Inverse method to determine hydraulic conductivity from a velocity field using graph theory

Authors

DOI:

https://doi.org/10.69631/ipj.v1i3nr30

Keywords:

Inverse problem, Groundwater, Velocity field, Graph theory

Abstract

A numerical inverse method called FlowPaths is presented to solve for the hydraulic conductivity field of an isotropic heterogeneous porous medium from a known specific discharge field (and constant-head boundary conditions). This method makes possible a new approach to reactive transport experiments, aimed at understanding the dynamic spatial and temporal evolution of hydraulic conductivity, which simultaneously record the evolving reaction and the evolving flow geometry. This inverse method assumes steady, two-dimensional flow through a square matrix of grid blocks. A graph-theoretical approach is used to find a set of flow paths through the porous medium using the known components of the specific discharge, where every vertex is traversed by at least one path from the upstream high-head boundary to the downstream low-head boundary. Darcy’s law is used to create an equation for the unknown head drop across each edge. Summation of these edge equations along each path through the network generates a set of linearly independent head-drop equations that is solved directly for the hydraulic conductivity field. FlowPaths is verified by generating 12,740 hydraulic conductivity fields of varying size and heterogeneity, calculating the corresponding specific discharge field for each, and then using that specific discharge field to estimate the underlying hydraulic conductivity field. When estimates from FlowPaths are compared to the simulated hydraulic conductivity fields, the inverse method is demonstrated to be accurate and numerically stable. Accordingly, within certain limitations, FlowPaths can be used in field or laboratory applications to find hydraulic conductivity from a known velocity field.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Michael E. Mont-Eton, University of Colorado Denver

Doctoral Student

Department of Civil Engineering

Steffen Borgwardt, University of Colorado Denver

Associate Professor

Department of Mathematical and Statistical Sciences

David C. Mays, University of Colorado Denver

Associate Professor

Department of Civil Engineering

References

Arthur, J. K., Ruth, D. W., & Tachie, M. F. (2009). PIV measurements of flow through a model porous medium with varying boundary conditions. Journal of Fluid Mechanics, 629, 343-374. https://doi.org/10.1017/s0022112009006405 DOI: https://doi.org/10.1017/S0022112009006405

Bastidas Olivares, M., Bringedal, C., & Pop, I.S. (2021). A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media, Applied Mathematics and Computation, 396, 125933. https://doi.org/10.1016/j.amc.2020.125933 DOI: https://doi.org/10.1016/j.amc.2020.125933

Baveye, P., Vandevivere, P., Hoyle, B. L., DeLeo, P. C., & de Lozada, D. S. (1998). Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Critical Reviews in Environmental Science and Technology, 28(2), 123-191. https://doi.org/10.1080/10643389891254197 DOI: https://doi.org/10.1080/10643389891254197

Berge, C. (1973). Graphs and hypergraphs. North-Holland Publishing Company. http://www.gbv.de/dms/hebis-darmstadt/toc/10727930.pdf

Bergström, D. (2010). Rough surface generation & analysis. Retrieved 11/29/2019 from http://www.mysimlabs.com/surface_generation.html

Berkowitz, B., & Ewing, R.P. (1998). Percolation theory and network modeling applications in soil physics. Surveys in Geophysics, 19(1), 23-72. https://doi.org/10.1023/A:1006590500229 DOI: https://doi.org/10.1023/A:1006590500229

Cai, M., Yang, X., & Li, Y. (2000). Inverse problems of submodular functions on digraphs. Journal of Optimization Theory and Applications, 104(5), 559-575. https://doi.org/10.1023/A:1004685508517 DOI: https://doi.org/10.1023/A:1004685508517

Chang, C. M., & Yeh, H. D. (2010). Nonstationary stochastic analysis of flow in a heterogeneous unconfined aquifer subject to spatially-random periodic recharge. Journal of Hydrology, 395(3-4), 163-168. https://doi.org/10.1016/j.jhydrol.2010.10.016 DOI: https://doi.org/10.1016/j.jhydrol.2010.10.016

Cooper Jr., H.H., Bredehoeft, J.D., & Papadopulos, I.S. (1967). Response of a finite-diameter well to an instantaneous charge of water. Water Resources Research, 3(1), 263-269. https://doi.org/10.1029/WR003i001p00263 DOI: https://doi.org/10.1029/WR003i001p00263

Darcy, H. (1856). Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris.

