Inherent Errors in Current Core-Flooding Relative Permeability Data for Modelling Underground Hydrogen Storage
DOI:
https://doi.org/10.69631/ipj.v2i1nr42Keywords:
Hydrogen storage, Computational flow dynamics, Viscous fingering, H2/water relative permeabilityAbstract
In the design and optimization of an underground hydrogen (H2) storage facility in an aquifer or other reservoir system, the H2/water relative permeabilities (RP) are the most critical two-phase data for input to numerical simulation. In this paper, we present a critical analysis of the published experimental H2/water RP functions in the literature. We present fine-grid simulations of H2 displacing water (denoted H2 --> water) using three of the most widely cited steady-state RP datasets (13, 20, 38) in a mildly heterogeneous permeability field, at a field length scale of ~100m. Since the viscosity ratio between water and H2 is (µw/µH2) ≈ 70, then at some length scale above a few meters, it is inevitable that the system must show immiscible viscous fingering of the H2 into the water phase. Indeed, the emergence of viscous fingering at some length scale is a “sense check” that the input data used in the simulations are correct, especially the H2/water relative permeability functions.
In fact, none of the three published H2/water RP curves leads to viscous fingering. Instead, they all show stabilized flood fronts. The reasons for this are due to shortcomings of the (conventional) gas/liquid experimental methods used to obtain the RP functions. These methods yield RP functions at the wrong force balance between the capillary, gravity and viscous forces. For fingering to emerge, it is necessary to derive the viscous dominated RP functions. An alternative, more physically appropriate set of viscous dominated “fingering RP functions” is proposed and applied. When applied at the core scale, these new RP functions show fully dispersed flow, as they do when applied in a vertical (downwards) gravity stable displacement. However, the viscous fingering emerges naturally in horizontal flow as the length scale of the system increases and viscous forces become dominant.
Downloads
Metrics
References
Abdin, Z., Zafaranloo, A., Rafiee, A., Mérida, W., Lipiński, W., & Khalilpour, K. R. (2020). Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews, 120, 109620. https://doi.org/10.1016/j.rser.2019.109620
Andrews, J., & Shabani, B. (2012). Where does hydrogen fit in a sustainable energy economy? Procedia Engineering, 49, 15–25. https://doi.org/10.1016/j.proeng.2012.10.107
Aziz, K. and Settari, A. (1979) Petroleum reservoir simulation. Applied Science Publishers, London. ISBN 10: 0853347875 ISBN 13: 9780853347873
Bade, S. O., Taiwo, K., Ndulue, U. F., Tomomewo, O. S., & Aisosa Oni, B. (2024). A review of underground hydrogen storage systems: Current status, modeling approaches, challenges, and future prospective. International Journal of Hydrogen Energy, 80, 449–474. https://doi.org/10.1016/j.ijhydene.2024.07.187
Bahrami, M., Izadi Amiri, E., Zivar, D., Ayatollahi, S., & Mahani, H. (2023). Challenges in the simulation of underground hydrogen storage: A review of relative permeability and hysteresis in hydrogen-water system. Journal of Energy Storage, 73, 108886. https://doi.org/10.1016/j.est.2023.108886
Bennion, B., & Bachu, S. (2005). Relative permeability characteristics for supercritical CO2 displacing water in a variety of potential sequestration zones in the western Canada sedimentary basin. SPE Annual Technical Conference and Exhibition, SPE-95547-MS. https://doi.org/10.2118/95547-MS
