The soil plastisphere: The nexus of microplastics, bacteria, and biofilms
DOI:
https://doi.org/10.69631/ipj.v1i3nr50Keywords:
Microplastics, Biofilms, Bacterial ecosystems, PlastisphereAbstract
Bacteria are one of the oldest life forms on Earth, dating back to more than 3.5 billion years ago. They control the global cycling of carbon, nitrogen, and oxygen. They provide plants, fungi and other organisms with the necessary nutrients and elements. They help us digest our food, protect us against pathogens, and even affect our behavior. Microplastics, however, have disrupted the bacterial ecosystems across the globe, from the soil to the oceans. Microplastics are tiny plastic particles formed as a result of the breakdown of the consumer products and plastic waste. Due to their stability and persistence, they can travel long distances in the soil and subsurface environments, ultimately making their way to the water resources, rivers, and oceans. In this journey, they interact with bacteria and other micro/macro-organisms, become ingested or colonized, and act as carriers for contaminants and pathogens. How and whether bacteria adapt to these new microplastic-rich ecosystems are open questions with far-reaching implications for the health of our planet and us. Therefore, there is an urgent need for improving our fundamental understanding of bacterial interactions with the microplastics in complex environments. In this commentary, we focus on the nexus of bacteria, biofilms, and microplastics, also known as the “plastisphere”, and discuss the challenges and opportunities.
Downloads
Metrics
References
Adadevoh, J. S. T., Ramsburg, C. A., Ford, R. M. (2018). Chemotaxis increases the retention of bacteria in porous media with residual NAPL entrapment. Environmental Science & Technology, 52(13):7289–7295. https://doi.org/10.1021/acs.est.8b01172
Adadevoh, J. S. T., Triolo, S., Ramsburg, C. A., Ford, R. M. (2016). Chemotaxis increases the residence time of bacteria in granular media containing distributed contaminant sources. Environmental Science & Technology, 50(1):181–187. https://doi.org/10.1021/acs.est.5b03956
Adler, J. (1969). Chemoreceptors in Bacteria: Studies of chemotaxis reveal systems that detect attractants independently of their metabolism. Science, 166(3913), 1588–1597. https://doi.org/10.1126/science.166.3913.1588
Al Harraq, A., Bharti, B. (2022). Microplastics through the lens of colloid science. ACS Environmental Au, 2(1):3–10. https://doi.org/10.1021/acsenvironau.1c00016
Al Harraq, A., Brahana, P. J., Arcemont, O., et al. (2022). Effects of weathering on microplastic dispersibility and pollutant uptake capacity. ACS Environmental Au, 2(6):549–555. https://doi.org/10.1021/acsenvironau.2c00036
Alcolombri, U., Peaudecerf, F. J., Fernandez, V. I., et al. (2021). Sinking enhances the degradation of organic particles by marine bacteria. Nature Geoscience, 14(10):775–780. https://doi.org/10.1038/s41561-021-00817-x
Alimi, O. S., Farner Budarz, J., Hernandez, L. M., Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52(4):1704–1724. https://doi.org/10.1021/acs.est.7b05559
Alipour, M., Li, Y., Liu, H., Pahlavan, A. (2024). Diffusiophoretic transport of colloids in porous media. arXiv. https://arxiv.org/abs/2411.14712
Allen, R. J., & Waclaw, B. (2018). Bacterial growth: a statistical physicist’s guide. Reports on Progress in Physics, 82(1):016601. https://doi.org/10.1088/1361-6633/aae546
Amaral-Zettler, L. A., Zettler, E. R., & Mincer, T. J. (2020). Ecology of the plastisphere. Nature Reviews Microbiology, 18(3):139–151. https://doi.org/10.1038/s41579-019-0308-0
Anderson, J. L. (1989). Colloid transport by interfacial forces. Annual Review of Fluid Mechanics, 21(Volume 21, 1989):61–99. https://doi.org/10.1146/annurev.fl.21.010189.000425
Aralappanavar, V. K., Mukhopadhyay, R., Yu, Y., Liu, J., Bhatnagar, A., et al (2024). Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling –a review. Science of The Total Environment, 924:171435. https://doi.org/10.1016/j.scitotenv.2024.171435
Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R., e al (2021). Bacillus subtilis biofilm formation and social interactions. Nature Reviews Microbiology, 19(9):600–614. https://doi.org/10.1038/s41579-021-00540-9
Ault, J. T. and Shin, S. (2024). Physicochemical hydrodynamics of particle diffusiophoresis driven by chemical gradients. Annual Review of Fluid Mechanics. Under Review. https://doi.org/10.1146/annurev-fluid-030424-110950
Berg, H. (1975). Chemotaxis in bacteria. Annual review of biophysics and bioengineering, 4(00):119—136. https://doi.org/10.1146/annurev.bb.04.060175.001003
Berg, H. C., Purcell, E. M. (1977). Physics of chemoreception. Biophysical Journal, 20(2):193– 219. https://doi.org/10.1016/s0006-3495(77)85544-6
Beroz, F., Yan, J., Meir, Y., et al. (2018). Verticalization of bacterial biofilms. Nature Physics, 14(9):954–960. https://doi.org/10.1038/s41567-018-0170-4
Bhattacharjee, T., Amchin, D. B., Ott, J. A., et al. (2021). Chemotactic migration of bacteria in porous media. Biophysical Journal, 120(16):3483–3497. https://doi.org/10.1016/j.bpj.2021.05.012
Bhattacharjee, T. and Datta, S. S. (2019). Bacterial hopping and trapping in porous media. Nature Communications, 10(1):2075. https://doi.org/10.1038/s41467-019-10115-1
Bian, X., Kim, C., and Karniadakis, G. E. (2016). 111 years of brownian motion. Soft Matter, 12:6331–6346. https://doi.org/10.1039/C6SM01153E
Bizmark, N., Schneider, J., Priestley, R. D., and Datta, S. S. (2020). Multiscale dynamics of colloidal deposition and erosion in porous media. Science Advances, 6(46):eabc2530. https://doi.org/10.1126/sciadv.abc2530
Boots, B., Russell, C. W., and Green, D. S. (2019). Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology, 53(19):11496–11506. https://doi.org/10.1021/acs.est.9b03304
Bordoloi, A. D., Scheidweiler, D., Dentz, M., et al. (2022). Structure induced laminar vortices control anomalous dispersion in porous media. Nature Communications, 13(1):3820. https://doi.org/10.1038/s41467-022-31552-5
Borrelle, S. B., Ringma, J., Law, K. Let al. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6510):1515–1518. https://doi.org/10.1126/science.aba3656
Borrelle, S. B., Rochman, C. M., Liboiron, M., et al. (2017). Why we need an international agreement on marine plastic pollution. Proceedings of the National Academy of Sciences, 114(38):9994–9997. https://doi.org/10.1073/pnas.1714450114
Bradford, S. A., Bettahar, M., Simunek, J., and van Genuchten, M. T. (2004). Straining and attachment of colloids in physically heterogeneous porous media. Vadose Zone Journal, 3(2):384–394. https://doi.org/10.2136/vzj2004.0384
Bradford, S. A., Morales, V. L., Zhang, W., et al. (2013). Transport and fate of microbial pathogens in agricultural settings. Critical Reviews in Environmental Science and Technology, 43(8):775–893. https://doi.org/10.1080/10643389.2012.710449
Bradford, S. A., Yates, S. R., Bettahar, M., and Simunek, J. (2002). Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 38(12):1327. https://doi.org/10.1029/2002WR001340
Bravo, P., Ng, S. L., MacGillivray, K. A., et al. (2023). Vertical growth dynamics of biofilms. Proceedings of the National Academy of Sciences, 120(11):e2214211120. https://doi.org/10.1073/pnas.2214211120
Brown, R. (1828). XXVII. a brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. The Philosophical Magazine, 4(21):161–173. https://doi.org/10.1080/14786442808674769
Camesano, T. A. and Logan, B. E. (1998). Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media. Environmental Science & Technology, 32(11):1699–1708.
