Integration of geochemistry into a geomechanical subsurface flow simulator
DOI:
https://doi.org/10.69631/ipj.v1i3nr6Keywords:
Geomechanics, Reactive Transport Modeling, Fractured Reservoir, CCUS, CO2 capture, utilization, and storageAbstract
Accurately modeling geochemical reactions in subsurface flow is essential for understanding processes such as CO2 sequestration and contaminant transport. This paper presents a new numerical subsurface simulator (MF3D-GC) that combines flow, geomechanics, and geochemistry in an integrated and fully coupled manner. The simulator's capabilities were benchmarked by comparing it with other reactive-transport simulators. An adaptive tolerance method was implemented in the geochemistry module which reduced computing time while maintaining accuracy. User-defined kinetic models were used and coupled with changes in specific surface area, fluid saturation, temperature, and pH. The unique abilities of the model to couple geomechanics with geochemistry are highlighted. Our results show the importance of carefully selecting minerals and models to balance accuracy and computational efficiency. The model is used to simulate six different classes of geochemical flow problems which include flow, dissolution, precipitation, redox reactions, and diffusion with increasing levels of complexity. The potential applications of the model to CO2 sequestration, solution mining, geothermal energy production, and contaminant transport are briefly discussed.
Downloads
Metrics
References
Abd, A. S., & Abushaikha, A. (2019). A review of numerical modelling techniques for reactive transport in subsurface reservoirs and application in mimetic finite difference discretization schemes. SPE Europec Featured at 81st EAGE Conference and Exhibition, D021S001R012. https://doi.org/10.2118/195558-MS DOI: https://doi.org/10.2118/195558-MS
Bissell, R. C., Vasco, D. W., Atbi, M., Hamdani, M., Okwelegbe, M., & Goldwater, M. H. (2011). A full field simulation of the in Salah gas production and CO2 storage project using a coupled geo-mechanical and thermal fluid flow simulator. Energy Procedia, 4, 3290–3297. https://doi.org/10.1016/j.egypro.2011.02.249 DOI: https://doi.org/10.1016/j.egypro.2011.02.249
Black, J. R., Carroll, S. A., & Haese, R. R. (2015). Rates of mineral dissolution under CO2 storage conditions. Chemical Geology, 399, 134–144. https://doi.org/10.1016/j.chemgeo.2014.09.020 DOI: https://doi.org/10.1016/j.chemgeo.2014.09.020
Bordeaux-Rego, F., Sanaei, A., & Sepehrnoori, K. (2022). Enhancement of simulation CPU time of reactive-transport flow in porous media: Adaptive tolerance and mixing zone-based approach. Transport in Porous Media, 143(1), 127–150. https://doi.org/10.1007/s11242-022-01789-1 DOI: https://doi.org/10.1007/s11242-022-01789-1
Cardiff, P., Tuković, Ž., Jasak, H., & Ivanković, A. (2016). A block-coupled Finite Volume methodology for linear elasticity and unstructured meshes. Computers & Structures, 175, 100–122. https://doi.org/10.1016/j.compstruc.2016.07.004 DOI: https://doi.org/10.1016/j.compstruc.2016.07.004
Carman, P. C. (1997). Fluid flow through granular beds. Chemical Engineering Research and Design, 75, S32–S48. https://doi.org/10.1016/S0263-8762(97)80003-2 DOI: https://doi.org/10.1016/S0263-8762(97)80003-2
Computer Modelling Group Ltd. (2019). CMG Licensing User Guide no. 2. Guide to Using CMG Licensing.
