A Hydro-Geomechanical Porous-Media Model to Study Effects of Engineered Carbonate Precipitation in Faults
DOI:
https://doi.org/10.69631/ipj.v2i2nr41Keywords:
Hydro-geomechanical coupling, Biomineralization, Fault reactivation, Model verificationAbstract
Hydro-geomechanical models are required to predict or understand the impact of subsurface engineering applications such as gas storage in geological formations. This study focuses on engineered carbonate precipitation through biomineralization in a fault zone of a cap-rock, aiming to reduce gas leakage from a reservoir. In addition to altering hydraulic properties such as porosity and permeability, precipitated carbonates also change the mechanical properties of the rock. We present a conceptual modeling approach implemented in the open-source simulator DuMux. After model verification, we applied the model to a CO2-storage scenario to investigate how biomineralization affects stress distribution within the rock, as well as how it may alter the risks of fault reactivation and induced seismic events. The generic study shows a tendency towards increased stiffness due to precipitated carbonate, which may cause shear failure events to occur earlier than in an untreated setup, while the magnitude of the seismicity is smaller.
Downloads
Metrics
References
Abousleiman, Y., Cheng, A. H.-D., Cui, L., Detournay, E., & Roegiers, J.-C. (1996). Mandel’s problem revisited. Géotechnique, 46(2), 187–195. https://doi.org/10.1680/geot.1996.46.2.187 DOI: https://doi.org/10.1680/geot.1996.46.2.187
Avseth, P., Mukerji, T., Mavko, G., & Dvorkin, J. (2010). Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks—A review of selected models and suggested work flows. GEOPHYSICS, 75(5), 75A31-75A47. https://doi.org/10.1190/1.3483770 DOI: https://doi.org/10.1190/1.3483770
Beck, M., & Class, H. (2019). Modelling fault reactivation with characteristic stress-drop terms. Advances in Geosciences, 49, 1–7. https://doi.org/10.5194/adgeo-49-1-2019 DOI: https://doi.org/10.5194/adgeo-49-1-2019
Beck, M., Rinaldi, A. P., Flemisch, B., & Class, H. (2020). Accuracy of fully coupled and sequential approaches for modeling hydro- and geomechanical processes. Computational Geosciences, 24(4), 1707–1723. https://doi.org/10.1007/s10596-020-09987-w DOI: https://doi.org/10.1007/s10596-020-09987-w
Bhukya, P. K., Adla, N., & Arnepalli, D. N. (2024). Coupled bio-chemo-hydro-mechanical modeling of microbially induced calcite precipitation process considering biomass encapsulation using a micro-scale relationship. Journal of Rock Mechanics and Geotechnical Engineering, 16(7), 2775–2789. https://doi.org/10.1016/j.jrmge.2023.09.023 DOI: https://doi.org/10.1016/j.jrmge.2023.09.023
Cappa, F., & Rutqvist, J. (2011). Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. International Journal of Greenhouse Gas Control, 5(2), 336–346. https://doi.org/10.1016/j.ijggc.2010.08.005 DOI: https://doi.org/10.1016/j.ijggc.2010.08.005
Cheng, A. H.-D. (2016). Poroelasticity (Vol. 27). Springer International Publishing. https://doi.org/10.1007/978-3-319-25202-5 DOI: https://doi.org/10.1007/978-3-319-25202-5
Coussy, O. (2003). Poromechanics (1st ed.). Wiley. https://doi.org/10.1002/0470092718 DOI: https://doi.org/10.1002/0470092718
Critical-porosity models. (2001). In A. R. Huffman & G. L. Bowers, Pressure Regimes in Sedimentary Basins and Their Prediction (pp. 33–41). American Association of Petroleum Geologists. https://doi.org/10.1306/M76870C4 DOI: https://doi.org/10.1306/M76870C4
Cunningham, A. B., Class, H., Ebigbo, A., Gerlach, R., Phillips, A. J., & Hommel, J. (2019). Field-scale modeling of microbially induced calcite precipitation. Computational Geosciences, 23(2), 399–414. https://doi.org/10.1007/s10596-018-9797-6 DOI: https://doi.org/10.1007/s10596-018-9797-6
Cunningham, A. B., Phillips, A. J., Troyer, E., Lauchnor, E., Hiebert, R., Gerlach, R., & Spangler, L. (2014). Wellbore leakage mitigation using engineered biomineralization. Energy Procedia, 63, 4612–4619. https://doi.org/10.1016/j.egypro.2014.11.494 DOI: https://doi.org/10.1016/j.egypro.2014.11.494