Carniello, V., Peterson, B. W., van der Mei, H. C., and Busscher, H. J. (2018). Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Advances in Colloid and Interface Science, 261:1–14. https://doi.org/10.1016/j.cis.2018.10.005
Carrel, M., Morales, V. L., Beltran, M. A., et al. (2018a). Biofilms in 3d porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development. Water Research, 134:280–291. https://www.sciencedirect.com/science/article/pii/S0043135418300733
Carrel, M., Morales, V. L., Dentz, M., et al. (2018b). Pore-scale hydrodynamics in a progressively bioclogged three-dimensional porous medium: 3-D particle tracking experiments and stochastic transport modeling. Water Resources Research, 54(3):2183– 2198. https://doi.org/10.1002/2017WR021726
Ceriotti, G., Borisov, S. M., Berg, J. S., and de Anna, P. (2022). Morphology and size of bacterial colonies control anoxic microenvironment formation in porous media. Environmental Science & Technology, 56(23):17471–17480. https://doi.org/10.1021/acs.est.2c05842
Chai, L., Zaburdaev, V., and Kolter, R. (2024). How bacteria actively use passive physics to make biofilms. Proceedings of the National Academy of Sciences, 121(40):e2403842121. https://doi.org/10.1073/pnas.2403842121
Chajwa, R., Flaum, E., Bidle, K. D., et al. (2024). Hidden comet tails of marine snow impede ocean-based carbon sequestration. Science, 386(6718):eadl5767. https://doi.org/10.1126/science.adl5767
Choi, O. and Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science & Technology, 42(12):4583–4588. https://doi.org/10.1021/es703238h
Chopra, P., Quint, D., Gopinathan, A., and Liu, B. (2022). Geometric effects induce anomalous size-dependent active transport in structured environments. Phys. Rev. Fluids, 7:L071101. https://doi.org/10.1103/PhysRevFluids.7.L071101
Claessen, D., Rozen, D. E., Kuipers, O. P., et al. (2014). Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nature Reviews Microbiology, 12(2):115–124. https://doi.org/10.1038/nrmicro3178
Coyte, K. Z., Tabuteau, H., Gaffney, E. A., et al. (2017). Microbial competition in porous environments can select against rapid biofilm growth. Proceedings of the National Academy of Sciences, 114(2):E161–E170. https://doi.org/10.1073/pnas.1525228113
Cramer, A., Benard, P., Zarebanadkouki, M., et al. (2023). Microplastic induces soil water repellency and limits capillary flow. Vadose Zone Journal, 22(1):e20215. http://dx.doi.org/10.1002/vzj2.20215
Cremer, J., Honda, T., Tang, Y., et al. (2019). Chemotaxis as a navigation strategy to boost range expansion. Nature, 575(7784):658–663. https://doi.org/10.1038/s41586-019-1733-y
Creppy, A., Clément, E., Douarche, C., et al. (2019). Effect of motility on the transport of bacteria populations through a porous medium. Phys. Rev. Fluids, 4:013102. https://doi.org/10.1103/PhysRevFluids.4.013102
Crossman, J., Hurley, R. R., Futter, M., and Nizzetto, L. (2020). Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Science of The Total Environment, 724:138334. https://doi.org/10.1016/j.scitotenv.2020.138334
Croze, O. A., Ferguson, G. P., Cates, M. E., and Poon, W. C. K. (2011). Migration of chemotactic bacteria in soft agar: Role of gel concentration. Biophysical Journal, 101(3):525–534. https://doi.org/10.1016/j.bpj.2011.06.023
Cryan, J. F. and Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13(10):701–712. https://doi.org/10.1038/nrn3346
Davit, Y., Byrne, H., Osborne, J., et al. (2013). Hydrodynamic dispersion within porous biofilms. Phys. Rev. E, 87:012718. https://doi.org/10.1103/PhysRevE.87.012718
de Anna, P., Pahlavan, A. A., Yawata, Y., et al. (2021). Chemotaxis under flow disorder shapes microbial dispersion in porous media. Nature Physics, 17(1):68–73. https://doi.org/10.1038/s41567-020-1002-x
de Souza Machado, A. A., Kloas, W., Zarfl, C., et al. (2018a). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4):1405–1416. https://doi.org/10.1111/gcb.14020
de Souza Machado, A. A., Lau, C. W., Kloas, W., et al. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10):6044–6052. https://doi.org/10.1021/acs.est.9b01339
de Souza Machado, A. A., Lau, C. W., Till, J., et al. (2018b). Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52(17):9656–9665. https://doi.org/10.1021/acs.est.8b02212
Dehkharghani, A., Waisbord, N., Dunkel, J., and Guasto, J. S. (2019). Bacterial scattering in microfluidic crystal flows reveals giant active taylor–aris dispersion. Proceedings of the National Academy of Sciences, 116(23):11119–11124. https://doi.org/10.1073/pnas.1819613116
Delarue, M., Hartung, J., Schreck, C., et al. (2016). Self-driven jamming in growing microbial populations. Nature Physics, 12(8):762–766. https://doi.org/10.1038/nphys3741