Deleersnijder, E. (2001). Enforcing the continuity equation in numerical models of geophysical fluid flows. Applied Mathematics Letters, 14, 867-873. https://doi.org/10.1016/S0893-9659(01)00057-X DOI: https://doi.org/10.1016/S0893-9659(01)00057-X

Eftekhari, A. A. (2018). How to generate a log-random permeability field. In: https://github.com/simulkade/FVTool/blob/master/FieldGeology/field2d.m

Eikemo, B., Lie, K.-A., Eigestad, G. T., & Dahle, H. K. (2009). Discontinuous Galerkin methods for advective transport in single-continuum models of fractured media. Advances in Water Resources, 32(4), 493-506. https://doi.org/10.1016/j.advwatres.2008.12.010 DOI: https://doi.org/10.1016/j.advwatres.2008.12.010

El Mountassir, G., Lunn, R. J., Moir, H., & MacLachlan, E. (2014). Hydrodynamic coupling in microbially mediated fracture mineralization: Formation of self-organized groundwater flow channels. Water Resources Research, 50(1), 1-16. https://doi.org/10.1002/2013WR013578 DOI: https://doi.org/10.1002/2013WR013578

Elmorsy, M., El-Dakhakhni, W., & Zhao, B.Z. (2022). Generalizable permeability prediction of digital porous media via a novel multi-scale 3D convolutional neural network. Water Resources Research, 58(3), e2021WR031454. https://doi.org/10.1029/2021WR031454 DOI: https://doi.org/10.1029/2021WR031454

Englert, A., Hubbard, S. S., Williams, K. H., Li, L., & Steefel, C. I. (2009). Feedbacks between hydrological heterogeneity and bioremediation induced biogeochemical transformations. Environmental Science & Technology, 43(14), 5197-5204. https://doi.org/10.1021/es803367n DOI: https://doi.org/10.1021/es803367n

Esfandiari, R. (2017). Numerical methods for engineers and scientists using MATLAB (2nd ed.). Taylor and Francis. https://doi.org/10.1201/9781315152417 DOI: https://doi.org/10.1201/9781315152417

Fitts, C. (2002). Groundwater science. Academic Press.

Freebairn, J. W. (1978). Recursive Coefficient Estimates for the Evaluation of Varying Parameters. Australian Journal of Statistics, 20(3), 219-228. https://doi.org/10.1111/j.1467-842X.1978.tb01104.x DOI: https://doi.org/10.1111/j.1467-842X.1978.tb01104.x

Freeze, R., & Cherry, J. (1979). Groundwater. Prentice-Hall. Inc.

Galpin, J. S., & Hawkins, D. M. (1984). The use of recursive residuals in checking model fit in linear-regression. American Statistician, 38(2), 94-105. https://doi.org/10.2307/2683242 DOI: https://doi.org/10.1080/00031305.1984.10483175

Gärttner, S., Alpak, F.O., Meier, A., Ray, N., & Frank, F. (2023). Estimating permeability of 3D micro-CT images by physics-informed CNNs based on DNS. Computational Geosciences, 27(2), 245-262. https://doi.org/10.1007/s10596-022-10184-0 DOI: https://doi.org/10.1007/s10596-022-10184-0

Ghosh, T., Bringedal, C., Helmig, R., & Sekhar, G.P.R. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145, 103716. https://doi.org/10.1016/j.advwatres.2020.103716 DOI: https://doi.org/10.1016/j.advwatres.2020.103716

Godefroy, G., Caumon, G., Laurent, G., & Bonneau, F. (2019). Structural interpretation of sparse fault data using graph theory and geological rules: Fault data interpretation. Mathematical Geosciences, 51(8). https://doi.org/10.1007/s11004-019-09800-0 DOI: https://doi.org/10.1007/s11004-019-09800-0

Gopalan, A., & Ramasubramanian, S. (2014). On the maximum number of linearly independent cycles and paths in a network. IEEE/ACM Transactions on Networking, 22(5), 1373-1388. https://doi.org/10.1109/tnet.2013.2291208 DOI: https://doi.org/10.1109/TNET.2013.2291208

Gosnell, D. K., & Broecheler, M. (2020). The practitioner’s guide to graph data: Applying graph thinking and graph technologies to solve complex problems (N. Barber, Ed. 1 ed.). O'Reilly Media, Inc. https://www.oreilly.com/library/view/the-practitioners-guide/9781492044062/

