A novel robust optimization framework based on surrogate modeling for underground hydrogen storage in depleted natural gas reservoirs

Authors

DOI:

https://doi.org/10.69631/ipj.v2i3nr69

Keywords:

Underground hydrogen storage, Robust optimization, Surrogate modeling, Deep learning

Abstract

Underground hydrogen storage (UHS) plays a vital role in global net-zero energy systems, enabling the storage of excess renewable energy for future use. However, physical reservoir model-based optimization for UHS system design and operation is computationally expensive due to complex geological properties and well-operational controls. This study developed a novel, efficient framework for UHS stochastic optimization to address this challenge, integrating advanced compositional reservoir simulation, accurate surrogate modeling, and stochastic optimization techniques. First, a base reservoir simulation model was developed to capture compositional fluid flow, hydrogen methanation reactions, gravity segregation, hysteresis, and capillary effects. To rapidly evaluate various well controls and reservoir configurations, convolutional neural network (CNN)-bi-directional long short-term memory (BiLSTM)-Attention models were trained as surrogate models using a comprehensive dataset generated from reservoir simulations. The CNN transforms three-dimensional (3D) geological fields into one-dimensional (1D) vectors, effectively capturing spatial features. The BiLSTM network learns the temporal evolution of the input features over time by processing them in both forward and backward directions. Subsequently, the attention mechanism enhances prediction accuracy by identifying and emphasizing the most significant features at critical time steps. The well-trained surrogate models were seamlessly integrated into the stochastic optimization framework based on the genetic algorithm, aiming to maximize the net present value (NPV) from UHS projects. The results demonstrate that the surrogate model exhibits satisfactory performance in the context of prediction accuracy, computational efficiency, and scalability. Notably, the newly developed framework based on surrogate models achieves an approximate 4878-fold speedup compared to an approach relying solely on reservoir simulation, while maintaining comparable accuracy. Overall, the proposed framework offers a promising solution for UHS optimization, providing valuable insights for the design and management of sustainable energy infrastructure.

Downloads

Download data is not yet available.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2623–2631. https://doi.org/10.1145/3292500.3330701

2. Al-Yaseri, A., Wolff-Boenisch, D., Fauziah, C. A., & Iglauer, S. (2021). Hydrogen wettability of clays: Implications for underground hydrogen storage. International Journal of Hydrogen Energy, 46(69), 34356–34361. https://doi.org/10.1016/j.ijhydene.2021.07.226

3. Bauer, J. F., Amro, M. M., Nassan, T., & Alkan, H. (2024). Reservoir engineering aspects of geologic hydrogen storage. International Petroleum Technology Conference, D031S097R001. https://doi.org/10.2523/IPTC-23943-MS

4. Bhosekar, A., & Ierapetritou, M. (2018). Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Computers & Chemical Engineering, 108, 250–267. https://doi.org/10.1016/j.compchemeng.2017.09.017

5. Blank, J., & Deb, K. (2020). Pymoo: Multi-objective optimization in python. IEEE Access, 8, 89497–89509. https://doi.org/10.1109/ACCESS.2020.2990567

6. Chai, M., Chen, Z., Nourozieh, H., & Yang, M. (2023). Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection. Applied Energy, 334, 120655. https://doi.org/10.1016/j.apenergy.2023.120655

7. Chen, F., Chen, B., Mao, S., Malki, M., & Mehana, M. (2024). Integrating capacity and efficiency for optimal hydrogen storage site selection in saline aquifers. Energy & Fuels, 38(5), 4733–4742. https://doi.org/10.1021/acs.energyfuels.3c04852

8. Computer Modeling Group. (2022). GEM User Manual. Computer Modeling Group (CGM).

9. Delshad, M., Alhotan, M. M., Fernandes, B. R. B., Umurzakov, Y., & Sepehrnoori, K. (2023). Modeling flow and transport in saline aquifers and depleted hydrocarbon reservoirs for hydrogen energy storage. SPE Journal, 28(05), 2547–2565. https://doi.org/10.2118/210351-PA

10. Feng, Z., Tariq, Z., Shen, X., Yan, B., Tang, X., & Zhang, F. (2024). An encoder-decoder ConvLSTM surrogate model for simulating geological CO2 sequestration with dynamic well controls. Gas Science and Engineering, 125, 205314. https://doi.org/10.1016/j.jgsce.2024.205314

11. Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional sequence to sequence learning. Proceedings of the 34th International Conference on Machine Learning, 1243–1252. https://proceedings.mlr.press/v70/gehring17a.html

12. Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610. https://doi.org/10.1016/j.neunet.2005.06.042

13. Hagemann, B. (2017). Numerical and analytical modeling of gas mixing and bio-reactive transport during underground hydrogen storage [PhD Thesis, Université de Lorraine]. https://theses.hal.science/tel-01735019