Dentz, M., Creppy, A., Douarche, C., et al. (2022). Dispersion of motile bacteria in a porous medium. Journal of Fluid Mechanics, 946:A33. https://doi.org/10.1017/jfm.2022.596
Dentz, M., Hidalgo, J. J., and Lester, D. (2023). Mixing in porous media: Concepts and approaches across scales. Transport in Porous Media, 146(1):5–53. https://doi.org/10.1007/s11242-022-01852-x
Dentz, M., Le Borgne, T., Englert, A., and Bijeljic, B. (2011). Mixing, spreading and reaction in heterogeneous media: A brief review. Journal of Contaminant Hydrology, 120-121:1–17. https://doi.org/10.1016/j.jconhyd.2010.05.002
Dervaux, J., Magniez, J. C., and Libchaber, A. (2014). On growth and form of Bacillus subtilis biofilms. Interface Focus, 4(6):20130051. https://doi.org/10.1098/rsfs.2013.0051
Dissanayake, P. D., Kim, S., Sarkar, B., et al. (2022). Effects of microplastics on the terrestrial environment: A critical review. Environmental Research, 209:112734. https://doi.org/10.1016/j.envres.2022.112734
Drescher, K., Dunkel, J., Nadell, C. D., et al. (2016). Architectural transitions in vibrio cholerae biofilms at single-cell resolution. Proceedings of the National Academy of Sciences, 113(14):E2066–E2072. https://doi.org/10.1073/pnas.1601702113
Drescher, K., Shen, Y., Bassler, B. L., and Stone, H. A. (2013). Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proceedings of the National Academy of Sciences, 110(11):4345–4350. https://doi.org/10.1073/pnas.1300321110
Ducklow, H. (2001). Upper ocean carbon export and the biological pump. Oceanography. 14(4):50–58, https://doi.org/10.5670/oceanog.2001.06
Ebrahimi, A. and Or, D. (2015). Hydration and diffusion processes shape microbial community organization and function in model soil aggregates. Water Resources Research, 51(12):9804–9827. http://dx.doi.org/10.1002/2015WR017565
Einstein, A. (1905) On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Annals of Physics, 322, 549560.
http://dx.doi.org/10.1002/andp.19053220806
Elgeti, J., Winkler, R. G., and Gompper, G. (2015). Physics of microswimmers—single particle motion and collective behavior: a review. Reports on Progress in Physics, 78(5):056601. https://doi.org/10.1088/0034-4885/78/5/056601
Elias, S. and Banin, E. (2012). Multi-species biofilms: living with friendly neighbors. FEMS Micro- biology Reviews, 36(5):990–1004. https://doi.org/10.1111/j.1574-6976.2012.00325.x
Falkowski, P. G., Fenchel, T., and Delong, E. F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320(5879):1034–1039. https://doi.org/10.1126/science.1153213
Fei, C., Mao, S., Yan, J., et al. (2020). Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proceedings of the National Academy of Sciences, 117(14):7622–7632. https://doi.org/10.1073/pnas.1919607117
Flemming, H.-C., van Hullebusch, E. D., Neu, T. R., et al (2023). The biofilm matrix: multitasking in a shared space. Nature Reviews Microbiology, 21(2):70–86. https://doi.org/10.1038/s41579-022-00791-0
Flemming, H.-C., Wingender, J., Szewzyk, U., et al. (2016). Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14(9):563–575. https://doi.org/10.1038/nrmicro.2016.94
Flemming, H.-C. and Wuertz, S. (2019). Bacteria and archaea on earth and their abundance in biofilms. Nature Reviews Microbiology, 17(4):247–260. https://doi.org/10.1038/s41579-019-0158-9
Ford, R. M. and Harvey, R. W. (2007). Role of chemotaxis in the transport of bacteria through saturated porous media. Advances in Water Resources, 30(6):1608–1617. https://doi.org/10.1016/j.advwatres.2006.05.019
Ganesh, A., Alipour, M., and Pahlavan, A. (2024). Bacterial chemotaxis toward ephemeral nutrient sources. Unpublished manuscript. arXiv.
Gao, B., Wang, X., and Ford, R. M. (2023). Chemotaxis along local chemical gradients enhanced bacteria dispersion and PAH bioavailability in a heterogenous porous medium. Science of The Total Environment, 859:160004. https://doi.org/10.1016/j.scitotenv.2022.160004
Ge, Y., Schimel, J. P., and Holden, P. A. (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science & Technology, 45(4):1659–1664. https://doi.org/10.1021/es103040t
Glotzer, S. C. and Solomon, M. J. (2007). Anisotropy of building blocks and their assembly into complex structures. Nature Materials, 6(8):557–562. https://doi.org/10.1038/nmat1949
Gniewek, P., Schreck, C. F., and Hallatschek, O. (2019). Biomechanical feedback strengthens jammed cellular packings. Physical Review Letters, 122:208102. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.208102
Graham, T. (1861). X. Liquid diffusion applied to analysis. Philosophical Transactions of the Royal Society of London, 151:183–224.
