Experimental Investigation of Solubility Trapping in 3D Printed Micromodels

Authors

DOI:

https://doi.org/10.69631/ipj.v2i2nr49

Keywords:

Mass Transfer, CO2 Dissolution, CO2 Trapping, 3D printing, Direct Numerical Simulation

Abstract

Understanding interfacial mass transfer during dissolution of gas in a liquid is vital for optimizing large-scale carbon capture and storage operations. While the dissolution of CO2 bubbles in reservoir brine is a crucial mechanism towards safe CO2 storage, it is a process that occurs at the pore-scale and is not yet fully understood. Direct numerical simulation (DNS) models describing this type of dissolution exist and have been validated with semi-analytical models on simple cases like a rising bubble in a liquid column. However, DNS models have not been experimentally validated for more complicated scenarios such as dissolution of trapped CO2 bubbles in pore geometries where there are few experimental datasets. In this work, we present an experimental and numerical study of trapping and dissolution of CO2 bubbles in 3D printed micromodel geometries. We used 3D printing technology to generate three different geometries, a single cavity geometry, a triple cavity geometry, and a multiple channel geometry. To investigate the repeatability of the trapping and dissolution experimental results, each geometry was printed three times, and three identical experiments were performed for each geometry. The experiments were performed at a low capillary number (Ca = 3.33 x 10-6), representative of flow during CO2 storage applications. The DNS simulations were then performed and compared with the experimental results. Our results show experimental reproducibility and consistency in terms of CO2 trapping and the CO2 dissolution process. At such a low capillary number, our numerical simulator cannot model the process accurately due to parasitic currents and the strong time-step constraints associated with capillary waves. However, we show that, for the single and triple cavity geometry, the interfacial transfer and resulting bubble dissolution can be reproduced by a numerical strategy where the interfacial tension is divided by 100 to relax the capillary time-step constraints. The full experimental dataset is provided and can be used to benchmark and improve future numerical models. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abadie, T., Aubin, J., & Legendre, D. (2015). On the combined effects of surface tension force calculation and interface advection on spurious currents within Volume of Fluid and Level Set frameworks. Journal of Computational Physics, 297, 611-636. https://doi.org/https://doi.org/10.1016/j.jcp.2015.04.054 DOI: https://doi.org/10.1016/j.jcp.2015.04.054

Amarasinghe, W., Farzaneh, S., Fjelde, I., Sohrabi, M., & Guo, Y. (2021). A Visual Investigation of CO2 Convective Mixing in Water and Oil at the Pore Scale Using a Micromodel Apparatus at Reservoir Conditions. Gases, 1(1), 53-67. https://doi.org/10.3390/gases1010005 DOI: https://doi.org/10.3390/gases1010005

Beg, S., Almalki, W. H., Malik, A., Farhan, M., Aatif, M., et al. (2020). 3D printing for drug delivery and biomedical applications. Drug Discovery Today, 25(9), 1668-1681. https://doi.org/https://doi.org/10.1016/j.drudis.2020.07.007 DOI: https://doi.org/10.1016/j.drudis.2020.07.007

Berean, K., Ou, J. Z., Nour, M., Latham, K., McSweeney, C., et al. (2014). The effect of crosslinking temperature on the permeability of PDMS membranes: Evidence of extraordinary CO2 and CH4 gas permeation. Separation and Purification Technology, 122, 96-104. https://doi.org/https://doi.org/10.1016/j.seppur.2013.11.006 DOI: https://doi.org/10.1016/j.seppur.2013.11.006

Black, J. R., Carroll, S. A., & Haese, R. R. (2015). Rates of mineral dissolution under CO2 storage conditions. Chemical Geology, 399, 134-144. https://doi.org/https://doi.org/10.1016/j.chemgeo.2014.09.020 DOI: https://doi.org/10.1016/j.chemgeo.2014.09.020

Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335-354. https://doi.org/https://doi.org/10.1016/0021-9991(92)90240-Y DOI: https://doi.org/10.1016/0021-9991(92)90240-Y