Harbaugh, A. W. (2005). MODFLOW-2005, The U.S. Geological Survey modular ground-water model. https://pubs.usgs.gov/tm/2005/tm6A16/PDF.htm DOI: https://doi.org/10.3133/tm6A16

Hunt, A.G., & Ghanbarian, B. (2016). Percolation theory for solute transport in porous media: Geochemistry, geomorphology, and carbon cycling. Water Resources Research, 52(9), 7444-7459. https://doi.org/10.1002/2016WR019289 DOI: https://doi.org/10.1002/2016WR019289

Hunt, A.G., & Sahimi, M. (2017). Flow, transport, and reaction in porous media: Percolation scaling, critical-path analysis, and effective medium approximation. Reviews of Geophysics, 55(4), 993-1078. https://doi.org/10.1002/2017RG000558 DOI: https://doi.org/10.1002/2017RG000558

Jensen, J., Lake, L. W., Corbett, P., & Goggin, D. (2020). Statistics for petroleum engineers and geoscientists. Prentice-Hall, Inc.

Jiao, J. Y., & Zhang, Y. (2015). Functional parameterization for hydraulic conductivity inversion with uncertainty quantification. Hydrogeology Journal, 23(3), 597-610. https://doi.org/10.1007/s10040-014-1202-5 DOI: https://doi.org/10.1007/s10040-014-1202-5

Katz, G. E., Berkowitz, B., Guadagnini, A., & Saaltink, M. W. (2011). Experimental and modeling investigation of multicomponent reactive transport in porous media. Journal of Contaminant Hydrology, 120–121(0), 27. https://doi.org/10.1016/j.jconhyd.2009.11.002 DOI: https://doi.org/10.1016/j.jconhyd.2009.11.002

Kelm, M., Gärttner, S., Bringedal, C., Flemisch, B., Knabner, P., & Ray, N. (2022). Comparison study of phase-field and level-set method for three-phase systems including two minerals. Computational Geosciences, 26(3), 545-570. https://doi.org/10.1007/s10596-022-10142-w DOI: https://doi.org/10.1007/s10596-022-10142-w

Korte, B., & Vygen, J. (2012). Combinatorial optimization: Theory and algorithms (5 ed., Vol. 21). Springer Science & Business Media. https://doi.org/10.1007/978-3-642-24488-9 DOI: https://doi.org/10.1007/978-3-642-24488-9

Larsson, I. A. S., Lundström, T. S., & Lycksam, H. (2018). Tomographic PIV of flow through ordered thin porous media. Experiments in Fluids, 59(6), 96-103. https://doi.org/10.1007/s00348-018-2548-6 DOI: https://doi.org/10.1007/s00348-018-2548-6

Li, X., Huang, H., & Meakin, P. (2008). Level set simulation of coupled advection-diffusion and pore structure evolution due to mineral precipitation in porous media. Water Resources Research, 44, W12407. https://doi.org/10.1029/2007WR006742 DOI: https://doi.org/10.1029/2007WR006742

Liu, G. S., Zhang, D. X., & Lu, Z. M. (2006). Stochastic uncertainty analysis for unconfined flow systems. Water Resources Research, 42(9), 18, W09412. https://doi.org/10.1029/2005wr004766 DOI: https://doi.org/10.1029/2005WR004766

Lu, Z. M., & Zhang, D. X. (2002). On stochastic modeling of flow in multimodal heterogeneous formations. Water Resources Research, 38(10), 1190. https://doi.org/10.1029/2001wr001026 DOI: https://doi.org/10.1029/2001WR001026

Lyu, Z., Chai, J., Xu, Z., Qin, Y., & Cao, J. (2019). A comprehensive review on reasons for tailings dam failures based on case history. Advances in Civil Engineering, 2019, 4159306. https://doi.org/10.1155/2019/4159306 DOI: https://doi.org/10.1155/2019/4159306

Manga, M., Beresnev, I., Brodsky, E. E., Elkhoury, J. E., Elsworth, D., et al. (2012). Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms. Reviews of Geophysics, 50, RG2004, https://doi.org/10.1029/2011RG000382 DOI: https://doi.org/10.1029/2011RG000382

MathWorks. (2020). Minimum norm least-squares solution to linear equation - MATLAB lsqminnorm. Retrieved 6/26/20 from https://www.mathworks.com/help/matlab/ref/lsqminnorm.html

