The Importance and Challenges Associated with Multi-scale Heterogeneity for Geological Storage
DOI:
https://doi.org/10.69631/ipj.v2i1nr76Keywords:
Multicomponent multiphase fluid, CO2 sequestration, Hydrogen storage, Underground hydrogen storage, CCUS, Carbon capture utilization and storageAbstract
Understanding multi-scale heterogeneity in porous media has become increasingly critical as the world transitions from fossil fuel production to geological storage of CO2 and H2 for climate change mitigation. This commentary examines why small-scale heterogeneities have taken on a heightened importance in modeling subsurface fluid migration. We identify three key factors: increased public scrutiny and stricter permitting requirements for storage projects, different risk tolerances requiring long-term monitoring, and distinct flow physics compared to traditional oil and gas extraction. Drawing from current research, we demonstrate how current models consistently underestimate CO2 plume spread, likely due to inadequate representation of small-scale heterogeneities, which will also heavily impact H2 storage in porous rocks. We review the current state of research on incorporating small-scale heterogeneities into field scale models, discuss relevant spatial scales for both CO2 and H2 storage applications, and highlight promising directions for future research in this critical area.
Downloads
Metrics
References
Adebayo, A. R., Barri, A. A., & Kamal, M. S. (2017). Effect of flow direction on relative permeability curves in water/gas reservoir system: Implications in geological CO2 sequestration. Geofluids, 2017, 1–10. https://doi.org/10.1155/2017/1958463
Al-Yaseri, A., Abdel-Azeim, S., & Al-Hamad, J. (2023). Wettability of water-H2-quartz and water-H2-calcite experiment and molecular dynamics simulations: Critical assessment. International Journal of Hydrogen Energy, 48(89), 34897–34905. https://doi.org/10.1016/j.ijhydene.2023.05.294
Armitage, P. J., Faulkner, D. R., Worden, R. H., Aplin, A. C., Butcher, A. R., & Iliffe, J. (2011). Experimental measurement of, and controls on, permeability and permeability anisotropy of caprocks from the CO2 storage project at the Krechba Field, Algeria. Journal of Geophysical Research, 116(B12), B12208. https://doi.org/10.1029/2011JB008385
Armstrong, R. T., Evseev, N., Koroteev, D., & Berg, S. (2015). Modeling the velocity field during Haines jumps in porous media. Advances in Water Resources, 77, 57–68. https://doi.org/10.1016/j.advwatres.2015.01.008
Armstrong, R. T., Georgiadis, A., Ott, H., Klemin, D., & Berg, S. (2014). Critical capillary number: desaturation studied with fast x-ray computed microtomography. Geophysical Research Letters, 41 (1), 55–60. https://doi.org/10.1002/2013GL058075
Benson, S. M., Bickle, M., Boon, M., Cook, P., Haese, R., et al. (2018). The Geocquest project: Quantifying the impact of heterogeneity on CO2 migration and trapping in saline aquifers. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3366097
Blunt, M. J. (2017). Multiphase flow in permeable media (1st ed). Cambridge University Press.