Buchgraber, M., Kovscek, A. R., & Castanier, L. M. (2012). A Study of Microscale Gas Trapping Using Etched Silicon Micromodels. Transport in Porous Media, 95(3), 647-668. https://doi.org/10.1007/s11242-012-0067-0 DOI: https://doi.org/10.1007/s11242-012-0067-0

Celia, M. A., Bachu, S., Nordbotten, J. M., & Bandilla, K. W. (2015). Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resources Research, 51(9), 6846-6892. https://doi.org/https://doi.org/10.1002/2015WR017609 DOI: https://doi.org/10.1002/2015WR017609

Chang, C., Zhou, Q., Kneafsey, T. J., Oostrom, M., & Ju, Y. (2019). Coupled supercritical CO2 dissolution and water flow in pore-scale micromodels. Advances in Water Resources, 123, 54-69. https://doi.org/https://doi.org/10.1016/j.advwatres.2018.11.004 DOI: https://doi.org/10.1016/j.advwatres.2018.11.004

Chang, C., Zhou, Q., Kneafsey, T. J., Oostrom, M., Wietsma, T. W., & Yu, Q. (2016). Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions. Advances in Water Resources, 92, 142-158. https://doi.org/https://doi.org/10.1016/j.advwatres.2016.03.015 DOI: https://doi.org/10.1016/j.advwatres.2016.03.015

Chang, C., Zhou, Q., Oostrom, M., Kneafsey, T. J., & Mehta, H. (2017). Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions. Advances in Water Resources, 100, 14-25. https://doi.org/https://doi.org/10.1016/j.advwatres.2016.12.003 DOI: https://doi.org/10.1016/j.advwatres.2016.12.003

Chen, Z., Xu, J., & Wang, Y. (2019). Gas-liquid-liquid multiphase flow in microfluidic systems – A review. Chemical Engineering Science, 202, 1-14. https://doi.org/https://doi.org/10.1016/j.ces.2019.03.016 DOI: https://doi.org/10.1016/j.ces.2019.03.016

Crank, J. (1975). The Mathematics of Diffusion (n. Edition, Ed.). Oxford University Press, London

Espinoza, D. N., & Santamarina, J. C. (2010). Water-CO2-mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage. Water Resources Research, 46(7). https://doi.org/https://doi.org/10.1029/2009WR008634 DOI: https://doi.org/10.1029/2009WR008634

Fan, Y., Durlofsky, L. J., & Tchelepi, H. A. (2012). A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO2 storage simulations. Advances in Water Resources, 42, 47-61. https://doi.org/https://doi.org/10.1016/j.advwatres.2012.03.012 DOI: https://doi.org/10.1016/j.advwatres.2012.03.012

Francois, M. M., Cummins, S. J., Dendy, E. D., Kothe, D. B., Sicilian, J. M., & Williams, M. W. (2006). A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. Journal of Computational Physics, 213(1), 141-173. https://doi.org/https://doi.org/10.1016/j.jcp.2005.08.004 DOI: https://doi.org/10.1016/j.jcp.2005.08.004

Gonzalez, G., Roppolo, I., Pirri, C. F., & Chiappone, A. (2022). Current and emerging trends in polymeric 3D printed microfluidic devices. Additive Manufacturing, 55, 102867. https://doi.org/https://doi.org/10.1016/j.addma.2022.102867 DOI: https://doi.org/10.1016/j.addma.2022.102867

Graveleau, M., Soulaine, C., & Tchelepi, H. A. (2017). Pore-Scale Simulation of Interphase Multicomponent Mass Transfer for Subsurface Flow. Transport in Porous Media, 120(2), 287-308. https://doi.org/10.1007/s11242-017-0921-1 DOI: https://doi.org/10.1007/s11242-017-0921-1

Haroun, Y., Legendre, D., & Raynal, L. (2010). Volume of fluid method for interfacial reactive mass transfer: Application to stable liquid film. Chemical Engineering Science, 65(10), 2896-2909. https://doi.org/https://doi.org/10.1016/j.ces.2010.01.012 DOI: https://doi.org/10.1016/j.ces.2010.01.012

Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5 DOI: https://doi.org/10.1016/0021-9991(81)90145-5

Joshi, S. C., & Sheikh, A. A. (2015). 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping, 10(4), 175-185. https://doi.org/10.1080/17452759.2015.1111519 DOI: https://doi.org/10.1080/17452759.2015.1111519

Karel, Z. (1994). Contrast Limited Adaptive Histogram Equalization. Graphics Gems, 0, 474-485. https://cir.nii.ac.jp/crid/1571698601099987968 DOI: https://doi.org/10.1016/B978-0-12-336156-1.50061-6

Kohanpur, A. H., Rahromostaqim, M., Valocchi, A. J., & Sahimi, M. (2020). Two-phase flow of CO2-brine in a heterogeneous sandstone: Characterization of the rock and comparison of the lattice-Boltzmann, pore-network, and direct numerical simulation methods. Advances in Water Resources, 135, 103469. https://doi.org/https://doi.org/10.1016/j.advwatres.2019.103469 DOI: https://doi.org/10.1016/j.advwatres.2019.103469

Konno, M., Patsoukis Dimou, A., & Suzuki, A. (2023). Using 3D-printed fracture networks to obtain porosity, permeability, and tracer response datasets. Data in Brief, 47, 109010. https://doi.org/https://doi.org/10.1016/j.dib.2023.109010 DOI: https://doi.org/10.1016/j.dib.2023.109010

Kuhn, S., & Jensen, K. F. (2012). A pH-Sensitive Laser-Induced Fluorescence Technique To Monitor Mass Transfer in Multiphase Flows in Microfluidic Devices. Industrial & Engineering Chemistry Research, 51(26), 8999-9006. https://doi.org/10.1021/ie300978n DOI: https://doi.org/10.1021/ie300978n

Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., & Zanetti, G. (1994). Modelling Merging and Fragmentation in Multiphase Flows with SURFER. Journal of Computational Physics, 113(1), 134-147. https://doi.org/https://doi.org/10.1006/jcph.1994.1123 DOI: https://doi.org/10.1006/jcph.1994.1123

Lamberti, A., Marasso, S. L., & Cocuzza, M. (2014). PDMS membranes with tunable gas permeability for microfluidic applications. RSC Advances, 4(106), 61415-61419. https://doi.org/10.1039/C4RA12934B DOI: https://doi.org/10.1039/C4RA12934B

Levine, J. S., Goldberg, D. S., Lackner, K. S., Matter, J. M., Supp, M. G., & Ramakrishnan, T. S. (2014). Relative Permeability Experiments of Carbon Dioxide Displacing Brine and Their Implications for Carbon Sequestration. Environmental Science & Technology, 48(1), 811-818. https://doi.org/10.1021/es401549e DOI: https://doi.org/10.1021/es401549e

Li, H., & Zhang, T. (2019). Imaging and characterizing fluid invasion in micro-3D printed porous devices with variable surface wettability. Soft Matter, 15(35), 6978-6987. https://doi.org/10.1039/C9SM01182J DOI: https://doi.org/10.1039/C9SM01182J

Lim, J. S. (1990). Two-dimensional signal and image processing. Prentice Hall, Englewood Cliffs, N.J., ©1990.

Liu, H., Valocchi, A. J., Werth, C., Kang, Q., & Oostrom, M. (2014). Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model. Advances in Water Resources, 73, 144-158. https://doi.org/https://doi.org/10.1016/j.advwatres.2014.07.010 DOI: https://doi.org/10.1016/j.advwatres.2014.07.010

Maes, J., & Menke, H. P. (2021). GeoChemFoam: Direct Modelling of Multiphase Reactive Transport in Real Pore Geometries with Equilibrium Reactions. Transport in Porous Media, 139(2), 271-299. https://doi.org/10.1007/s11242-021-01661-8 DOI: https://doi.org/10.1007/s11242-021-01661-8