MathWorks. (2022). Cusum test for structural change - MATLAB cusumtest. Retrieved 2/1/23 from https://www.mathworks.com/help/econ/cusumtest.html

MathWorks. (2024). mldivide. Retrieved 8/21/2024 from https://www.mathworks.com/help/matlab/ref/mldivide.html

Matoušek, J., & Gärtner, B. (2007). Understanding and using linear programming. Springer Science and Business Media. https://doi.org/10.1007/978-3-540-30717-4 DOI: https://doi.org/10.1007/978-3-540-30717-4

Mays, D.C. (2013). Clogging in managed aquifer recharge: Flow, geochemistry, and clay colloids. In: Martin, R., ed. Clogging Issues Associated with Managed Aquifer Recharge Methods. International Association of Hydrogeologists (IAH) Commission on Managing Aquifer Recharge, Australia, 14-24.

Morley, S. K., & Los Alamos National Lab. (LANL), L. A., NM (United States). (2016, 2016/07/01). Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications. Los Alamos National Laboratory, Los Alamos, NM (United States). Retrieved LA-UR-16-24592 from https://www.osti.gov/servlets/purl/1260362

Neuman, S. P. (1973). Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty. Water Resources Research, 9(4), 1006-1021. https://doi.org/10.1029/WR009i004p01006 DOI: https://doi.org/10.1029/WR009i004p01006

Neuman, S. P. (2006). Blueprint for perturbative solution of flow and transport in strongly heterogeneous composite media using fractal and variational multiscale decomposition. Water Resources Research, 42(6). https://doi.org/10.1029/2005WR004315 DOI: https://doi.org/10.1029/2005WR004315

Panawalage, S. P., Rahman, M., Biazar, J., & Islam, M. R. (2018). Solution of inverse problem for reservoir permeability. WIT Transactions on Engineering Sciences, 45. https://doi.org/10.2495/AFM040021

Peaceman, D. W., & Rachford, H. H. J. (1955). The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics, 3(1), 28-41. https://doi.org/10.1137/0103003 DOI: https://doi.org/10.1137/0103003

Pugachev, V. S. (1984). Chapter 7 - Estimator Theory (I. V. Sinitsiya, Trans.). In V. S. Pugachev (Ed.). Probability Theory and Mathematical Statistics for Engineers (pp. 242-272). Pergamon. https://doi.org/10.1016/B978-0-08-029148-2.50011-2 DOI: https://doi.org/10.1016/B978-0-08-029148-2.50011-2

Rizzo, C., & de Barros, F. (2017). Minimum hydraulic resistance and least resistance path in heterogeneous porous media. Water Resources Research, 53. https://doi.org/10.1002/2017wr020418 DOI: https://doi.org/10.1002/2017WR020418

Rockafellar, R. T. (1970). The minimum of a convex function. In: Convex Analysis, (pp. 263-272). Princeton University Press. http://www.jstor.org/stable/j.ctt14bs1ff.31

Santos, J.E., Xu, D., Jo, H., Landry, C.J., Prodanovic, M., & Pyrcz, M.J. (2020). PoreFlow-Net: A 3D convolutional neural network to predict fluid flow through porous media. Advances in Water Resources, 138, 103539. https://doi.org/10.1016/j.advwatres.2020.103539 DOI: https://doi.org/10.1016/j.advwatres.2020.103539

Sedgewick, R., & Wayne, K. (2014). Directed graphs. In: Algorithms, 4th Edition (pp. 566). Pearson Education, Inc. https://algs4.cs.princeton.edu/42digraph/

Singurindy, O., & Berkowitz, B. (2003). Evolution of hydraulic conductivity by precipitation and dissolution in carbonate rock. Water Resources Research, 39(1), 1016. https://doi.org/10.1029/2001wr001055 DOI: https://doi.org/10.1029/2001WR001055

Sloane, N. J. A. (1972). On finding the paths through a network. The Bell System Technical Journal, 51(2), 371-390. https://doi.org/10.1002/j.1538-7305.1972.tb01925.x DOI: https://doi.org/10.1002/j.1538-7305.1972.tb01925.x

Sun, N. (1999). Inverse problems in groundwater modeling. Springer. https://doi.org/10.1007/978-94-017-1970-4 DOI: https://doi.org/10.1007/978-94-017-1970-4_1

Tartakovsky, A. M., Redden, G., Lichtner, P. C., Scheibe, T. D., & Meakin, P. (2008). Mixing-induced precipitation: Experimental study and multiscale numerical analysis. Water Resources Research, 44(6), W06s04. https://doi.org/10.1029/2006wr005725 DOI: https://doi.org/10.1029/2006WR005725