Gai, X. (2004). A coupled geomechanics and reservoir flow model on parallel computers [Ph.D. Dissertation, The University of Texas at Austin]. https://repositories.lib.utexas.edu/handle/2152/1187 DOI: https://doi.org/10.2118/79700-MS
Goerke, U.-J., Park, C.-H., Wang, W., Singh, A. K., & Kolditz, O. (2011). Numerical simulation of multiphase hydromechanical processes induced by CO2 injection into deep saline aquifers. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 66(1), 105–118. https://doi.org/10.2516/ogst/2010032 DOI: https://doi.org/10.2516/ogst/2010032
Goertz-Allmann, B. P., Kühn, D., Oye, V., Bohloli, B., & Aker, E. (2014). Combining microseismic and geomechanical observations to interpret storage integrity at the In Salah CCS site. Geophysical Journal International, 198(1), 447–461. https://doi.org/10.1093/gji/ggu010 DOI: https://doi.org/10.1093/gji/ggu010
Jaeger, J. C., Cook, N. G. W., & Zimmerman, R. W. (2007). Fundamentals of rock mechanics (4th ed). Blackwell Pub.
Jasak, H., & Weller, H. G. (2000). Application of the finite volume method and unstructured meshes to linear elasticity. International Journal for Numerical Methods in Engineering, 48(2), 267–287. https://doi.org/10.1002/(SICI)1097-0207(20000520)48:2<267::AID-NME884>3.0.CO;2-Q DOI: https://doi.org/10.1002/(SICI)1097-0207(20000520)48:2<267::AID-NME884>3.0.CO;2-Q
Kazemi Nia Korrani, A., Sepehrnoori, K., & Delshad, M. (2015). Coupling IPhreeqc with UTCHEM to model reactive flow and transport. Computers & Geosciences, 82, 152–169. https://doi.org/10.1016/j.cageo.2015.06.004 DOI: https://doi.org/10.1016/j.cageo.2015.06.004
Kozeny, J. (1927). Ueber kapillare Leitung des Wassers im Boden [About capillary conduction of water in the soil]. Sitzungsber Akad., Wiss., Wien, 136(2a), 271–306.
Kvamme, B., & Liu, S. (2009). Reactive transport of CO2 in saline aquifers with implicit geomechanical analysis. Energy Procedia, 1(1), 3267–3274. https://doi.org/10.1016/J.EGYPRO.2009.02.112 DOI: https://doi.org/10.1016/j.egypro.2009.02.112
Lake, L. W., Bryant, S. L., & Araque-Martinez, A. N. (2002). Geochemistry and fluid flow. In: Geochemistry and fluid flow (1st ed.). Elsevier Science Ltd.
Lake, L. W., Johns, Russell., & Rossen, Bill. (2014). Fundamentals of Enhanced Oil Recovery. (1st ed.). SPE. DOI: https://doi.org/10.2118/9781613993286
Lasaga, A. C. (2018). Chapter 2. Fundamental approaches in describing mineral dissolution and precipitation rates. In A. F. White & S. L. Brantley (Eds.), Chemical Weathering Rates of Silicate Minerals (pp. 23–86). De Gruyter. https://www.degruyter.com/document/doi/10.1515/9781501509650-004/html DOI: https://doi.org/10.1515/9781501509650-004
Lucier, A., Zoback, M., Gupta, N., & Ramakrishnan, T. S. (2006). Geomechanical aspects of CO2 sequestration in a deep saline reservoir in the Ohio River Valley region. Environmental Geosciences, 13(2), 85–103. https://doi.org/10.1306/eg.11230505010 DOI: https://doi.org/10.1306/eg.11230505010
Manchanda, R. (2016). A general poro-elastic model for pad-scale fracturing of horizontal wells. University of Texas at Austin [Dissertation]. https://doi.org/10.15781/T2DD66
Mayer, K. U., Frind, E. O., & Blowes, D. W. (2002). Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resources Research, 38(9). https://doi.org/10.1029/2001WR000862 DOI: https://doi.org/10.1029/2001WR000862
Mura, M., & Sharma, M. M. (2023). Flow-geomechanics-geochemistry simulation of CO2 injection into fractured sandstones and carbonates. Day 2 Tue, October 17, 2023, D021S020R001. https://doi.org/10.2118/215032-MS DOI: https://doi.org/10.2118/215032-MS