Maes, J., & Menke, H. P. (2021). GeoChemFoam: Operator Splitting based time-stepping for efficient Volume-Of-Fluid simulation of capillary-dominated two-phase flow. arXiv:2105.10576 [physics.flu-dyn]. https://doi.org/10.48550/arXiv.2105.10576

Maes, J., & Soulaine, C. (2020). A unified single-field Volume-of-Fluid-based formulation for multi-component interfacial transfer with local volume changes. Journal of Computational Physics, 402, 109024. https://doi.org/https://doi.org/10.1016/j.jcp.2019.109024 DOI: https://doi.org/10.1016/j.jcp.2019.109024

Marschall, H., Hinterberger, K., Schüler, C., Habla, F., & Hinrichsen, O. (2012). Numerical simulation of species transfer across fluid interfaces in free-surface flows using OpenFOAM. Chemical Engineering Science, 78, 111-127. https://doi.org/https://doi.org/10.1016/j.ces.2012.02.034 DOI: https://doi.org/10.1016/j.ces.2012.02.034

Osei-Bonsu, K., Grassia, P., & Shokri, N. (2017). Investigation of foam flow in a 3D printed porous medium in the presence of oil. Journal of Colloid and Interface Science, 490, 850-858. https://doi.org/https://doi.org/10.1016/j.jcis.2016.12.015 DOI: https://doi.org/10.1016/j.jcis.2016.12.015

Osei-Bonsu, K., Grassia, P., & Shokri, N. (2018). Effects of Pore Geometry on Flowing Foam Dynamics in 3D-Printed Porous Media. Transport in Porous Media, 124(3), 903-917. https://doi.org/10.1007/s11242-018-1103-5 DOI: https://doi.org/10.1007/s11242-018-1103-5

Patoukis Dimou, A., & Maes, J. (2020, October 12-14). Volume-of-Fluid Simulation of Gas Dissolution in Liquid: Rising Bubbles and CO2 Trapping. 14th International Conference of CFD in Oil & Gas, Metallurgical and Process Industries SINTEF, Trondheim, Norway. https://sintef.brage.unit.no/sintef-xmlui/handle/11250/2720857

Patsoukis Dimou, A., Menke, H. P., & Maes, J. (2022). Benchmarking the Viability of 3D Printed Micromodels for Single Phase Flow Using Particle Image Velocimetry and Direct Numerical Simulations. Transport in Porous Media, 141(2), 279-294. https://doi.org/10.1007/s11242-021-01718-8 DOI: https://doi.org/10.1007/s11242-021-01718-8

Patsoukis Dimou, A., Suzuki, A., Menke, H. P., Maes, J., & Geiger, S. (2021). 3D printing-based microfluidics for Geosciences ICFD 2021 https://www.researchgate.net/publication/358426572_3D_printing-based_microfluidics_for_Geosciences

Prodanović, M., & Bryant, S. L. (2006). A level set method for determining critical curvatures for drainage and imbibition. Journal of Colloid and Interface Science, 304(2), 442-458. https://doi.org/https://doi.org/10.1016/j.jcis.2006.08.048 DOI: https://doi.org/10.1016/j.jcis.2006.08.048

Renardy, Y., & Renardy, M. (2002). PROST: A Parabolic Reconstruction of Surface Tension for the Volume-of-Fluid Method. Journal of Computational Physics, 183(2), 400-421. https://doi.org/https://doi.org/10.1006/jcph.2002.7190 DOI: https://doi.org/10.1006/jcph.2002.7190

Roman, S., Soulaine, C., AlSaud, M. A., Kovscek, A., & Tchelepi, H. (2016). Particle velocimetry analysis of immiscible two-phase flow in micromodels. Advances in Water Resources, 95, 199-211. https://doi.org/https://doi.org/10.1016/j.advwatres.2015.08.015 DOI: https://doi.org/10.1016/j.advwatres.2015.08.015