Theis, C.V. (1935). The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Transactions of the American Geophysical Union, 2, 519-524. DOI: https://doi.org/10.1029/TR016i002p00519

Thullner, M., Mauclaire, L., Schroth, M. H., Kinzelbach, W., & Zeyer, J. (2002). Interaction between water flow and spatial distribution of microbial growth in a two-dimensional flow field in saturated porous media. Journal of Contaminant Hydrology, 58(3-4), 169-189. https://doi.org/10.1016/S0169-7722(02)00033-5 DOI: https://doi.org/10.1016/S0169-7722(02)00033-5

Tikhonov, A. N. A. V. Y. (1977). Solutions of ill-posed problems. Halsted Press.

Trench, W. F. (2003). Introduction to real analysis. Pearson Education.

Tsang, C.-F., Neretnieks, I., & Tsang, Y. (2015). Hydrologic issues associated with nuclear waste repositories. Water Resources Research, 51(9), 6923-6972. https://doi.org/10.1002/2015WR017641 DOI: https://doi.org/10.1002/2015WR017641

Tutte, W. T. (1960). Convex representations of graphs. Proceedings of the London Mathematical Society, 10(3), 304-320. https://doi.org/10.1112/plms/s3-10.1.304 DOI: https://doi.org/10.1112/plms/s3-10.1.304

USGS. (2022). MODFLOW and Related Programs | U.S. Geological Survey. USGS. https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs

Viswanathan, H.S., Hyman, J.D., Karra, S., O'Malley, D., Srinivasan, S., et al. (2018). Advancing graph-based algorithms for predicting flow and transport in fractured rock. Water Resources Research, 54(9), 6085-6099. https://doi.org/10.1029/2017WR022368 DOI: https://doi.org/10.1029/2017WR022368

Yoon, H., Chojnicki, K. N., & Martinez, M. J. (2019). Pore-scale analysis of calcium carbonate precipitation and dissolution kinetics in a microfluidic device. Environmental Science & Technology, 53(24), 14233-14242. https://doi.org/10.1021/acs.est.9b01634 DOI: https://doi.org/10.1021/acs.est.9b01634

Zhao, Y., Song, J., Cheng, K., Liu, Z., & Yang, F. (2024). Migration and remediation of typical contaminants in soil and groundwater: A state of art review. Land Degradation & Development, 35(8), 2700-2715. https://doi.org/10.1002/ldr.5103 DOI: https://doi.org/10.1002/ldr.5103

Zhu, J., Meng, Q., Chen, W., & Ma, Z. (2021). Interpreting the basis path set in neural networks. Journal of Systems Science and Complexity, 34. https://doi.org/10.1007/s11424-020-0112-y DOI: https://doi.org/10.1007/s11424-020-0112-y

Zolla, V., Freyria, F.S., Sethi, R., Di Molfetta, A. (2009). Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier. Journal of Environmental Quality, 38, 897–908. https://doi.org/10.2134/jeq2007.0622 DOI: https://doi.org/10.2134/jeq2007.0622

Zwick, U. (2013). Lecture Notes on "Analysis of Algorithms": Directed Minimum Spanning Trees. Retrieved 1/16/2022 from https://www.cs.tau.ac.il/~zwick/grad-algo-13/directed-mst.pdf

FlowPaths uses graph theory to infer the spatial distribution of hydraulic conductivity from known flow vectors. This animation is the heart of the process. After transforming flows into orthogonal specific discharge vectors, each iteration considers the subgraph of reachable vertices for a combination of source and sink (here, 3-to-22) and produces a linearly independent set of minimally-weighted paths from source to sink. Here, with four sources (1-to-4) and four sinks (21-to-24), G contains sixteen such subgraphs and path sets. Taken together, they contain a linearly independent set of equations for head loss across the domain. Those 16 equations are solved for the 16 unknown hydraulic conductivities.

Downloads

Additional Files

Published

2024-11-27

How to Cite

Mont-Eton, M. E., Borgwardt, S., & Mays, D. (2024). Inverse method to determine hydraulic conductivity from a velocity field using graph theory. InterPore Journal, 1(3), IPJ271124–5. https://doi.org/10.69631/ipj.v1i3nr30

Issue

Section

Original Research Papers

Funding data