Blunt, M. J., Bazylak, A., Brook, M., Muggeridge, A., & Orr, F. M. (2024). Research needs in porous media for the energy transition. InterPore Journal, 1(1), ipj260424-2. https://doi.org/10.69631/ipj.v1i1nr14
Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., & Pentland, C. (2013). Pore-scale imaging and modelling. Advances in Water Resources, 51, 197–216. https://doi.org/10.1016/j.advwatres.2012.03.003
Boon, M., & Hajibeygi, H. (2022). Experimental characterization of H2/water multiphase flow in heterogeneous sandstone rock at the core scale relevant for underground hydrogen storage (UHS). Scientific Reports, 12(1), 14604. https://doi.org/10.1038/s41598-022-18759-8
Boon, M., Matthäi, S. K., Shao, Q., Youssef, A. A., Mishra, A., & Benson, S. M. (2022). Anisotropic rate-dependent saturation functions for compositional simulation of sandstone composites. Journal of Petroleum Science and Engineering, 209, 109934. https://doi.org/10.1016/j.petrol.2021.109934
Bukar, I., Bell, R., Muggeridge, A. H., & Krevor, S. (2025). Carbon dioxide migration along faults at the illinois basin—Decatur project revealed using time shift analysis of seismic monitoring data. Geophysical Research Letters, 52(2), e2024GL110049. https://doi.org/10.1029/2024GL110049
Bultreys, T., De Boever, W., & Cnudde, V. (2016). Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art. Earth-Science Reviews, 155, 93–128. https://doi.org/10.1016/j.earscirev.2016.02.001
Bultreys, T., Stappen, J. V., Kock, T. D., Boever, W. D., Boone, M. A., Hoorebeke, L. V., & Cnudde, V. (2016). Investigating the relative permeability behavior of microporosity‐rich carbonates and tight sandstones with multiscale pore network models. Journal of Geophysical Research: Solid Earth, 121(11), 7929–7945. https://doi.org/10.1002/2016JB013328
Callas, C., Wen, G., & Benson, S. M. (2024). Enhancing Carbon Storage Assessments Through the Use of Probabilistic Simulation. In Geological Society of America Abstracts (Vol. 56, p. 401764).
Chadwick, R. A., & Noy, D. J. (2010). History-matching flow simulations and time-lapse seismic data from the Sleipner CO2 plume. Geological Society, London, Petroleum Geology Conference Series, 7(1), 1171–1182. https://doi.org/10.1144/0071171
Chang, R., Kim, S., Lee, S., Choi, S., Kim, M., & Park, Y. (2017). Calcium carbonate precipitation for CO2 storage and utilization: A review of the carbonate crystallization and polymorphism. Frontiers in Energy Research, 5, 17. https://doi.org/10.3389/fenrg.2017.00017
Cnudde, V., Masschaele, B., Dierick, M., Vlassenbroeck, J., Hoorebeke, L. V., & Jacobs, P. (2006). Recent progress in X-ray CT as a geosciences tool. Applied Geochemistry, 21(5), 826–832. https://doi.org/10.1016/j.apgeochem.2006.02.010
