Exploring chances and limitations of high resolution 3D-printing for guided water percolation in gas diffusion layers of polymer electrolyte fuel cells
DOI:
https://doi.org/10.69631/ipj.v1i3nr43Keywords:
3D printing, Fuel cells, Polymer electrolyte fuel cells, PEFC, Water transportAbstract
In polymer electrolyte fuel cells (PEFC), the design of the porous materials is of significant interest due to their crucial role in determining the cell performance. Additive manufacturing (AM) has emerged as a feasible method for producing complex structures, offering precision and customization which cannot be achieved by conventional manufacturing techniques. This study explores the potential of high-resolution 3D-printing to produce gas diffusion layers (GDL) specifically tailored for polymer electrolyte fuel cells. We demonstrate the advantages of the method, such as its ability to create complex features in a 3-dimensional framework, as well as the challenges it faces, including the accuracy, reliability, and handling of the sample. The findings highlight both the promising capabilities and the current limitations of additive manufacturing of GDL, providing insights into future research directions and technological enhancements required to fully leverage AM to produce next generation porous materials.
Downloads
Metrics
References
Balakrishnan, M., Shrestha, P., Ge, N., Lee, C., Fahy, K. F., Zeis, R., Schulz, V. P., Hatton, B. D., & Bazylak, A. (2020). Designing tailored gas diffusion layers with pore size gradients via electrospinning for polymer electrolyte membrane fuel cells. ACS Applied Energy Materials, 3(3), 2695–2707. https://doi.org/10.1021/acsaem.9b02371 DOI: https://doi.org/10.1021/acsaem.9b02371
Bazylak, A., Sinton, D., Liu, Z.-S., & Djilali, N. (2007). Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. Journal of Power Sources, 163(2), 784–792. https://doi.org/10.1016/j.jpowsour.2006.09.045 DOI: https://doi.org/10.1016/j.jpowsour.2006.09.045
Beck, V. A., Ivanovskaya, A. N., Chandrasekaran, S., Forien, J.-B., Baker, S. E., Duoss, E. B., & Worsley, M. A. (2021). Inertially enhanced mass transport using 3D-printed porous flow-through electrodes with periodic lattice structures. Proceedings of the National Academy of Sciences, 118(32), e2025562118. https://doi.org/10.1073/pnas.2025562118 DOI: https://doi.org/10.1073/pnas.2025562118
Blunt, M. J., Bazylak, A., Brook, M., Muggeridge, A., & Orr, F. M. (2024). Research needs in porous media for the energy transition. InterPore Journal, 1(1), ipj260424-2. https://doi.org/10.69631/ipj.v1i1nr14 DOI: https://doi.org/10.69631/ipj.v1i1nr14
Boston Microfabrication (BMF) (Document created 30 Jan 2024).HTL Resin Data sheet. https://bmf3d.com/wp-content/uploads/2024/02/24-BMF-0029-Data-Sheet-Updates-HTL-Resin-PRINT-V2.pdf
Chaudhary, R., Fabbri, P., Leoni, E., Mazzanti, F., Akbari, R., & Antonini, C. (2023). Additive manufacturing by digital light processing: A review. Progress in Additive Manufacturing, 8(2), 331–351. https://doi.org/10.1007/s40964-022-00336-0 DOI: https://doi.org/10.1007/s40964-022-00336-0
Chen, Y.-C., Berger, A., De Angelis, S., Schuler, T., Bozzetti, M., Eller, J., Tileli, V., Schmidt, T. J., & Büchi, F. N. (2021). A method for spatial quantification of water in microporous layers of polymer electrolyte fuel cells by x-ray tomographic microscopy. ACS Applied Materials & Interfaces, 13(14), 16227–16237. https://doi.org/10.1021/acsami.0c22358 DOI: https://doi.org/10.1021/acsami.0c22358