Berg, S., & Ott, H. (2012). Stability of CO2–brine immiscible displacement. International Journal of Greenhouse Gas Control, 11, 188–203. https://doi.org/10.1016/j.ijggc.2012.07.001
Beteta, A., Sorbie, K. S., & McIver, K. (2024). Experimental observations and modeling of the effect of wettability on immiscible viscous fingers at the Darcy scale. Physics of Fluids, 36(4), 044111. https://doi.org/10.1063/5.0204036
Beteta, A., Sorbie, K. S., McIver, K., Johnson, G., Gasimov, R., & van Zeil, W. (2022). The role of immiscible fingering on the mechanism of secondary and tertiary polymer flooding of viscous oil. Transport in Porous Media, 143(2), 343–372. https://doi.org/10.1007/s11242-022-01774-8
Beteta, A., Sorbie, K. S., Skauge, A., & Skauge, T. (2024). Immiscible viscous fingering: The effects of wettability/capillarity and scaling. Transport in Porous Media, 151(1), 85–118. https://doi.org/10.1007/s11242-023-02034-z
Beteta, A., Wang, G., Sorbie, K. S., & Mackay, E. J. (2024). X-ray visualized unstable displacements of water by gas in sandstone slabs for subsurface gas storage. Physics of Fluids, 36(10), 102107. https://doi.org/10.1063/5.0224145
Bo, Z., Boon, M., Hajibeygi, H., & Hurter, S. (2023). Impact of experimentally measured relative permeability hysteresis on reservoir-scale performance of underground hydrogen storage (UHS). International Journal of Hydrogen Energy, 48(36), 13527–13542. https://doi.org/10.1016/j.ijhydene.2022.12.270
Boon, M., & Hajibeygi, H. (2022). Experimental characterization of H2/water multiphase flow in heterogeneous sandstone rock at the core scale relevant for underground hydrogen storage (UHS). Scientific Reports, 12(1), 14604. https://doi.org/10.1038/s41598-022-18759-8
Chen, X., Gao, S., Kianinejad, A., & DiCarlo, D. A. (2017). Steady‐state supercritical CO2 and brine relative permeability in Berea sandstone at different temperature and pressure conditions. Water Resources Research, 53(7), 6312–6321. https://doi.org/10.1002/2017WR020810
Honarpour, M., & Mahmood, S. M. (1988). Relative-permeability measurements: An overview. Journal of Petroleum Technology, 40(08), 963–966. https://doi.org/10.2118/18565-PA
Jerauld, G. R., Davis, H. T., & Scriven, L. E. (1984). Stability fronts of permanent form in immiscible displacement. SPE Annual Technical Conference and Exhibition, SPE-13164-MS. https://doi.org/10.2118/13164-MS
Jessen, K., Stenby, E. H., & Orr, F. M. (2004). Interplay of phase behavior and numerical dispersion in finite-difference compositional simulation. SPE Journal, 9(02), 193–201. https://doi.org/10.2118/88362-PA
Johnson, E. F., Bossler, D. P., & Bossler, V. O. N. (1959). Calculation of relative permeability from displacement experiments. Transactions of the AIME, 216(01), 370–372. https://doi.org/10.2118/1023-G
Kianinejad, A., Chen, X., & DiCarlo, D. A. (2016). Direct measurement of relative permeability in rocks from unsteady-state saturation profiles. Advances in Water Resources, 94, 1–10. https://doi.org/10.1016/j.advwatres.2016.04.018
Lysyy, M., Føyen, T., Johannesen, E. B., Fernø, M., & Ersland, G. (2022). Hydrogen relative permeability hysteresis in underground storage. Geophysical Research Letters, 49(17), e2022GL100364. https://doi.org/10.1029/2022GL100364
McPhee, C., Reed, J. and Zubizarreta, I. (2015). Chapter 10: Relative Permeability. In: Mcphee, C., Reed, J. and Zubizarreta, I. (eds.). Developments in Petroleum Science, (64). Elsevier, pp. 519-653.
Peaceman, D. W. (1977). Fundamentals of numerical reservoir simulation. Elsevier Scientific Pub. Co. Distributors for the U.S. and Canada, Elsevier North-Holland.