Das, D., & Hassanizadeh, S. M. (2005). Upscaling multiphase flow in porous media: From pore to core and beyond.. Springer.
Dopffel, N., Jansen, S., & Gerritse, J. (2021). Microbial side effects of underground hydrogen storage – Knowledge gaps, risks and opportunities for successful implementation. International Journal of Hydrogen Energy, 46(12), 8594–8606. https://doi.org/10.1016/j.ijhydene.2020.12.058
Doughty, C., Freifeld, B. M., & Trautz, R. C. (2008). Site characterization for CO2 geologic storage and vice versa: The Frio brine pilot, Texas, USA as a case study. Environmental Geology, 54(8), 1635–1656. https://doi.org/10.1007/s00254-007-0942-0
Ellman, S., Spurin, C., Jackson, S. J., Harris, C., Cnudde, V., & Bultreys, T. (2024). Multiphase relaxation dynamics at the μm-to-cm scale during storage of gases in rocks. ESS Open Archive . December 26, 2024. https://doi.org/10.22541/essoar.173524478.86281469/v1
Espinoza, D. N., & Santamarina, J. C. (2010). Water‐CO2 ‐mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage. Water Resources Research, 46(7), 2009WR008634. https://doi.org/10.1029/2009WR008634
Fatah, A., Al-Yaseri, A., Radwan, O. A., & Theravalappil, R. (2025). Clay minerals and hydrogen: Insights into reactivity, pore structure, and chemical stability. Fuel, 389, 134615. https://doi.org/10.1016/j.fuel.2025.134615
Flemisch, B., Nordbotten, J. M., Fernø, M., Juanes, R., Both, J. W., et al. (2024). The fluidflower validation benchmark study for the storage of CO2. Transport in Porous Media, 151(5), 865–912. https://doi.org/10.1007/s11242-023-01977-7
Garing, C., De Chalendar, J. A., Voltolini, M., Ajo-Franklin, J. B., & Benson, S. M. (2017). Pore-scale capillary pressure analysis using multi-scale X-ray micromotography. Advances in Water Resources, 104, 223–241. https://doi.org/10.1016/j.advwatres.2017.04.006
Gholami, R. (2023). Hydrogen storage in geological porous media: Solubility, mineral trapping, H2S generation and salt precipitation. Journal of Energy Storage, 59, 106576. https://doi.org/10.1016/j.est.2022.106576
Gu, Y., Spurin, C., & Wen, G. (2024). Learning pore-scale multi-phase flow from experimental data with graph neural network. arXiv. https://doi.org/10.48550/ARXIV.2411.14192
Halisch, M. (2013, September). The REV challenge–estimating representative elementary volumes and porous rock inhomogeneity from high resolution micro-CT data sets. In Proceedings of International Symposium of the Society of Core Analysts, Napa Valley, California, USA (pp. 16-19).