Grolimund, D., Elimelech, M., Borkovec, M., et al. (1998). Transport of in situ mobilized colloidal particles in packed soil columns. Environmental Science & Technology, 32(22):3562–3569. https://doi.org/10.1021/es980356z
Hallatschek, O., Datta, S. S., Drescher, K., et al. (2023). Proliferating active matter. Nature Reviews Physics, 5(7):407–419. https://doi.org/10.1038/s42254-023-00593-0
Hartmann, M. and Six, J. (2023). Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 4(1):4–18. https://doi.org/10.1038/s43017-022-00366-w
Hartmann, R., Jeckel, H., Jelli, E., Singh, P. K., Vaidya, S., et al (2021). Quantitative image analysis of microbial communities with biofilmq. Nature Microbiology, 6(2):151–156. https://doi.org/10.1038/s41564-020-00817-4
Hartmann, R., Singh, P. K., Pearce, P., et al. (2019). Emergence of three-dimensional order and structure in growing biofilms. Nature Physics, 15(3):251–256. https://doi.org/10.1038/s41567-018-0356-9
Hassanpourfard, M., Ghosh, R., Thundat, T., and Kumar, A. (2016). Dynamics of bacterial streamers induced clogging in microfluidic devices. Lab Chip, 16:4091–4096. https://doi.org/10.1039/C6LC01055E
He, S., Jia, M., Xiang, Y., et al. (2022). Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. Journal of Hazardous Materials, 424:127286. https://doi.org/10.1016/j.jhazmat.2021.127286
Heyman, J., Lester, D. R., Turuban, R., et al. (2020). Stretching and folding sustain microscale chemical gradients in porous media. Proceedings of the National Academy of Sciences, 117(24):13359–13365. https://doi.org/10.1073/pnas.2002858117
Hibbing, M. E., Fuqua, C., Parsek, M. R., and Peterson, S. B. (2010). Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8(1):15–25. https://doi.org/10.1038/nrmicro2259
Hickl, V. and Juarez, G. (2022). Tubulation and dispersion of oil by bacterial growth on droplets. Soft Matter, 18:7217–7228. https://doi.org/10.1039/d2sm00813k
Hickl, V., Pamu, H. H., and Juarez, G. (2023). Hydrodynamic treadmill reveals reduced rising speeds of oil droplets deformed by marine bacteria. Environmental Science & Technology, 57(37):14082– 14089. https://doi.org/10.1021/acs.est.3c04902
Hobley, L., Harkins, C., MacPhee, C. E., and Stanley-Wall, N. R. (2015). Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiology Reviews, 39(5):649–669. https://doi.org/10.1093/femsre/fuv015
Huang, W. and Xia, X. (2024). Element cycling with micro(nano)plastics. Science, 385(6712):933– 935. https://doi.org/10.1126/science.adk9505
Huisman, J., Codd, G. A., Paerl, H. W., et al. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8):471–483. https://doi.org/10.1038/s41579-018-0040-1
Jeckel, H. and Drescher, K. (2021). Advances and opportunities in image analysis of bacterial cells and communities. FEMS Microbiology Reviews, 45(4):fuaa062. https://doi.org/10.1093/femsre/fuaa062
Jin, C. and Sengupta, A. (2024). Microbes in porous environments: from active interactions to emergent feedback. Biophysical Reviews, 16(2):173–188. https://doi.org/10.1007/s12551-024-01185-7
Johnson, P. R., Sun, N., and Elimelech, M. (1996). Colloid transport in geochemically heterogeneous porous media: Modeling and measurements. Environmental Science & Technology, 30(11):3284– 3293. https://doi.org/10.1021/es960053+
Jotkar, M., de Anna, P., Dentz, M., and Cueto-Felgueroso, L. (2024). The impact of diffusiophoresis on hydrodynamic dispersion and filtration in porous media. Journal of Fluid Mechanics, 991:A8. http://dx.doi.org/10.1017/jfm.2024.546
Kamaly, N., Yameen, B., Wu, J., and Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews, 116(4):2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346
Kanti Sen, T. and Khilar, K. C. (2006). Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science, 119(2):71–96. https://doi.org/10.1016/j.cis.2005.09.001
Karimi, A., Karig, D., Kumar, A., and Ardekani, A. M. (2015). Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. Lab Chip, 15:23–42. https://doi.org/10.1039/C4LC01095G
Karimifard, S., Li, X., Elowsky, C., and Li, Y. (2021). Modeling the impact of evolving biofilms on flow in porous media inside a microfluidic channel. Water Research, 188:116536. https://doi.org/10.1016/j.watres.2020.116536
Keegstra, J. M., Carrara, F., and Stocker, R. (2022). The ecological roles of bacterial chemotaxis. Nature Reviews Microbiology, 20(8):491–504. https://doi.org/10.1038/s41579-022-00709-w
Keller, A. S., Jimenez-Martinez, J., and Mitrano, D. M. (2020). Transport of nano- and microplastic through unsaturated porous media from sewage sludge application. Environmental Science & Technology, 54(2):911–920. https://doi.org/10.1021/acs.est.9b06483
Kleber, M., Bourg, I. C., Coward, E. K., et al. (2021). Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment, 2(6):402–421. https://doi.org/10.1038/s43017-021-00162-y
Kretzschmar, R., Borkovec, M., Grolimund, D., and Elimelech, M. (1999). Mobile Subsurface Colloids and Their Role in Contaminant Transport. Advances in Agronomy, volume 66, pages 121–193. Academic Press. http://dx.doi.org/10.1016/s0065-2113(08)60427-7
Krsmanovic, M., Biswas, D., Ali, H., et al. (2021). Hydro-dynamics and surface properties influence biofilm proliferation. Advances in Colloid and Interface Science, 288:102336. https://doi.org/10.1016/j.cis.2020.102336
Kumar, M., Guasto, J. S., and Ardekani, A. M. (2022). Transport of complex and active fluids in porous media). Journal of Rheology, 66(2):375–397. https://doi.org/10.1122/8.0000389
Kurz, D. L., Secchi, E., Carrillo, F. J., et al. (2022). Competition between growth and shear stress drives intermittency in preferential flow paths in porous medium biofilms. Proceedings of the National Academy of Sciences, 119(30):e2122202119. https://doi.org/10.1073/pnas.2122202119
Kurz, D. L., Secchi, E., Stocker, R., and Jimenez-Martinez, J. (2023). Morphogenesis of biofilms in porous media and control on hydrodynamics. Environmental Science & Technology, 57(14):5666– 5677. https://doi.org/10.1021/acs.est.2c08890