Roman, S., Soulaine, C., & Kovscek, A. R. (2020). Pore-scale visualization and characterization of viscous dissipation in porous media. Journal of Colloid and Interface Science, 558, 269-279. https://doi.org/https://doi.org/10.1016/j.jcis.2019.09.072 DOI: https://doi.org/10.1016/j.jcis.2019.09.072

Shariatipour, S. M., Pickup, G. E., & Mackay, E. J. (2016). Simulations of CO2 storage in aquifer models with top surface morphology and transition zones. International Journal of Greenhouse Gas Control, 54, 117-128. https://doi.org/https://doi.org/10.1016/j.ijggc.2016.06.016 DOI: https://doi.org/10.1016/j.ijggc.2016.06.016

Shui, L., Eijkel, J. C. T., & van den Berg, A. (2007). Multiphase flow in microfluidic systems – Control and applications of droplets and interfaces. Advances in Colloid and Interface Science, 133(1), 35-49. https://doi.org/https://doi.org/10.1016/j.cis.2007.03.001 DOI: https://doi.org/10.1016/j.cis.2007.03.001

Soulaine, C., Maes, J., & Roman, S. (2021). Computational Microfluidics for Geosciences [Review]. Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.643714 DOI: https://doi.org/10.3389/frwa.2021.643714

Sun, R., & Cubaud, T. (2011). Dissolution of carbon dioxide bubbles and microfluidic multiphase flows. Lab on a Chip, 11(17), 2924-2928. https://doi.org/10.1039/C1LC20348G DOI: https://doi.org/10.1039/c1lc20348g

Tahmasebi, P., Sahimi, M., Kohanpur, A. H., & Valocchi, A. (2017). Pore-scale simulation of flow of CO2 and brine in reconstructed and actual 3D rock cores. Journal of Petroleum Science and Engineering, 155, 21-33. https://doi.org/https://doi.org/10.1016/j.petrol.2016.12.031 DOI: https://doi.org/10.1016/j.petrol.2016.12.031

Ubbink, O., & Issa, R. I. (1999). A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes. Journal of Computational Physics, 153(1), 26-50. https://doi.org/https://doi.org/10.1006/jcph.1999.6276 DOI: https://doi.org/10.1006/jcph.1999.6276

Vukicevic, M., Mosadegh, B., Min, J. K., & Little, S. H. (2017). Cardiac 3D Printing and its Future Directions. JACC: Cardiovascular Imaging, 10(2), 171-184. https://doi.org/doi:10.1016/j.jcmg.2016.12.001 DOI: https://doi.org/10.1016/j.jcmg.2016.12.001

Waheed, S., Cabot, J. M., Macdonald, N. P., Lewis, T., Guijt, R. M., Paull, B., & Breadmore, M. C. (2016). 3D printed microfluidic devices: enablers and barriers. Lab on a Chip, 16(11), 1993-2013. https://doi.org/10.1039/C6LC00284F DOI: https://doi.org/10.1039/C6LC00284F

Zhang, D., & Song, J. (2014). Mechanisms for Geological Carbon Sequestration. Procedia IUTAM, 10, 319-327. https://doi.org/https://doi.org/10.1016/j.piutam.2014.01.027 DOI: https://doi.org/10.1016/j.piutam.2014.01.027

Zhang, J., Tuohey, J., Amini, N., Morton, D. A. V., & Hapgood, K. P. (2021). Liquid imbibition into 3D printed porous substrates. Chemical Engineering Science, 245, 116967. https://doi.org/https://doi.org/10.1016/j.ces.2021.116967 DOI: https://doi.org/10.1016/j.ces.2021.116967

Downloads

Additional Files

Published

2025-06-04

How to Cite

Patsoukis Dimou, A., Boroujeni, M. M., Roman, S., Menke, H., & Maes, J. (2025). Experimental Investigation of Solubility Trapping in 3D Printed Micromodels . InterPore Journal, 2(2), IPJ040625–4. https://doi.org/10.69631/ipj.v2i2nr49

Issue

Section

Original Research Papers

Funding data