Hovorka, S. D., Benson, S. M., Doughty, C., Freifeld, B. M., Sakurai, S., et al. (2006). Measuring permanence of CO2 storage in saline formations: The Frio experiment. Environmental Geosciences, 13(2), 105–121. https://doi.org/10.1306/eg.11210505011
Hunt, J., Dotzenrod, N., Templeton, J., Regorrah, J., & Connors, K. (2024). Demonstration of plume stability for carbon storage projects. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5064536
Jackson, S. J., Agada, S., Reynolds, C. A., & Krevor, S. (2018). Characterizing drainage multiphase flow in heterogeneous sandstones. Water Resources Research, 54(4), 3139–3161. https://doi.org/10.1029/2017WR022282
Jackson, S. J., & Krevor, S. (2020). Small‐scale capillary heterogeneity linked to rapid plume migration during CO2 storage. Geophysical Research Letters, 47(18), e2020GL088616. https://doi.org/10.1029/2020GL088616
Jackson, S. J., Lin, Q., & Krevor, S. (2020). Representative elementary volumes, hysteresis, and heterogeneity in multiphase flow from the pore to continuum scale. Water Resources Research, 56(6), e2019WR026396. https://doi.org/10.1029/2019WR026396
Jangda, Z., Menke, H., Busch, A., Geiger, S., Bultreys, T., Lewis, H., & Singh, K. (2023). Pore-scale visualization of hydrogen storage in a sandstone at subsurface pressure and temperature conditions: Trapping, dissolution and wettability. Journal of Colloid and Interface Science, 629, 316–325. https://doi.org/10.1016/j.jcis.2022.09.082
Jangda, Z., Menke, H., Busch, A., Geiger, S., Bultreys, T., & Singh, K. (2024). Subsurface hydrogen storage controlled by small-scale rock heterogeneities. International Journal of Hydrogen Energy, 60, 1192–1202. https://doi.org/10.1016/j.ijhydene.2024.02.233
Jung, H., Singh, G., Nicolas Espinoza, D., & Wheeler, M. F. (2017). An integrated case study of the Frio CO2 sequestration pilot test for safe and effective carbon storage including compositional flow and geomechanics. SPE Reservoir Simulation Conference, D012S014R011. https://doi.org/10.2118/182710-MS
Kentish, S., Scholes, C., & Stevens, G. (2008). Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chemical Engineering, 1(1), 52–66. https://doi.org/10.2174/2211334710801010052
Koestel, J., Larsbo, M., & Jarvis, N. (2020). Scale and REV analyses for porosity and pore connectivity measures in undisturbed soil. Geoderma, 366, 114206. https://doi.org/10.1016/j.geoderma.2020.114206
Krevor, S., Blunt, M. J., Benson, S. M., Pentland, C. H., Reynolds, C., Al-Menhali, A., & Niu, B. (2015). Capillary trapping for geologic carbon dioxide storage – From pore scale physics to field scale implications. International Journal of Greenhouse Gas Control, 40, 221–237. https://doi.org/10.1016/j.ijggc.2015.04.006
Krevor, S. C. M., Pini, R., Li, B., & Benson, S. M. (2011). Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions. Geophysical Research Letters, 38(15), 2011GL048239. https://doi.org/10.1029/2011GL048239
Krevor, S. C. M., Pini, R., Zuo, L., & Benson, S. M. (2012). Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resources Research, 48(2), 2011WR010859. https://doi.org/10.1029/2011WR010859
Kumar, P., Tsujimura, M., Nakano, T., & Minoru, T. (2013). Time series analysis for the estimation of tidal fluctuation effect on different aquifers in a small coastal area of Saijo plain, Ehime prefecture, Japan. Environmental Geochemistry and Health, 35(2), 239–250. https://doi.org/10.1007/s10653-012-9479-6
Kuo, C.-W., & Benson, S. M. (2015). Numerical and analytical study of effects of small scale heterogeneity on CO2/brine multiphase flow system in horizontal corefloods. Advances in Water Resources, 79, 1–17. https://doi.org/10.1016/j.advwatres.2015.01.012
Kuo, C.-W., Perrin, J.-C., & Benson, S. M. (2010). Effect of gravity, flow rate, and small scale heterogeneity on multiphase flow of co2 and brine. SPE Western Regional Meeting, SPE-132607-MS. https://doi.org/10.2118/132607-MS