Chen, Y.-C., Karageorgiou, C., Eller, J., Schmidt, T. J., & Büchi, F. N. (2022). Determination of the porosity and its heterogeneity of fuel cell microporous layers by x-ray tomographic microscopy. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4058912 DOI: https://doi.org/10.2139/ssrn.4058912
Csoklich, C., Steim, R., Marone, F., Schmidt, T. J., & Büchi, F. N. (2021). Gas diffusion layers with deterministic structure for high performance polymer electrolyte fuel cells. ACS Applied Materials & Interfaces, 13(8), 9908–9918. https://doi.org/10.1021/acsami.0c20896 DOI: https://doi.org/10.1021/acsami.0c20896
Csoklich, C., Xu, H., Marone, F., Schmidt, T. J., & Büchi, F. N. (2021). Laser structured gas diffusion layers for improved water transport and fuel cell performance. ACS Applied Energy Materials, 4(11), 12808–12818. https://doi.org/10.1021/acsaem.1c02454 DOI: https://doi.org/10.1021/acsaem.1c02454
Deevanhxay, P., Sasabe, T., Tsushima, S., & Hirai, S. (2011). Investigation of water accumulation and discharge behaviors with variation of current density in PEMFC by high-resolution soft X-ray radiography. International Journal of Hydrogen Energy, 36(17), 10901–10907. https://doi.org/10.1016/j.ijhydene.2011.05.160 DOI: https://doi.org/10.1016/j.ijhydene.2011.05.160
Egan, P., Wang, X., Greutert, H., Shea, K., Wuertz-Kozak, K., & Ferguson, S. (2019). Mechanical and biological characterization of 3D printed lattices. 3D Printing and Additive Manufacturing, 6(2), 73–81. https://doi.org/10.1089/3dp.2018.0125 DOI: https://doi.org/10.1089/3dp.2018.0125
Forner-Cuenca, A., Biesdorf, J., Lamibrac, A., Manzi-Orezzoli, V., Büchi, F. N., Gubler, L., Schmidt, T. J., & Boillat, P. (2016). Advanced water management in PEFCS: Diffusion layers with patterned wettability: II. Measurement of capillary pressure characteristic with neutron and synchrotron imaging. Journal of The Electrochemical Society, 163(9), F1038–F1048. https://doi.org/10.1149/2.0511609jes DOI: https://doi.org/10.1149/2.0511609jes
Forner-Cuenca, A., Manzi-Orezzoli, V., Biesdorf, J., Kazzi, M. E., Streich, D., Gubler, L., Schmidt, T. J., & Boillat, P. (2016). Advanced water management in PEFCS: Diffusion layers with patterned wettability: I. Synthetic routes, wettability tuning and thermal stability. Journal of The Electrochemical Society, 163(8), F788–F801. https://doi.org/10.1149/2.0271608jes DOI: https://doi.org/10.1149/2.0271608jes
Fox, H. W., & Zisman, W. A. (1950). The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene. Journal of Colloid Science, 5(6), 514–531. https://doi.org/10.1016/0095-8522(50)90044-4 DOI: https://doi.org/10.1016/0095-8522(50)90044-4
Ge, Q., Li, Z., Wang, Z., Kowsari, K., Zhang, W., He, X., Zhou, J., & Fang, N. X. (2020). Projection micro stereolithography based 3D printing and its applications. International Journal of Extreme Manufacturing, 2(2), 022004. https://doi.org/10.1088/2631-7990/ab8d9a DOI: https://doi.org/10.1088/2631-7990/ab8d9a
Huang, B., Wang, X., Li, W., Tian, W., Luo, L., et al. (2023). Accelerating gas escape in anion exchange membrane water electrolysis by gas diffusion layers with hierarchical grid gradients. Angewandte Chemie, 135(33), e202304230. https://doi.org/10.1002/ange.202304230 DOI: https://doi.org/10.1002/ange.202304230