Kurzthaler, C., Mandal, S., Bhattacharjee, T., et al. (2021). A geometric criterion for the optimal spreading of active polymers in porous media. Nature Communications, 12(1):7088. https://doi.org/10.1038/s41467-021-26942-0
Laganenka, L., Colin, R., and Sourjik, V. (2016). Chemotaxis towards autoinducer 2 mediates autoaggregation in escherichia coli. Nature Communications, 7(1):12984. https://doi.org/10.1038/ncomms12984
Laganenka, L., Lee, J.-W., Malfertheiner, L., et al (2023). Chemotaxis and autoinducer-2 signaling mediate colonization and contribute to co-existence of escherichia coli strains in the murine gut. Nature Microbiology, 8(2):204–217. https://doi.org/10.1038/s41564-022-01286-7
Langeslay, B. and Juarez, G. (2023). Microdomains and stress distributions in bacterial monolayers on curved interfaces. Soft Matter, 19:3605–3613. https://doi.org/10.1039/D2SM01498J
Lauga, E. (2016). Bacterial hydrodynamics. Annual Review of Fluid Mechanics, 48(Volume 48, 2016):105–130. https://doi.org/10.1146/annurev-fluid-122414-034606
Laventie, B.-J. and Jenal, U. (2020). Surface sensing and adaptation in bacteria. Annual Review of Microbiology, 74(Volume 74, 2020):735–760. https://doi.org/10.1146/annurev-micro-012120-063427
Le Borgne, T., Dentz, M., and Villermaux, E. (2013). Stretching, coalescence, and mixing in porous media. Physical Review Letters, 110:204501. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.204501
Lee, S. H., Secchi, E., and Kang, P. K. (2023). Rapid formation of bioaggregates and morphology transition to biofilm streamers induced by pore-throat flows. Proceedings of the National Academy of Sciences, 120(14):e2204466120. https://doi.org/10.1073/pnas.2204466120
Liu, S., Wu, J., Sun, L., et al. (2023a). Analysis and study of the migration pattern of microplastic particles in saturated porous media pavement. Science of The Total Environment, 861:160613. https://doi.org/10.1016/j.scitotenv.2022.160613
Liu, Y., Xu, Z., Chen, L., et al. (2023b). Root colonization by beneficial rhizobacteria. FEMS Microbiology Reviews, 48(1):fuad066. https://doi.org/10.1093/femsre/fuad066
Lohrmann, C. and Holm, C. (2023). A novel model for biofilm initiation in porous media flow. Soft Matter, 19:6920–6928. https://doi.org/10.1039/D3SM00575E
Long, T. and Ford, R. M. (2009). Enhanced transverse migration of bacteria by chemotaxis in a porous t-sensor. Environmental Science & Technology, 43(5):1546–1552. https://doi.org/10.1021/es802558j
Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63(Volume 63, 2009):541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918
Luo, E., Leu, A. O., Eppley, J. M., Karl, D. M., and DeLong, E. F. (2022). Diversity and origins of bacterial and archaeal viruses on sinking particles reaching the abyssal ocean. The ISME Journal, 16(6):1627–1635. https://doi.org/10.1038/s41396-022-01202-1
Ma, X., Geiser-Lee, J., Deng, Y., and Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPS) and plants: Phytotoxicity, uptake and accumulation. Science of The Total Environment, 408(16):3053–3061. https://doi.org/10.1016/j.scitotenv.2010.03.031
Macnab, R. M. and Koshland, D. E. (1972). The gradient-sensing mechanism in bacterial chemotaxis. Proceedings of the National Academy of Sciences, 69(9):2509–2512. https://doi.org/10.1073/pnas.69.9.2509
Magnabosco, C., Husain, F., Paoletti, M. M., et al (2024). Toward a natural history of microbial life. Annual Review of Earth and Planetary Sciences, 52(Volume 52, 2024):85–108. http://dx.doi.org/10.1146/annurev-earth-031621-070542
Maguire, L. W. and Gardner, C. M. (2023). Fate and transport of biological microcontaminants bound to microplastics in the soil environment. Science of The Total Environment, 892:164439. https://doi.org/10.1016/j.scitotenv.2023.164439
Maier, B. (2021). How physical interactions shape bacterial biofilms. Annual Review of Biophysics, 50(Volume 50, 2021):401–417. https://doi.org/10.1146/annurev-biophys-062920-063646
Marbach, S. and Bocquet, L. (2019). Osmosis, from molecular insights to large-scale applications. Chemical Society Reviews, 48:3102–3144. https://doi.org/10.1039/C8CS00420J
Marcos, Fu, H. C., Powers, T. R., and Stocker, R. (2012). Bacterial rheotaxis. Proceedings of the National Academy of Sciences, 109(13):4780–4785. https://doi.org/10.1073/pnas.1120955109
Markale, I., Carrel, M., Kurz, D. L., et al. (2023). Internal biofilm heterogeneities enhance solute mixing and chemical reactions in porous media. Environmental Science & Technology, 57(21):8065–8074. https://doi.org/10.1021/acs.est.2c09082
Martínez-Calvo, A., Bhattacharjee, T., Bay, R. K., et al. (2022). Morphological instability and roughening of growing 3D bacterial colonies. Proceedings of the National Academy of Sciences, 119(43):e2208019119. https://doi.org/10.1073/pnas.2208019119
Mattei, M. R., Frunzo, L., D’Acunto, B., et al. (2018). Continuum and discrete approach in modeling biofilm development and structure: a review. Journal of Mathematical Biology, 76(4):945–1003. https://doi.org/10.1007/s00285-017-1165-y
Mattingly, H. H. and Emonet, T. (2022). Collective behavior and nongenetic inheritance allow bacterial populations to adapt to changing environments. Proceedings of the National Academy of Sciences, 119(26):e2117377119. https://doi.org/10.1073/pnas.2117377119
McCarthy, J. F. and McKay, L. D. (2004). Colloid transport in the subsurface: Past, present, and future challenges. Vadose Zone Journal, 3(2):326–337. https://doi.org/10.2136/vzj2004.0326
McCarthy, J. F. and Zachara, J. M. (1989). Subsurface transport of contaminants. Environmental Science & Technology, 23(5):496–502. https://digitalcommons.unl.edu/usdoepub/175?utm_source=digitalcommons.unl.edu%2Fusdoepub%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