Lin, J.-Y., Garcia, E. A., Ballesteros, F. C., Garcia-Segura, S., & Lu, M.-C. (2022). A review on chemical precipitation in carbon capture, utilization and storage. Sustainable Environment Research, 32(1), 45. https://doi.org/10.1186/s42834-022-00155-6
Manoorkar, S., Jackson, S. J., & Krevor, S. (2021). Observations of the impacts of millimeter‐ to centimeter‐scale heterogeneities on relative permeability and trapping in carbonate rocks. Water Resources Research, 57(4), e2020WR028597. https://doi.org/10.1029/2020WR028597
McClure, J. E., Ramstad, T., Li, Z., Armstrong, R. T., & Berg, S. (2020). Modeling geometric state for fluids in porous media: Evolution of the Euler characteristic. Transport in Porous Media, 133(2), 229–250. https://doi.org/10.1007/s11242-020-01420-1
Menke, H., Maes, J., & Geiger, S. (2021). Upscaling the porosity–permeability relationship of a microporous carbonate for Darcy-scale flow with machine learning. Scientific Reports, 11(1), 2625. https://doi.org/10.1038/s41598-021-82029-2
Menke, H., Reynolds, C. A., Andrew, M. G., Pereira Nunes, J. P., Bijeljic, B., & Blunt, M. J. (2018). 4D multi-scale imaging of reactive flow in carbonates: Assessing the impact of heterogeneity on dissolution regimes using streamlines at multiple length scales. Chemical Geology, 481, 27–37. https://doi.org/10.1016/j.chemgeo.2018.01.016
Menke, H. P., Maes, J., & Geiger, S. (2023). Channeling is a distinct class of dissolution in complex porous media. Scientific Reports, 13(1), 11312. https://doi.org/10.1038/s41598-023-37725-6
Mishra, A., Kurtev, K. D., & Haese, R. R. (2020). Composite rock types as part of a workflow for the integration of mm-to cm-scale lithological heterogeneity in static reservoir models. Marine and Petroleum Geology, 114, 104240. https://doi.org/10.1016/j.marpetgeo.2020.104240
Nordbotten, J. M., Celia, M. A., & Bachu, S. (2005). Injection and storage of CO2 in deep saline aquifers: Analytical solution for co2 plume evolution during injection. Transport in Porous Media, 58(3), 339–360. https://doi.org/10.1007/s11242-004-0670-9
Oh, J., Kim, K.-Y., Han, W. S., & Park, E. (2017). Transport of CO2 in heterogeneous porous media: Spatio-temporal variation of trapping mechanisms. International Journal of Greenhouse Gas Control, 57, 52–62. https://doi.org/10.1016/j.ijggc.2016.12.006
Perrin, J.-C., Krause, M., Kuo, C.-W., Miljkovic, L., Charoba, E., & Benson, S. M. (2009). Core-scale experimental study of relative permeability properties of CO2 and brine in reservoir rocks. Energy Procedia, 1(1), 3515–3522. https://doi.org/10.1016/j.egypro.2009.02.144
Picchi, D., & Battiato, I. (2018). The impact of pore-scale flow regimes on upscaling of immiscible two-phase flow in porous media. Water Resources Research, 54 (9), 6683–6707. https://doi.org/10.1029/2018WR023172
Raza, A., Gholami, R., Rezaee, R., Bing, C. H., Nagarajan, R., & Hamid, M. A. (2017). CO2 storage in heterogeneous aquifer: A study on the effect of temperature and mineral precipitation. IOP Conference Series: Materials Science and Engineering, 206, 012002. https://doi.org/10.1088/1757-899X/206/1/012002
Reynolds, C. A., & Krevor, S. (2015). Characterizing flow behavior for gas injection: Relative permeability of CO2‐brine and N2‐water in heterogeneous rocks. Water Resources Research, 51(12), 9464–9489. https://doi.org/10.1002/2015WR018046
Reynolds, C. A., Menke, H., Andrew, M., Blunt, M. J., & Krevor, S. (2017). Dynamic fluid connectivity during steady-state multiphase flow in a sandstone. Proceedings of the National Academy of Sciences, 114 (31), 8187–8192.
Ringrose, P. S., Mathieson, A. S., Wright, I. W., Selama, F., Hansen, O., et al. (2013). The in salah CO2 storage project: Lessons learned and knowledge transfer. Energy Procedia, 37, 6226–6236. https://doi.org/10.1016/j.egypro.2013.06.551
Romano, C. R., Zahasky, C., Garing, C., Minto, J. M., Benson, S. M., et al. (2020). Subcore scale fluid flow behavior in a sandstone with cataclastic deformation bands. Water Resources Research, 56(4), e2019WR026715. https://doi.org/10.1029/2019WR026715