Oelkers, E. H., Gislason, S. R., & Matter, J. (2008). Mineral carbonation of CO2. Elements, 4(5), 333–337. https://doi.org/10.2113/gselements.4.5.333 DOI: https://doi.org/10.2113/gselements.4.5.333
Oliveira, T. D. S., Blunt, M. J., & Bijeljic, B. (2019). Modelling of multispecies reactive transport on pore-space images. Advances in Water Resources, 127, 192–208. https://doi.org/10.1016/j.advwatres.2019.03.012 DOI: https://doi.org/10.1016/j.advwatres.2019.03.012
Olivella, S., Carrera, J., Gens, A., & Alonso, E. E. (1994). Nonisothermal multiphase flow of brine and gas through saline media. Transport in Porous Media, 15(3), 271–293. https://doi.org/10.1007/BF00613282 DOI: https://doi.org/10.1007/BF00613282
Onaisi, Atef, Samier, Pierre, Koutsabeloulis, Nick, and Pascal Longuemare. "Management of Stress Sensitive Reservoirs Using Two Coupled Stress-Reservoir Simulation Tools: ECL2VIS and ATH2VIS." Paper presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, October 2002. https://doi.org/10.2118/78512-MS DOI: https://doi.org/10.2523/78512-MS
Orlic, B. (2009). Some geomechanical aspects of geological CO2 sequestration. KSCE Journal of Civil Engineering, 13(4), 225–232. https://doi.org/10.1007/s12205-009-0225-2 DOI: https://doi.org/10.1007/s12205-009-0225-2
Palandri, J. L., Kharaka, Y. K., & Survey, U. S. G. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. In Open-File Report. https://doi.org/10.3133/ofr20041068 DOI: https://doi.org/10.3133/ofr20041068
Parkhurst, D. L., Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Chapter 42 of Section A: Groundwater In: Book 6 Modeling Techniques. https://doi.org/10.3133/tm6A43 DOI: https://doi.org/10.3133/tm6A43
Parkhurst, D. L., & Wissmeier, L. (2015). PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC. Advances in Water Resources, 83, 176–189. https://doi.org/10.1016/j.advwatres.2015.06.001 DOI: https://doi.org/10.1016/j.advwatres.2015.06.001
Rutqvist, J. (2011). Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Computers & Geosciences, 37(6), 739–750. https://doi.org/10.1016/j.cageo.2010.08.006 DOI: https://doi.org/10.1016/j.cageo.2010.08.006
Rutqvist, J. (2012). The geomechanics of CO2 storage in deep sedimentary formations. Geotechnical and Geological Engineering, 30(3), 525–551. https://doi.org/10.1007/s10706-011-9491-0 DOI: https://doi.org/10.1007/s10706-011-9491-0
Rutqvist, J., & Tsang, C.-F. (2002). A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Environmental Geology, 42(2–3), 296–305. https://doi.org/10.1007/s00254-001-0499-2 DOI: https://doi.org/10.1007/s00254-001-0499-2
Sanaei, A. (2019). Compositional Reactive-Transport Modeling of Engineered Waterflooding. University of Texas at Austin [Dissertation]. http://dx.doi.org/10.26153/tsw/13775
Sevougian, S. D., Schechter, R. S., & Lake, L. W. (1993). Effect of Partial Local Equilibrium on the Propagation of Precipitation/Dissolution Waves. Industrial & Engineering Chemistry Research, 32(10), 2281–2304. https://doi.org/10.1021/ie00022a013 DOI: https://doi.org/10.1021/ie00022a013
Soulaine, C., Pavuluri, S., Claret, F., & Tournassat, C. (2021). Porousmedia4foam: Multi-scale open-source platform for hydro-geochemical simulations with OpenFOAM®. Environmental Modelling & Software, 145, 105199. https://doi.org/10.1016/j.envsoft.2021.105199 DOI: https://doi.org/10.1016/j.envsoft.2021.105199
Steefel, C. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T., et al. (2015). Reactive transport codes for subsurface environmental simulation. Computational Geosciences, 19(3), 445–478. https://doi.org/10.1007/s10596-014-9443-x DOI: https://doi.org/10.1007/s10596-014-9443-x