Mitchell, J. G. (2002). The energetics and scaling of search strategies in bacteria. The American Naturalist, 160(6):727–740. PMID: 18707461. https://doi.org/10.1086/343874
Molnar, I. L., Johnson, W. P., Gerhard, J. I., Willson, C. S., and O’Carroll, D. M. (2015). Predicting colloid transport through saturated porous media: A critical review. Water Resources Research, 51(9):6804–6845. https://doi.org/10.1002/2015WR017318
Moore-Ott, J. A., Chiu, S., Amchin, D. B., Bhattacharjee, T., and Datta, S. S. (2022). A biophysical threshold for biofilm formation. eLife, 11:e76380. https://doi.org/10.7554/eLife.76380
Motta, J.-P., Wallace, J. L., Buret, A., et al. (2021). Gastrointestinal biofilms in health and disease. Nature Reviews Gastroenterology & Hepatology, 18(5):314–334. https://doi.org/10.1038/s41575-020-00397-y
Mukherjee, S. and Bassler, B. L. (2019). Bacterial quorum sensing in complex and dynamically changing environments. Nature Reviews Microbiology, 17(6):371–382. https://doi.org/10.1038/s41579-019-0186-5
Nadell, C. D., Drescher, K., and Foster, K. R. (2016). Spatial structure, cooperation and competition in biofilms. Nature Reviews Microbiology, 14(9):589–600. https://doi.org/10.1038/nrmicro.2016.84
Nadezhdin, E., Murphy, N., Dalchau, N., et al. (2020). Stochastic pulsing of gene expression enables the generation of spatial patterns in bacillus subtilis biofilms. Nature Communications, 11(1):950. https://doi.org/10.1038/s41467-020-14431-9
Navarro, E., Baun, A., Behra, R., e al. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(5):372–386. https://doi.org/10.1007/s10646-008-0214-0
Nguyen, J., Fernandez, V., Pontrelli, S., e al. (2021). A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations. Nature Communications, 12(1):3662. https://doi.org/10.1038/s41467-021-23439-8
Nijjer, J., Li, C., Kothari, M., et al. (2023). Biofilms as self-shaping growing nematics. Nature Physics, 19(12):1936–1944. https://doi.org/10.1038/s41567-023-02221-1
Or, D., Smets, B. F., Wraith, J. M., e al. (2007). Physical constraints affecting bacterial habitats and activity in unsaturated porous media –a review. Advances in Water Resources, 30(6):1505–1527. https://doi.org/10.1016/j.advwatres.2006.05.025
Ostvar, S., Iltis, G., Davit, Y., et al. (2018). Investigating the influence of flow rate on biofilm growth in three dimensions using microimaging. Advances in Water Resources, 117:1–13. https://doi.org/10.1016/j.advwatres.2018.03.018
Papadopoulos, C., Larue, A. E., Toulouze, Cet al. (2024). A versatile micromodel technology to explore biofilm development in porous media flows. Lab on a Chip, 24:254–271. https://doi.org/10.1039/D3LC00293D
Papenfort, K. and Bassler, B. L. (2016). Quorum sensing signal–response systems in gram-negative bacteria. Nature Reviews Microbiology, 14(9):576–588. https://doi.org/10.1038/nrmicro.2016.89
Park, S. W., Lee, J., Yoon, H., and Shin, S. (2021). Microfluidic investigation of salinity-induced oil recovery in porous media during chemical flooding. Energy & Fuels, 35(6):4885–4892. https://doi.org/10.1021/acs.energyfuels.0c04320
Patino, J. E., Johnson, W. P., and Morales, V. L. (2023). Relating mechanistic fate with spatial positioning for colloid transport in surface heterogeneous porous media. Journal of Colloid and Interface Science, 641:666–674. https://doi.org/10.1016/j.jcis.2023.03.005
Persat, A., Nadell, C. D., Kim, M. K., et al. (2015). The mechanical world of bacteria. Cell, 161(5):988–997. https://doi.org/10.1016/j.cell.2015.05.005
Pete, A. J., Brahana, P. J., Bello, M., et al. (2023). Biofilm formation influences the wettability and settling of microplastics. Environmental Science & Technology Letters, 10(2):159–164. https://doi.org/10.1021/acs.estlett.2c00728
Petersen, F. and Hubbart, J. A. (2021). The occurrence and transport of microplastics: The state of the science. Science of The Total Environment, 758:143936. https://doi.org/10.1016/j.scitotenv.2020.143936
Petosa, A. R., Jaisi, D. P., Quevedo, I. R., et al. (2010). Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environmental Science & Technology, 44(17):6532–6549. https://doi.org/10.1021/es100598h
Philipp, L.-A., Bu¨hler, K., Ulber, R., and Gescher, J. (2024). Beneficial applications of biofilms. Nature Reviews Microbiology, 22(5):276–290. https://doi.org/10.1038/s41579-023-00985-0
Philippot, L., Chenu, C., Kappler, A., et al. (2024). The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 22(4):226–239. https://doi.org/10.1038/s41579-023-00980-5
Philippot, L., Raaijmakers, J. M., Lemanceau, P., and van der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11(11):789–799. https://doi.org/10.1038/nrmicro3109
Pokhrel, A. R., Steinbach, G., Krueger, A., et al (2024). The biophysical basis of bacterial colony growth. Nature Physics, 20(9):1509–1517. https://doi.org/10.1038/s41567-024-02572-3
Prasad, M., Obana, N., Lin, S. Z., et al. (2023). Alcanivorax borkumensis biofilms enhance oil degradation by interfacial tubulation. Science, 381(6659):748–753. https://doi.org/10.1126/science.adf3345
Qian, P.-Y., Cheng, A., Wang, R., and Zhang, R. (2022). Marine biofilms: diversity, interactions and biofouling. Nature Reviews Microbiology, 20(11):671–684. https://doi.org/10.1038/s41579-022-00744-7
Qin, B., Fei, C., Bridges, A. A., et al. (2020). Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science, 369(6499):71–77. https://doi.org/10.1126/science.abb8501
Raina, J.-B., Fernandez, V., Lambert, B., et al. (2019). The role of microbial motility and chemotaxis in symbiosis. Nature Reviews Microbiology, 17(5):284–294. https://doi.org/10.1038/s41579-019-0182-9
Raina, J.-B., Lambert, B. S., Parks, D. H., et al. (2022). Chemotaxis shapes the microscale organization of the ocean’s microbiome. Nature, 605(7908):132–138. https://doi.org/10.1038/s41586-022-04614-3