Rücker, M., Bartels, W. B., Bultreys, T., Boone, M., Singh, K., et al. (2020). Workflow for upscaling wettability from the nanoscale to core scale. Petrophysics, 61(02), 189-205. https://doi.org/10.30632/PJV61N2-2020a5
Rücker, M., Bartels, W.-B., Garfi, G., Shams, M., Bultreys, T., et al. (2020). Relationship between wetting and capillary pressure in a crude oil/brine/rock system: From nano-scale to core-scale. Journal of Colloid and Interface Science, 562, 159–169. https://doi.org/10.1016/j.jcis.2019.11.086
Schimmel, M. T. W., Hangx, S. J. T., & Spiers, C. J. (2022). Effect of pore fluid chemistry on uniaxial compaction creep of Bentheim sandstone and implications for reservoir injection operations. Geomechanics for Energy and the Environment, 29, 100272. https://doi.org/10.1016/j.gete.2021.100272
Senel, O., Will, R., & Butsch, R. J. (2014). Integrated reservoir modeling at the Illinois basin – Decatur project. Greenhouse Gases: Science and Technology, 4(5), 662–684. https://doi.org/10.1002/ghg.1451
Seyyedi, M., Clennell, M. B., & Jackson, S. J. (2022). Time-lapse imaging of flow instability and rock heterogeneity impacts on CO2 plume migration in meter long sandstone cores. Advances in Water Resources, 164, 104216. https://doi.org/10.1016/j.advwatres.2022.104216
Shi, J.-Q., Durucan, S., Korre, A., Ringrose, P., & Mathieson, A. (2019). History matching and pressure analysis with stress-dependent permeability using the In Salah CO2 storage case study. International Journal of Greenhouse Gas Control, 91, 102844. https://doi.org/10.1016/j.ijggc.2019.102844
Singh, A., Regenauer‐Lieb, K., Walsh, S. D. C., Armstrong, R. T., Van Griethuysen, J. J. M., & Mostaghimi, P. (2020). On representative elementary volumes of grayscale micro‐CT images of porous media. Geophysical Research Letters, 47(15), e2020GL088594. https://doi.org/10.1029/2020GL088594
Soulaine, C., Roman, S., Kovscek, A., & Tchelepi, H. A. (2017). Mineral dissolution and wormholing from a pore-scale perspective. Journal of Fluid Mechanics, 827, 457–483. https://doi.org/10.1017/jfm.2017.499
Spurin, C., Bultreys, T., Bijeljic, B., Blunt, M. J., & Krevor, S. (2019a). Intermittent fluid connectivity during two-phase flow in a heterogeneous carbonate rock. Physical Review E, 100(4), 043103. https://doi.org/10.1103/PhysRevE.100.043103
Spurin, C., Bultreys, T., Bijeljic, B., Blunt, M. J., & Krevor, S. (2019b). Mechanisms controlling fluid breakup and reconnection during two-phase flow in porous media. Physical Review E, 100(4), 043115. https://doi.org/10.1103/PhysRevE.100.043115
Spurin, C., Bultreys, T., Rücker, M., Garfi, G., Schlepütz, C. M., et al. (2020). Real‐time imaging reveals distinct pore‐scale dynamics during transient and equilibrium subsurface multiphase flow. Water Resources Research, 56(12), e2020WR028287. https://doi.org/10.1029/2020WR028287
Spurin, C., Bultreys, T., Rücker, M., Garfi, G., Schlepütz, C. M., et al. (2021). The development of intermittent multiphase fluid flow pathways through a porous rock. Advances in Water Resources, 150, 103868. https://doi.org/10.1016/j.advwatres.2021.103868
Spurin, C., Ellman, S., Bultreys, T., & Tchelepi, H. A. (2024). The role of injection method on residual trapping at the pore-scale in continuum-scale samples. International Journal of Greenhouse Gas Control, 131, 104035. https://doi.org/10.1016/j.ijggc.2023.104035
Spurin, C., Roberts, G. G., O’Malley, C. P. B., Kurotori, T., Krevor, S., et al. (2023). Pore‐scale fluid dynamics resolved in pressure fluctuations at the darcy scale. Geophysical Research Letters, 50(18), e2023GL104473. https://doi.org/10.1029/2023GL104473
Strandli, C. W., Mehnert, E., & Benson, S. M. (2014). CO2 plume tracking and history matching using multilevel pressure monitoring at the Illinois basin – Decatur project. Energy Procedia, 63, 4473–4484. https://doi.org/10.1016/j.egypro.2014.11.483
Tavakoli, V. (2018). Geological core analysis: Application to reservoir characterization. Springer.