Cuthbert, M. O., McMillan, L. A., Handley-Sidhu, S., Riley, Michael. S., Tobler, D. J., & Phoenix, Vernon. R. (2013). A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation. Environmental Science & Technology, 47(23), 13637–13643. https://doi.org/10.1021/es402601g DOI: https://doi.org/10.1021/es402601g
De Simone, S., & Carrera, J. (2017). Analytical solutions to coupled hm problems to highlight the nonlocal nature of aquifer storage. Water Resources Research, 53(11), 9580–9599. https://doi.org/10.1002/2017WR020824 DOI: https://doi.org/10.1002/2017WR020824
DuMux Handbook. (n.d.). DuMux Organisation. https://dumux.org/docs/
Dvorkin, J., Mavko, G., & Nur, A. (1991). The effect of cementation on the elastic properties of granular material. Mechanics of Materials, 12(3–4), 207–217. https://doi.org/10.1016/0167-6636(91)90018-U DOI: https://doi.org/10.1016/0167-6636(91)90018-U
Dvorkin, J., Nur, A., & Yin, H. (1994). Effective properties of cemented granular materials. Mechanics of Materials, 18(4), 351–366. https://doi.org/10.1016/0167-6636(94)90044-2 DOI: https://doi.org/10.1016/0167-6636(94)90044-2
Ellsworth, W. L. (2013). Injection-induced earthquakes. Science, 341(6142), 1225942. https://doi.org/10.1126/science.1225942 DOI: https://doi.org/10.1126/science.1225942
Fauriel, S., & Laloui, L. (2012). A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils. Computers and Geotechnics, 46, 104–120. https://doi.org/10.1016/j.compgeo.2012.05.017 DOI: https://doi.org/10.1016/j.compgeo.2012.05.017
Frohlich, C., Ellsworth, W., Brown, W. A., Brunt, M., Luetgert, J., MacDonald, T., & Walter, S. (2014). The 17 May 2012 M 4.8 earthquake near Timpson, East Texas: An event possibly triggered by fluid injection. Journal of Geophysical Research: Solid Earth, 119(1), 581–593. https://doi.org/10.1002/2013JB010755 DOI: https://doi.org/10.1002/2013JB010755
Gassmann, F. (1951). Über die elastizität poröser medien. Inst. für Geophysik an der ETH.
Hashin, Z., & Shtrikman, S. (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2), 127–140. https://doi.org/10.1016/0022-5096(63)90060-7 DOI: https://doi.org/10.1016/0022-5096(63)90060-7
Holland, A. A. (2013). Earthquakes triggered by hydraulic fracturing in south-central oklahoma. Bulletin of the Seismological Society of America, 103(3), 1784–1792. https://doi.org/10.1785/0120120109 DOI: https://doi.org/10.1785/0120120109
Hommel, J., Coltman, E., & Class, H. (2018). Porosity–permeability relations for evolving pore space: A review with a focus on (Bio-)geochemically altered porous media. Transport in Porous Media, 124(2), 589–629. https://doi.org/10.1007/s11242-018-1086-2 DOI: https://doi.org/10.1007/s11242-018-1086-2
Hommel, J., Gehring, L., Weinhardt, F., Ruf, M., & Steeb, H. (2022). Effects of enzymatically induced carbonate precipitation on capillary pressure–saturation relations. Minerals, 12(10), 1186. https://doi.org/10.3390/min12101186 DOI: https://doi.org/10.3390/min12101186
Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., & Berre, I. (2021). PorePy: An open-source software for simulation of multiphysics processes in fractured porous media. Computational Geosciences, 25(1), 243–265. https://doi.org/10.1007/s10596-020-10002-5 DOI: https://doi.org/10.1007/s10596-020-10002-5
Keranen, K. M., Savage, H. M., Abers, G. A., & Cochran, E. S. (2013). Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology, 41(6), 699–702. https://doi.org/10.1130/G34045.1 DOI: https://doi.org/10.1130/G34045.1
Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A., & Ge, S. (2014). Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345(6195), 448–451. https://doi.org/10.1126/science.1255802 DOI: https://doi.org/10.1126/science.1255802
Kim, J. (n.d.). Sequential methods for coupled geomechanics and multiphase flow | suetri-b reservoir simulation. Retrieved May 26, 2025, from https://suetri-b.stanford.edu/publications/theses/sequential-methods-coupled-geomechanics-and-multiphase-flow
Kim, J., Moridis, G. J. J., Yang, D., & Rutqvist, J. (2012). Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits. SPE Journal, 17(02), 485–501. https://doi.org/10.2118/141304-PA DOI: https://doi.org/10.2118/141304-PA