Ren, Z., Gui, X., Xu, X., e al. (2021). Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants–a critical review. Journal of Hazardous Materials, 419:126455. https://doi.org/10.1016/j.jhazmat.2021.126455
Rillig, M. C. and Lehmann, A. (2020). Microplastic in terrestrial ecosystems. Science, 368(6498):1430–1431. https://doi.org/10.1126/science.abb5979
Rillig, M. C., Ziersch, L., and Hempel, S. (2017). Microplastic transport in soil by earthworms. Scientific Reports, 7(1):1362. https://doi.org/10.1038/s41598-017-01594-7
Rochman, C. M. (2018). Microplastics research—from sink to source. Science, 360(6384):28–29. https://doi.org/10.1126/science.aar7734
Rolle, M. and Le Borgne, T. (2019). Mixing and reactive fronts in the subsurface. Reviews in Mineralogy and Geochemistry, 85(1):111–142. https://doi.org/10.2138/rmg.2018.85.5
Rooney, L. M., Amos, W. B., Hoskisson, P. A., and McConnell, G. (2020). Intra-colony channels in e. coli function as a nutrient uptake system. The ISME Journal, 14(10):2461–2473. https://pubmed.ncbi.nlm.nih.gov/32555430/
Rusconi, R., Garren, M., and Stocker, R. (2014a). Microfluidics expanding the frontiers of microbial ecology. Annual Review of Biophysics, 43(Volume 43, 2014):65–91. https://doi.org/10.1146/annurev-biophys-051013-022916
Rusconi, R., Guasto, J. S., and Stocker, R. (2014b). Bacterial transport suppressed by fluid shear. Nature Physics, 10(3):212–217. https://doi.org/10.1038/nphys2883
Rusconi, R., Lecuyer, S., Autrusson, N., et al. (2011). Secondary flow as a mechanism for the formation of biofilm streamers. Biophysical Journal, 100(6):1392–1399. https://doi.org/10.1016/j.bpj.2011.01.065
Rusconi, R., Lecuyer, S., Guglielmini, L., and Stone, H. A. (2010). Laminar flow around corners triggers the formation of biofilm streamers. Journal of The Royal Society Interface, 7(50):1293– 1299. https://doi.org/10.1098/rsif.2010.0096
Russel, W. B., Russel, W., Saville, D. A., and Schowalter, W. R. (1991). Colloidal dispersions. Cambridge University Press. https://books.google.de/books/about/Colloidal_Dispersions.html?id=3shp8Kl6YoUC&redir_esc=y
Ryan, J. N. and Elimelech, M. (1996). Colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107:1–56. https://doi.org/10.1016/0927-7757(95)03384-X
Saintillan, D. (2023). Dispersion of run-and-tumble microswimmers through disordered media. Phys. Rev. E, 108:064608. https://doi.org/10.1103/PhysRevE.108.064608
Sajjad, M., Huang, Q., Khan, S., et al. (2022). Microplastics in the soil environment: A critical review. Environmental Technology & Innovation, 27:102408. https://doi.org/10.1016/j.eti.2022.102408
Salek, M. M., Carrara, F., Zhou, J., et al. (2024). Multiscale porosity microfluidics to study bacterial transport in heterogeneous chemical landscapes. Advanced Science, 11(20):2310121. https://doi.org/10.1002/advs.202310121
Sauer, K., Stoodley, P., Goeres, D. M., et al. (2022). The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology, 20(10):608–620. https://doi.org/10.1038/s41579-022-00767-0
Scheidweiler, D., Bordoloi, A. D., Jiao, W., et al. (2024). Spatial structure, chemotaxis and quorum sensing shape bacterial biomass accumulation in complex porous media. Nature Communications, 15(1):191. https://doi.org/10.1038/s41467-023-44267-y
Scheidweiler, D., Peter, H., Pramateftaki, P., et al. (2019). Unraveling the biophysical underpinnings to the success of multispecies biofilms in porous environments. The ISME Journal, 13(7):1700–1710. https://doi.org/10.1038/s41396-019-0381-4
Schimel, J. and Schaeffer, S. M. (2012). Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3. https://doi.org/10.3389/fmicb.2012.00348
Schimel, J. P. (2018). Life in dry soils: Effects of drought on soil microbial communities and processes. Annual Review of Ecology, Evolution, and Systematics, 49(Volume 49, 2018):409–432. http://dx.doi.org/10.1146/annurev-ecolsys-110617-062614
Schirrmeister, B. E., Gugger, M., and Donoghue, P. C. J. (2015). Cyanobacteria and the great oxidation event: evidence from genes and fossils. Palaeontology, 58(5):769–785. https://doi.org/10.1111/pala.12178
Secchi, E., Savorana, G., Vitale, A., et al. (2022). The structural role of bacterial eDNA in the formation of biofilm streamers. Proceedings of the National Academy of Sciences, 119(12):e2113723119. https://doi.org/10.1073/pnas.2113723119
Secchi, E., Vitale, A., Min˜o, G. L., et al. (2020). The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nature Communications, 11(1):2851. https://doi.org/10.1038/s41467-020-16620-y
Segall, J. E., Block, S. M., and Berg, H. C. (1986). Temporal comparisons in bacterial chemotaxis. Proceedings of the National Academy of Sciences, 83(23):8987–8991. https://doi.org/10.1073/pnas.83.23.8987
Seminara, A., Angelini, T. E., Wilking, J. N., et al. (2012). Osmotic spreading of bacillus subtilis biofilms driven by an extracellular matrix. Proceedings of the National Academy of Sciences, 109(4):1116–1121. https://doi.org/10.1073/pnas.1109261108
Seymour, J. R., Amin, S. A., Raina, J.-B., and Stocker, R. (2017). Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nature Microbiology, 2(7):17065. https://doi.org/10.1038/nmicrobiol.2017.65
Shim, S. (2022). Diffusiophoresis, diffusioosmosis, and microfluidics: Surface-flow-driven phenomena in the presence of flow. Chemical Reviews, 122(7):6986–7009. https://doi.org/10.1021/acs.chemrev.1c00571
Siegel, D. A., DeVries, T., Cetinic, I., and Bisson, K. M. (2023). Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales. Annual Review of Marine Science, 15(Volume 15, 2023):329–356. https://doi.org/10.1146/annurev-marine-040722-115226
Sivadon, P., Barnier, C., Urios, L., and Grimaud, R. (2019). Biofilm formation as a microbial strategy to assimilate particulate substrates. Environmental Microbiology Reports, 11(6):749–764. https://doi.org/10.1111/1758-2229.12785
Słomka, J., Alcolombri, U., Secchi, E., et al I. (2020). Encounter rates between bacteria and small sinking particles. New Journal of Physics, 22(4):043016. https://doi.org/10.1088/1367-2630/ab73c9