Peng, D.-Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64. https://doi.org/10.1021/i160057a011
Pinder, G. F., Gray, G. G. (2008). Essentials of Multiphase Flow and Transport in Porous Media. Wiley. ISBN: 978-0-470-38079-6
Rapoport, L. A. (1955). Scaling laws for use in design and operation of water-oil flow models. Transactions of the AIME, 204(01), 143–150. https://doi.org/10.2118/415-G
Rezaei, A., Hassanpouryouzband, A., Molnar, I., Derikvand, Z., Haszeldine, R. S., & Edlmann, K. (2022). Relative permeability of hydrogen and aqueous brines in sandstones and carbonates at reservoir conditions. Geophysical Research Letters, 49(12), e2022GL099433. https://doi.org/10.1029/2022GL099433
Riaz, A., & Tchelepi, H. A. (2006). Numerical simulation of immiscible two-phase flow in porous media. Physics of Fluids, 18(1), 014104. https://doi.org/10.1063/1.2166388
Salmo, I. C., Sorbie, K. S., Skauge, A., & Alzaabi, M. A. (2022). Immiscible viscous fingering: Modelling unstable water–oil displacement experiments in porous media. Transport in Porous Media, 145(2), 291–322. https://doi.org/10.1007/s11242-022-01847-8
Schlumberger (2022). Petrel technical manual. Schlumberger Limited.
Skauge, A., Skauge, T., Sorbie, K. S., Bourgeois, M. J., & Chang, P. L. K. C. (2022). Impact of viscous instabilities on wag displacement. Paper presented at the ADIPEC, Abu Dhabi, UAE, October 2022. Paper Number: SPE-211448-MS, D041S127R003. https://doi.org/10.2118/211448-MS
Sorbie, K. S., Al Ghafri, A. Y., Skauge, A., & Mackay, E. J. (2020). On the modelling of immiscible viscous fingering in two-phase flow in porous media. Transport in Porous Media, 135(2), 331–359. https://doi.org/10.1007/s11242-020-01479-w
Taber, J. J., Martin, F. D., & Seright, R. S. (1997). EOR screening criteria revisited— part 1: Introduction to screening criteria and enhanced recovery field projects. SPE Reservoir Engineering, 12(03), 189–198. https://doi.org/10.2118/35385-PA
Tarkowski, R., & Uliasz-Misiak, B. (2022). Towards underground hydrogen storage: A review of barriers. Renewable and Sustainable Energy Reviews, 162, 112451. https://doi.org/10.1016/j.rser.2022.112451
Wang, G., Pickup, G. E., Sorbie, K. S., & Mackay, E. J. (2022a). Driving factors for purity of withdrawn hydrogen: A numerical study of underground hydrogen storage with various cushion gases. SPE EuropEC - Europe Energy Conference Featured at the 83rd EAGE Annual Conference & Exhibition, D021S001R001. https://doi.org/10.2118/209625-MS
Wang, G., Pickup, G., Sorbie, K., & Mackay, E. (2022b). Numerical modelling of H2 storage with cushion gas of CO2 in subsurface porous media: Filter effects of CO2 solubility. International Journal of Hydrogen Energy, 47(67), 28956–28968. https://doi.org/10.1016/j.ijhydene.2022.06.201
Wang, G., Pickup, G., Sorbie, K., & Mackay, E. (2022c). Scaling analysis of hydrogen flow with carbon dioxide cushion gas in subsurface heterogeneous porous media. International Journal of Hydrogen Energy, 47(3), 1752–1764. https://doi.org/10.1016/j.ijhydene.2021.10.224
Wu, Y.-S. (2015) Multiphase fluid flow in porous and fractured reservoirs. Paperback ISBN: 97801280384829 7 8-0-12-803848–2; eBook ISBN: 9780128039113
Yekta, A. E., Manceau, J.-C., Gaboreau, S., Pichavant, M., & Audigane, P. (2018). Determination of hydrogen–water relative permeability and capillary pressure in sandstone: Application to underground hydrogen injection in sedimentary formations. Transport in Porous Media, 122(2), 333–356. https://doi.org/10.1007/s11242-018-1004-7
Yortsos, Y. C., & Hickernell, F. J. (1989). Linear stability of immiscible displacement in porous media. SIAM Journal on Applied Mathematics, 49(3), 730–748. https://doi.org/10.1137/0149043
Zivar, D., Kumar, S., & Foroozesh, J. (2021). Underground hydrogen storage: A comprehensive review. International Journal of Hydrogen Energy, 46(45), 23436–23462. https://doi.org/10.1016/j.ijhydene.2020.08.138

Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gang Wang, Alan Beteta, Kenneth Sorbie, Eric Mackay

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.