Kim, K., Kim, D., Na, Y., Song, Y., & Wang, J. (2023). A review of carbon mineralization mechanism during geological CO2 storage. Heliyon, 9(12), e23135. https://doi.org/10.1016/j.heliyon.2023.e23135 DOI: https://doi.org/10.1016/j.heliyon.2023.e23135
Kirkland, C. M., Thane, A., Hiebert, R., Hyatt, R., Kirksey, J., Cunningham, A. B., Gerlach, R., Spangler, L., & Phillips, A. J. (2020). Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (Micp): A field demonstration. Journal of Petroleum Science and Engineering, 190, 107060. https://doi.org/10.1016/j.petrol.2020.107060 DOI: https://doi.org/10.1016/j.petrol.2020.107060
Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., et al. (2021). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications, 81, 423–443. https://doi.org/10.1016/j.camwa.2020.02.012 DOI: https://doi.org/10.1016/j.camwa.2020.02.012
Lei, X., Huang, D., Su, J., Jiang, G., Wang, X., et al. (2017). Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China. Scientific Reports, 7(1), 7971. https://doi.org/10.1038/s41598-017-08557-y DOI: https://doi.org/10.1038/s41598-017-08557-y
Loyola, A. C., Cordão Neto, M. P., & Pereira, J.-M. (2024). An open-source numerical laboratory to assess the poromechanical behavior of fractured rocks. Computers and Geotechnics, 168, 106127. https://doi.org/10.1016/j.compgeo.2024.106127 DOI: https://doi.org/10.1016/j.compgeo.2024.106127
Mandel, J. (1953). Consolidation des sols(Étude mathématique). Géotechnique, 3(7), 287–299. https://doi.org/10.1680/geot.1953.3.7.287 DOI: https://doi.org/10.1680/geot.1953.3.7.287
Mazzoldi, A., Rinaldi, A. P., Borgia, A., & Rutqvist, J. (2012). Induced seismicity within geological carbon sequestration projects: Maximum earthquake magnitude and leakage potential from undetected faults. International Journal of Greenhouse Gas Control, 10, 434–442. https://doi.org/10.1016/j.ijggc.2012.07.012 DOI: https://doi.org/10.1016/j.ijggc.2012.07.012
Mikelić, A., Wang, B., & Wheeler, M. F. (2014). Numerical convergence study of iterative coupling for coupled flow and geomechanics. Computational Geosciences, 18(3–4), 325–341. https://doi.org/10.1007/s10596-013-9393-8 DOI: https://doi.org/10.1007/s10596-013-9393-8
Nisbet, H., Buscarnera, G., Carey, J. W., Chen, M. A., Detournay, E., et al. (2024). Carbon mineralization in fractured mafic and ultramafic rocks: A review. Reviews of Geophysics, 62(4), e2023RG000815. https://doi.org/10.1029/2023RG000815 DOI: https://doi.org/10.1029/2023RG000815
Phillips, A. J., Cunningham, A. B., Gerlach, R., Hiebert, R., Hwang, C., et al. (2016). Fracture sealing with microbially-induced calcium carbonate precipitation: A field study. Environmental Science & Technology, 50(7), 4111–4117. https://doi.org/10.1021/acs.est.5b05559 DOI: https://doi.org/10.1021/acs.est.5b05559
Phillips, A. J., Troyer, E., Hiebert, R., Kirkland, C., Gerlach, R., et al. (2018). Enhancing wellbore cement integrity with microbially induced calcite precipitation (Micp): A field scale demonstration. Journal of Petroleum Science and Engineering, 171, 1141–1148. https://doi.org/10.1016/j.petrol.2018.08.012 DOI: https://doi.org/10.1016/j.petrol.2018.08.012
Phillips, P. J., & Wheeler, M. F. (2007). A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: The continuous in time case. Computational Geosciences, 11(2), 131. https://doi.org/10.1007/s10596-007-9045-y DOI: https://doi.org/10.1007/s10596-007-9045-y
Qabany, A. A., Mortensen, B., Martinez, B., Soga, K., & DeJong, J. (2011). Microbial carbonate precipitation: Correlation of s-wave velocity with calcite precipitation. Geo-Frontiers 2011, 3993–4001. https://doi.org/10.1061/41165(397)408 DOI: https://doi.org/10.1061/41165(397)408
Rinaldi, A. P., Rutqvist, J., & Cappa, F. (2014). Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection. International Journal of Greenhouse Gas Control, 20, 117–131. https://doi.org/10.1016/j.ijggc.2013.11.001 DOI: https://doi.org/10.1016/j.ijggc.2013.11.001
Rutqvist, J., Birkholzer, J. T., & Tsang, C.-F. (2008). Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir–caprock systems. International Journal of Rock Mechanics and Mining Sciences, 45(2), 132–143. https://doi.org/10.1016/j.ijrmms.2007.04.006 DOI: https://doi.org/10.1016/j.ijrmms.2007.04.006