Ihonen, J., Mikkola, M., & Lindbergh, G. (2004). Flooding of gas diffusion backing in PEFCS. Journal of The Electrochemical Society, 151(8), A1152. https://doi.org/10.1149/1.1763138 DOI: https://doi.org/10.1149/1.1763138
Jian, Y., He, Y., Jiang, T., Li, C., Yang, W., & Nie, J. (2012). Polymerization shrinkage of (Meth)acrylate determined by reflective laser beam scanning. Journal of Polymer Science Part B: Polymer Physics, 50(13), 923–928. https://doi.org/10.1002/polb.23086 DOI: https://doi.org/10.1002/polb.23086
Karalekas, D., & Aggelopoulos, A. (2003). Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin. Journal of Materials Processing Technology, 136(1–3), 146–150. https://doi.org/10.1016/S0924-0136(03)00028-1 DOI: https://doi.org/10.1016/S0924-0136(03)00028-1
Lakhtakia, A., & Martín-Palma, R. J. (Eds.). (2013). Engineered biomimicry. In: Engineered Biomimicry (p. i). Elsevier. https://doi.org/10.1016/B978-0-12-415995-2.00019-2 DOI: https://doi.org/10.1016/B978-0-12-415995-2.00019-2
Lamibrac, A., Roth, J., Toulec, M., Marone, F., Stampanoni, M., & Büchi, F. N. (2016). Characterization of liquid water saturation in gas diffusion layers by x-ray tomographic microscopy. Journal of The Electrochemical Society, 163(3), F202–F209. https://doi.org/10.1149/2.0401603jes DOI: https://doi.org/10.1149/2.0401603jes
Li, X., Kang, X., Xiao, H., & Duan, Y. (2022). Low adhesion continuous constrained-surface projection stereolithography process based on curing degree control. Additive Manufacturing, 54, 102743. https://doi.org/10.1016/j.addma.2022.102743 DOI: https://doi.org/10.1016/j.addma.2022.102743
Mathias, M.F., Roth, J., Fleming, J. and Lehnert, W. (2010). Diffusion media materials and characterisation. In: Handbook of Fuel Cells. John Wiley & Sons, Ltd. Print ISBN: 9780470741511| Online ISBN: 9780470974001| https://doi.org/10.1002/9780470974001.f303046 DOI: https://doi.org/10.1002/9780470974001.f303046
Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050 DOI: https://doi.org/10.1016/j.biomaterials.2010.04.050
Mularczyk, A., Lin, Q., Niblett, D., Vasile, A., Blunt, M. J., Niasar, V., Marone, F., Schmidt, T. J., Büchi, F. N., & Eller, J. (2021). Operando liquid pressure determination in polymer electrolyte fuel cells. ACS Applied Materials & Interfaces, 13(29), 34003–34011. https://doi.org/10.1021/acsami.1c04560 DOI: https://doi.org/10.1021/acsami.1c04560
Niblett, D., Guo, Z., Holmes, S., Niasar, V., & Prosser, R. (2022). Utilization of 3D printed carbon gas diffusion layers in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 47(55), 23393–23410. https://doi.org/10.1016/j.ijhydene.2022.05.134 DOI: https://doi.org/10.1016/j.ijhydene.2022.05.134
Niblett, D., Mularczyk, A., Niasar, V., Eller, J., & Holmes, S. (2020). Two-phase flow dynamics in a gas diffusion layer—Gas channel—Microporous layer system. Journal of Power Sources, 471, 228427. https://doi.org/10.1016/j.jpowsour.2020.228427 DOI: https://doi.org/10.1016/j.jpowsour.2020.228427
Niblett, D., Niasar, V., & Holmes, S. (2020). Enhancing the performance of fuel cell gas diffusion layers using ordered microstructural design. Journal of The Electrochemical Society, 167(1), 013520. https://doi.org/10.1149/2.0202001JES DOI: https://doi.org/10.1149/2.0202001JES