Thaysen, E. M., Jangda, Z., Hassanpouryouzband, A., Menke, H., Singh, K., et al. (2024). Hydrogen wettability and capillary pressure in Clashach sandstone for underground hydrogen storage. Journal of Energy Storage, 97, 112916. https://doi.org/10.1016/j.est.2024.112916
Thaysen, E. M., McMahon, S., Strobel, G. J., Butler, I. B., Ngwenya, B., et al (2023). Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media. Renewable and Sustainable Energy Reviews, 151, 111481. https://doi.org/10.1016/j.rser.2021.111481
Ubillus, J. E., Bakhshian, S., Ni, H., DiCarlo, D., & Meckel, T. (2025). Informing field-scale CO2 storage simulations with sandbox experiments: The effect of small-scale heterogeneities. International Journal of Greenhouse Gas Control, 141, 104318. https://doi.org/10.1016/j.ijggc.2025.104318
Vidal, A. D., Neta, A. P. M., De Castro Vargas Fernandes, J., Medeiros, L. C., Dos Anjos, C. E. M., e al. (2024). Multi-resolution X-ray micro-computed tomography images of carbonate rocks from Brazilian pre-salt. Scientific Data, 11(1), 1361. https://doi.org/10.1038/s41597-024-04198-9
Vogel, H.-J. (2002). Topological characterization of porous media. In: Mecke, K. & Stoyan, D. (Eds.), Morphology of Condensed Matter (Vol. 600, pp. 75–92). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-45782-8_3
Wang, S., Spurin, C., & Bultreys, T. (2023). Pore‐scale imaging of multiphase flow fluctuations in continuum‐scale samples. Water Resources Research, 59(6), e2023WR034720. https://doi.org/10.1029/2023WR034720
Wang, W., Xie, Q., An, S., Bakhshian, S., Kang, Q., et al. (2023). Pore-scale simulation of multiphase flow and reactive transport processes involved in geologic carbon sequestration. Earth-Science Reviews, 247, 104602. https://doi.org/10.1016/j.earscirev.2023.104602
Wei, N., Gill, M., Crandall, D., McIntyre, D., Wang, Y., Bruner, K., Li, X., & Bromhal, G. (2014). CO2 flooding properties of Liujiagou sandstone: Influence of sub‐core scale structure heterogeneity. Greenhouse Gases: Science and Technology, 4(3), 400–418. https://doi.org/10.1002/ghg.1407
Wenck, N., Jackson, S. J., Manoorkar, S., Muggeridge, A., & Krevor, S. (2021). Simulating core floods in heterogeneous sandstone and carbonate rocks. Water Resources Research, 57(9), e2021WR030581. https://doi.org/10.1029/2021WR030581
Wildenschild, D., & Sheppard, A. P. (2013). X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217–246. https://doi.org/10.1016/j.advwatres.2012.07.018
Williams, G. A., & Chadwick, R. A. (2017). An improved history-match for layer spreading within the sleipner plume including thermal propagation effects. Energy Procedia, 114, 2856–2870. https://doi.org/10.1016/j.egypro.2017.03.1406
Wolff-Boenisch, D., Abid, H. R., Tucek, J. E., Keshavarz, A., & Iglauer, S. (2023). Importance of clay-H2 interactions for large-scale underground hydrogen storage. International Journal of Hydrogen Energy, 48(37), 13934–13942. https://doi.org/10.1016/j.ijhydene.2022.12.324
Wu, Y.-S., Pruess, K., & Persoff, P. (1998). Gas flow in porous media with Klingenberg effects. Transport in porous Media, 32 , 117–137. https://doi.org/10.1023/A:1006535211684
Yekeen, N., Al-Yaseri, A., Negash, B. M., Ali, M., Giwelli, A., et al. (2022). Clay-hydrogen and clay-cushion gas interfacial tensions: Implications for hydrogen storage. International Journal of Hydrogen Energy, 47(44), 19155–19167. https://doi.org/10.1016/j.ijhydene.2022.04.103
Zakkour, P., & Haines, M. (2007). Permitting issues for CO2 capture, transport and geological storage: A review of Europe, USA, Canada and Australia. International Journal of Greenhouse Gas Control, 1(1), 94–100. https://doi.org/10.1016/S1750-5836(06)00008-9
Zhang, Y., Bijeljic, B., Gao, Y., Lin, Q., & Blunt, M. J. (2021). Quantification of nonlinear multiphase flow in porous media. Geophysical Research Letters, 48(5), e2020GL090477. https://doi.org/10.1029/2020GL090477
Zheng, L., Rücker, M., Bultreys, T., Georgiadis, A., Mooijer-van Den Heuvel, M. M., et al. (2020). Surrogate models for studying the wettability of nanoscale natural rough surfaces using molecular dynamics. Energies, 13(11), 2770. https://doi.org/10.3390/en13112770

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Catherine Spurin, Maja Rücker, Sally Benson, Catherine Callas, Nihal Darraj

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.