Rutqvist, J., Rinaldi, A. P., Cappa, F., & Moridis, G. J. (2013). Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. Journal of Petroleum Science and Engineering, 107, 31–44. https://doi.org/10.1016/j.petrol.2013.04.023 DOI: https://doi.org/10.1016/j.petrol.2013.04.023
Scheer, D., Class, H., & Flemisch, B. (2021). Subsurface environmental modelling between science and policy. Springer International Publishing. https://doi.org/10.1007/978-3-030-51178-4 DOI: https://doi.org/10.1007/978-3-030-51178-4
Shapiro, S. A., & Dinske, C. (2009). Fluid‐induced seismicity: Pressure diffusion and hydraulic fracturing. Geophysical Prospecting, 57(2), 301–310. https://doi.org/10.1111/j.1365-2478.2008.00770.x DOI: https://doi.org/10.1111/j.1365-2478.2008.00770.x
Sibson, R. H. (1985). A note on fault reactivation. Journal of Structural Geology, 7(6), 751–754. https://doi.org/10.1016/0191-8141(85)90150-6 DOI: https://doi.org/10.1016/0191-8141(85)90150-6
Van Paassen, L. A., Ghose, R., Van Der Linden, T. J. M., Van Der Star, W. R. L., & Van Loosdrecht, M. C. M. (2010). Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12), 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382
Vilarrasa, V., & Carrera, J. (2015). Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proceedings of the National Academy of Sciences, 112(19), 5938–5943. https://doi.org/10.1073/pnas.1413284112 DOI: https://doi.org/10.1073/pnas.1413284112
Wang, X., Bhukya, P. K., Arnepalli, D. N., & Chen, S. (2024). Coupled multiphysical model for investigation of influence factors in the application of microbially induced calcite precipitation. Journal of Rock Mechanics and Geotechnical Engineering, 16(6), 2232–2249. https://doi.org/10.1016/j.jrmge.2024.03.007 DOI: https://doi.org/10.1016/j.jrmge.2024.03.007
Wang, X., & Nackenhorst, U. (2022). Micro-feature-motivated numerical analysis of the coupled bio-chemo-hydro-mechanical behaviour in MICP. Acta Geotechnica, 17(10), 4537–4553. https://doi.org/10.1007/s11440-022-01544-2 DOI: https://doi.org/10.1007/s11440-022-01544-2
Wang, Y., & Class, H. (2025). A hydro-geomechanical porous-media model to study effects of engineered carbonate precipitation in faults (arXiv:2504.05171). arXiv. https://doi.org/10.48550/arXiv.2504.05171 DOI: https://doi.org/10.5194/egusphere-egu25-13876
Weinhardt, F., Deng, J., Hommel, J., Vahid Dastjerdi, S., Gerlach, R., Steeb, H., & Class, H. (2022). Spatiotemporal distribution of precipitates and mineral phase transition during biomineralization affect porosity–permeability relationships: Microfluidic investigations. Transport in Porous Media, 143(2), 527–549. https://doi.org/10.1007/s11242-022-01782-8 DOI: https://doi.org/10.1007/s11242-022-01782-8
Wetzel, M., Kempka, T., & Kühn, M. (2020). Hydraulic and mechanical impacts of pore space alterations within a sandstone quantified by a flow velocity-dependent precipitation approach. Materials, 13(14), 3100. https://doi.org/10.3390/ma13143100 DOI: https://doi.org/10.3390/ma13143100
Wetzel, M., Kempka, T., & Kühn, M. (2021). Diagenetic trends of synthetic reservoir sandstone properties assessed by digital rock physics. Minerals, 11(2), 151. https://doi.org/10.3390/min11020151 DOI: https://doi.org/10.3390/min11020151
Yasuhara, H., Neupane, D., Hayashi, K., & Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations, 52(3), 539–549. https://doi.org/10.1016/j.sandf.2012.05.011 DOI: https://doi.org/10.1016/j.sandf.2012.05.011
Zeng, C., Veenis, Y., Hall, C. A., Young, E. S., Van Der Star, W. R. L., et al. (2021). Experimental and numerical analysis of a field trial application of microbially induced calcite precipitation for ground stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 147(7), 05021003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002545 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002545

Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yue Wang, Holger Class

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers 327154368