Steefel, C. I., & MacQuarrie, K. T. B. (1996). Chapter 2. Approaches to modeling of reactive transport in porous media. In P. C. Lichtner, C. I. Steefel, & E. H. Oelkers (Eds.), Reactive Transport in Porous Media (pp. 83–130). De Gruyter. https://doi.org/10.1515/9781501509797-005 DOI: https://doi.org/10.1515/9781501509797-005
Tang, T. (2013). Implementation of solid body stress analysis in OpenFOAM. https://backend.orbit.dtu.dk/ws/portalfiles/portal/53911239/prod11365072351121.OSCFD_Report_TianTang_peerReviewed.pdf
Tang, T., Hededal, O., & Cardiff, P. (2015). On finite volume method implementation of poro-elasto-plasticity soil model. International Journal for Numerical and Analytical Methods in Geomechanics, 39(13), 1410–1430. https://doi.org/10.1002/NAG.2361 DOI: https://doi.org/10.1002/nag.2361
Taron, J., Elsworth, D., & Min, K.-B. (2009). Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. International Journal of Rock Mechanics and Mining Sciences, 46(5), 842–854. https://doi.org/10.1016/j.ijrmms.2009.01.008 DOI: https://doi.org/10.1016/j.ijrmms.2009.01.008
Tian, H., Xu, T., Li, Y., Yang, Z., & Wang, F. (2015). Evolution of sealing efficiency for CO2 geological storage due to mineral alteration within a hydrogeologically heterogeneous caprock. Applied Geochemistry, 63, 380–397. https://doi.org/10.1016/j.apgeochem.2015.10.002 DOI: https://doi.org/10.1016/j.apgeochem.2015.10.002
UT Austin. (2000). Volume I: User’s Guide for UTCHEM-9.0. A Three-Dimensional Chemical Flood Simulator. http://gmsdocs.aquaveo.com/UTCHEM_Users_Guide.pdf
Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620–631. https://doi.org/10.1063/1.168744 DOI: https://doi.org/10.1063/1.168744
White, J. A., Chiaramonte, L., Ezzedine, S., Foxall, W., Hao, Y., et al. (2014). Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project. Proceedings of the National Academy of Sciences, 111(24), 8747–8752. https://doi.org/10.1073/pnas.1316465111 DOI: https://doi.org/10.1073/pnas.1316465111
Xie, M., Mayer, K. U., Claret, F., Alt-Epping, P., Jacques, D., et al. (2015). Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation. Computational Geosciences, 19(3), 655–671. https://doi.org/10.1007/s10596-014-9458-3 DOI: https://doi.org/10.1007/s10596-014-9458-3
Xu, T., Apps, J. A., & Pruess, K. (2004). Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Applied Geochemistry, 19(6), 917–936. https://doi.org/10.1016/j.apgeochem.2003.11.003 DOI: https://doi.org/10.1016/j.apgeochem.2003.11.003
Xu, T., Pruess, K., Xu, T., & Pruess, K. (1998). Coupled modeling of non-isothermal multiphase flow, solute transport and reactive chemistry in porous and fractured media: 1. Model development and validation. https://escholarship.org/uc/item/9p64p400 DOI: https://doi.org/10.2172/926875
Zhang, Y., Hu, B., Teng, Y., Tu, K., & Zhu, C. (2019). A library of BASIC scripts of reaction rates for geochemical modeling using phreeqc. Computers & Geosciences, 133, 104316. https://doi.org/10.1016/j.cageo.2019.104316 DOI: https://doi.org/10.1016/j.cageo.2019.104316
Zheng, S. (2021). Development of a fully integrated equation of state compositional hydraulic fracturing and reservoir simulator. The University of Texas Austin [Dissertation] https://doi.org/10.26153/TSW/16954 DOI: https://doi.org/10.2118/201700-MS

Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Miki Mura, Shuang Zheng, Mukul Sharma

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.