Sokol, N. W., Slessarev, E., Marschmann, G. L., et al (2022). Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nature Reviews Microbiology, 20(7):415–430. https://doi.org/10.1038/s41579-022-00695-z
Sourjik, V. and Wingreen, N. S. (2012). Responding to chemical gradients: bacterial chemotaxis. Current Opinion in Cell Biology, 24(2):262–268. https://doi.org/10.1016/j.ceb.2011.11.008
Squyres, G. R. and Newman, D. K. (2024). Biofilms as more than the sum of their parts: lessons from developmental biology. Current Opinion in Microbiology, 82:102537. https://doi.org/10.1016/j.mib.2024.102537
Stehnach, M. R., Henshaw, R. J., Floge, S. A., and Guasto, J. S. (2023). Multiplexed microfluidic screening of bacterial chemotaxis. eLife, 12:e85348. https://doi.org/10.7554/eLife.85348
Stocker, R. (2012). Marine microbes see a sea of gradients. Science, 338(6107):628–633. https://doi.org/10.1126/science.1208929
Stocker, R., Seymour, J. R., Samadani, A., et al. (2008). Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proceedings of the National Academy of Sciences, 105(11):4209–4214. https://doi.org/10.1073/pnas.0709765105
Tecon, R. and Or, D. (2017). Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiology Reviews, 41(5):599–623. https://doi.org/10.1093/femsre/fux039
Teschler, J. K., Nadell, C. D., Drescher, K., and Yildiz, F. H. (2022). Mechanisms underlying vibrio cholerae biofilm formation and dispersion. Annual Review of Microbiology, 76(Volume 76, 2022):503–532. https://doi.org/10.1146/annurev-micro-111021-053553
Tratnyek, P. G. and Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1(2):44–48. https://doi.org/10.1016/S1748-0132(06)70048-2
Tufenkji, N. and Elimelech, M. (2004). Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir, 20(25):10818–10828. https://doi.org/10.1021/la0486638
Tufenkji, N. and Elimelech, M. (2005). Breakdown of colloid filtration theory: Role of the secondary energy minimum and surface charge heterogeneities. Langmuir, 21(3):841–852. https://doi.org/10.1021/la048102g
Turner, J. T. (2015). Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Progress in Oceanography, 130:205–248. http://dx.doi.org/10.1016/j.pocean.2014.08.005
Ugolini, G. S., Wang, M., Secchi, E., et al. (2024). Microfluidic approaches in microbial ecology. Lab on a Chip, 24:1394–1418. https://doi.org/10.1039/D3LC00784G
Valocchi, A. J., Bolster, D., and Werth, C. J. (2019). Mixing-limited reactions in porous media. Transport in Porous Media, 130(1):157–182. https://doi.org/10.1007/s11242-018-1204-1
Wadhams, G. H. and Armitage, J. P. (2004). Making sense of it all: bacterial chemotaxis. Nature Reviews Molecular Cell Biology, 5(12):1024–1037. https://doi.org/10.1038/nrm1524
Wang, C., Wang, R., Huo, Z., Xie, E., and Dahlke, H. E. (2020). Colloid transport through soil and other porous media under transient flow conditions—a review. WIREs Water, 7(4):e1439. https://doi.org/10.1002/wat2.1439
Wang, J., Guo, X., and Xue, J. (2021). Biofilm-developed microplastics as vectors of pollutants in aquatic environments. Environmental Science & Technology, 55(19):12780–12790. https://doi.org/10.1021/acs.est.1c04466
Wang, M. and Ford, R. M. (2009). Transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity. Environmental Science & Technology, 43(15):5921– 5927. https://doi.org/10.1021/es901001t
Weady, S., Palmer, B., Lamson, A., et al J. (2024). Mechanics and morphology of proliferating cell collectives with self-inhibiting growth. Phys. Rev. Lett., 133:158402. https://doi.org/10.1103/PhysRevLett.133.158402
Wei, G. and Yang, J. Q. (2023). Microfluidic investigation of the impacts of flow fluctuations on the development of Pseudomonas putida biofilms. NPJ Biofilms and Microbiomes, 9(1):73. https://doi.org/10.1038/s41522-023-00442-z
Wilking, J. N., Zaburdaev, V., Volder, M. D., et al. (2013). Liquid transport facilitated by channels in bacillus subtilis biofilms. Proceedings of the National Academy of Sciences, 110(3):848–852. https://doi.org/10.1073/pnas.1216376110
Wu, H. and Schwartz, D. K. (2020). Nanoparticle tracking to probe transport in porous media. Accounts of Chemical Research, 53(10):2130–2139. https://doi.org/10.1021/acs.accounts.0c00408
Xie, H., Chen, J., Feng, L., et al. (2021). Chemotaxis-selective colonization of mangrove rhizosphere microbes on nine different microplastics. Science of The Total Environment, 752:142223. https://doi.org/10.1016/j.scitotenv.2020.142223
Yan, J., Nadell, C. D., Stone, H. A., et al. (2017). Extracellular-matrix- mediated osmotic pressure drives vibrio cholerae biofilm expansion and cheater exclusion. Nature Communications, 8(1):327. https://doi.org/10.1038/s41467-017-00401-1
Yang, L., Zhang, Y., Kang, S., et al. (2021). Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of The Total Environment, 780:146546. https://doi.org/10.1016/j.scitotenv.2021.146546
You, Z., Pearce, D. J. G., and Giomi, L. (2021). Confinement-induced self-organization in growing bacterial colonies. Science Advances, 7(4):eabc8685. https://doi.org/10.1126/sciadv.abc8685
Yu, Y., Zhang, L., Zhuang, Z., et al (2024). Nanoplastics in soil plastisphere: Occurrence, bio-interactions and environmental risks. Nano Today, 58:102409. https://doi.org/10.1016/j.nantod.2024.102409
Zettler, E. R., Mincer, T. J., and Amaral-Zettler, L. A. (2013). Life in the “plastisphere”: Microbial communities on plastic marine debris. Environmental Science & Technology, 47(13):7137–7146. https://doi.org/10.1021/es401288x
Zhu, D., Ma, J., Li, G., Rillig, M. C., and Zhu, Y.-G. (2021). Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens. The ISME Journal, 16(2):521–532. https://doi.org/10.1038/s41396-021-01103-9

Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Amir Pahlavan

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.