Okonkwo, P. C., & Otor, C. (2021). A review of gas diffusion layer properties and water management in proton exchange membrane fuel cell system. International Journal of Energy Research, 45(3), 3780–3800. https://doi.org/10.1002/er.6227 DOI: https://doi.org/10.1002/er.6227
Pan, Y., He, H., Xu, J., & Feinerman, A. (2017). Study of separation force in constrained surface projection stereolithography. Rapid Prototyping Journal, 23(2), 353–361. https://doi.org/10.1108/RPJ-12-2015-0188 DOI: https://doi.org/10.1108/RPJ-12-2015-0188
Soreni-Harari, M., St. Pierre, R., McCue, C., Moreno, K., & Bergbreiter, S. (2020). Multimaterial 3D printing for microrobotic mechanisms. Soft Robotics, 7(1), 59–67. https://doi.org/10.1089/soro.2018.0147 DOI: https://doi.org/10.1089/soro.2018.0147
Taale, M., Schamberger, B., Monclus, M. A., Dolle, C., Taheri, F., Mager, D., Eggeler, Y. M., Korvink, J. G., Molina‐Aldareguia, J. M., Selhuber‐Unkel, C., Lantada, A. D., & Islam, M. (2024). Microarchitected compliant scaffolds of pyrolytic carbon for 3D muscle cell growth. Advanced Healthcare Materials, 13(9), 2303485. https://doi.org/10.1002/adhm.202303485 DOI: https://doi.org/10.1002/adhm.202303485
Xu, H., Bührer, M., Marone, F., Schmidt, T. J., Büchi, F. N., Eller, J. (2021). Effects of Gas Diffusion Layer Substrates on PEFC Water Management: Part I. Operando Liquid Water Saturation and Gas Diffusion Properties. Journal of The Electrochemical Society, 168, 074505. https://doi.org/10.1149/1945-7111/ac1035 DOI: https://doi.org/10.1149/1945-7111/ac1035
Van Der Heijden, M., Kroese, M., Borneman, Z., & Forner‐Cuenca, A. (2023). Investigating mass transfer relationships in stereolithography 3d printed electrodes for redox flow batteries. Advanced Materials Technologies, 8(18), 2300611. https://doi.org/10.1002/admt.202300611 DOI: https://doi.org/10.1002/admt.202300611
Wang, X. L., Qu, Z. G., Lai, T., Ren, G. F., & Wang, W. K. (2022). Enhancing water transport performance of gas diffusion layers through coupling manipulation of pore structure and hydrophobicity. Journal of Power Sources, 525, 231121. https://doi.org/10.1016/j.jpowsour.2022.231121 DOI: https://doi.org/10.1016/j.jpowsour.2022.231121
Wen, Q., Pan, S., Li, Y., Bai, C., Shen, M., Jin, H., Ning, F., Fu, X., & Zhou, X. (2022). Janus gas diffusion layer for enhanced water management in proton exchange membrane fuel cells (PEMFCS). ACS Energy Letters, 7(11), 3900–3909. https://doi.org/10.1021/acsenergylett.2c02012 DOI: https://doi.org/10.1021/acsenergylett.2c02012
Zalitis, C. M., Kramer, D., & Kucernak, A. R. (2013). Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport. Physical Chemistry Chemical Physics, 15(12), 4329. https://doi.org/10.1039/c3cp44431g DOI: https://doi.org/10.1039/c3cp44431g
Zhang, Q., Weng, S., Hamel, C. M., Montgomery, S. M., Wu, J., Kuang, X., Zhou, K., & Qi, H. J. (2021). Design for the reduction of volume shrinkage-induced distortion in digital light processing 3D printing. Extreme Mechanics Letters, 48, 101403. https://doi.org/10.1016/j.eml.2021.101403 DOI: https://doi.org/10.1016/j.eml.2021.101403
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tim Dörenkamp, Felix N. Büchi, Thomas J. Schmidt, Jens Eller

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.