The Physics of Flow through Porous Media. University of Toronto press.
Schlüter, S., Sheppard, A., Brown, K., & Wildenschild, D. (2014). Image processing of multiphase images obtained via X‐ray microtomography: A review. Water Resources Research, 50(4), 3615–3639. https://doi.org/10.1002/2014WR015256
Stock, S. R. (2018). Microcomputed tomography: Methodology and applications (1st ed.). CRC Press. https://doi.org/10.1201/9781420058772
Tartakovsky, A. M., Trask, N., Pan, K., Jones, B., Pan, W., & Williams, J. R. (2016). Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media. Computational Geosciences, 20(4), 807–834. https://doi.org/10.1007/s10596-015-9468-9
Thomas, M., & Corry, B. (2016). A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2060), 20150020. https://doi.org/10.1098/rsta.2015.0020
Tuller, M., Kulkarni, R., & Fink, W. (2015). Segmentation of X-ray CT data of porous materials: A review of global and locally adaptive algorithms. In S. H. Anderson & J. W. Hopmans (Eds.), SSSA Special Publications (pp. 157–182). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssaspecpub61.c8
Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., et al. (2021). Permeability estimation of regular porous structures: A benchmark for comparison of methods. Transport in Porous Media, 138(1), 1–23. https://doi.org/10.1007/s11242-021-01586-2
Weinhardt, F. (2022). Porosity and permeability alterations in processes of biomineralization in porous media—Microfluidic investigations and their interpretation. Universität Stuttgart. https://doi.org/10.18419/OPUS-12822
Weinhardt, F., Class, H., Vahid Dastjerdi, S., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Experimental methods and imaging for enzymatically induced calcite precipitation in a microfluidic cell. Water Resources Research, 57(3), e2020WR029361. https://doi.org/10.1029/2020WR029361
Weinhardt, F., Deng, J., Hommel, J., Vahid Dastjerdi, S., Gerlach, R., Steeb, H., & Class, H. (2022). Spatiotemporal distribution of precipitates and mineral phase transition during biomineralization affect porosity–permeability relationships: Microfluidic investigations. Transport in Porous Media, 143(2), 527–549. https://doi.org/10.1007/s11242-022-01782-8
Weinhardt, F., Deng, J., Steeb, H., & Class, H. (2022). Optical microscopy and log data of enzymatically induced calcite precipitation (EICP) in microfluidic cells (Quasi-2D-structure). DaRUS. https://doi.org/10.18419/DARUS-1799
White, F. M., & Majdalani, J. (2006). Viscous Fluid Flow. McGraw-Hill New York.
Wildenschild, D., & Sheppard, A. P. (2013). X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217–246. https://doi.org/10.1016/j.advwatres.2012.07.018
Wildenschild, D., Vaz, C. M. P., Rivers, M. L., Rikard, D., & Christensen, B. S. B. (2002). Using X-ray computed tomography in hydrology: Systems, resolutions, and limitations. Journal of Hydrology, 267(3–4), 285–297. https://doi.org/10.1016/S0022-1694(02)00157-9
Withers, P. J., Bouman, C., Carmignato, S., Cnudde, V., Grimaldi, D., Hagen, C. K., Maire, E., Manley, M., Du Plessis, A., & Stock, S. R. (2021). X-ray computed tomography. Nature Reviews Methods Primers, 1(1), 18. https://doi.org/10.1038/s43586-021-00015-4

Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 David Krach, Matthias Ruf, Holger Steeb

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers 390740016 -
Deutsche Forschungsgemeinschaft
Grant numbers 357361983 -
Deutsche Forschungsgemeinschaft
Grant numbers 327154368