14. Hagemann, B., Ganzer, L., & Panfilov, M. (2018). Field scale modeling of bio-reactions during underground hydrogen storage. 2018, 1–12. https://doi.org/10.3997/2214-4609.201802116

15. Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J. T., Kallmeyer, J., et al. (2021). Enabling large-scale hydrogen storage in porous media – the scientific challenges. Energy & Environmental Science, 14(2), 853–864. https://doi.org/10.1039/D0EE03536J

16. Heinemann, N., Scafidi, J., Pickup, G., Thaysen, E. M., Hassanpouryouzband, A., et al. (2021). Hydrogen storage in saline aquifers: The role of cushion gas for injection and production. International Journal of Hydrogen Energy, 46(79), 39284–39296. https://doi.org/10.1016/j.ijhydene.2021.09.174

17. Helton, J. C., & Davis, F. J. (2003). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81(1), 23–69. https://doi.org/10.1016/S0951-8320(03)00058-9

18. Hemme, C., & Van Berk, W. (2018). Hydrogeochemical modeling to identify potential risks of underground hydrogen storage in depleted gas fields. Applied Sciences, 8(11), 2282. https://doi.org/10.3390/app8112282

19. Higgs, S., Da Wang, Y., Sun, C., Ennis-King, J., Jackson, S. J., et al. (2022). In-situ hydrogen wettability characterisation for underground hydrogen storage. International Journal of Hydrogen Energy, 47(26), 13062–13075. https://doi.org/10.1016/j.ijhydene.2022.02.022

20. Higgs, S., Wang, Y. D., Sun, C., Ennis-King, J., Jackson, S. J., et al. (2024). Direct measurement of hydrogen relative permeability hysteresis for underground hydrogen storage. International Journal of Hydrogen Energy, 50, 524–541. https://doi.org/10.1016/j.ijhydene.2023.07.270

21. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

22. Hogeweg, S., Strobel, G., & Hagemann, B. (2022). Benchmark study for the simulation of Underground Hydrogen Storage operations. Computational Geosciences, 26(6), 1367–1378. https://doi.org/10.1007/s10596-022-10163-5

23. Huang, T., Moridis, G. J., Blasingame, T. A., Abdulkader, A. M., & Yan, B. (2023). Compositional reservoir simulation of underground hydrogen storage in depleted gas reservoirs. International Journal of Hydrogen Energy, 48(92), 36035–36050. https://doi.org/10.1016/j.ijhydene.2023.05.355

24. Jafari Raad, S. M., Ranjbar, E., Hassanzadeh, H., & Leonenko, Y. (2023). Hydrogen-brine mixture PVT data for reservoir simulation of hydrogen storage in deep saline aquifers. International Journal of Hydrogen Energy, 48(2), 696–708. https://doi.org/10.1016/j.ijhydene.2022.09.222

25. Jensen, J. L. (Ed.). (2000). Statistics for petroleum engineers and geoscientists (2nd ed). Elsevier.

26. Kanaani, M., & Sedaee, B. (2022). Impact of dilation and irreversible compaction on underground hydrogen storage in depleted hydrocarbon reservoirs. Energy & Fuels, 36(22), 13506–13517. https://doi.org/10.1021/acs.energyfuels.2c02150

27. Kanaani, M., Sedaee, B., & Asadian-Pakfar, M. (2022). Role of cushion gas on underground hydrogen storage in depleted oil reservoirs. Journal of Energy Storage, 45, 103783. https://doi.org/10.1016/j.est.2021.103783

28. Kanaani, M., Sedaee, B., Asadian-Pakfar, M., Gilavand, M., & Almahmoudi, Z. (2023). Development of multi-objective co-optimization framework for underground hydrogen storage and carbon dioxide storage using machine learning algorithms. Journal of Cleaner Production, 386, 135785. https://doi.org/10.1016/j.jclepro.2022.135785

29. Katz, D. L., & Tek, M. R. (1981). Overview on underground storage of natural gas. Journal of Petroleum Technology, 33(06), 943–951. https://doi.org/10.2118/9390-PA

30. Land, C. S. (1968). Calculation of imbibition relative permeability for two- and three-phase flow from rock properties. Society of Petroleum Engineers Journal, 8(02), 149–156. https://doi.org/10.2118/1942-PA

31. Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791

32. Li, Y., & Nghiem, L. X. (1986). Phase equilibria of oil, gas and water/brine mixtures from a cubic equation of state and henry’s law. The Canadian Journal of Chemical Engineering, 64(3), 486–496. https://doi.org/10.1002/cjce.5450640319

33. Liu, N., Kovscek, A. R., Fernø, M. A., & Dopffel, N. (2023). Pore-scale study of microbial hydrogen consumption and wettability alteration during underground hydrogen storage. Frontiers in Energy Research, 11, 1124621. https://doi.org/10.3389/fenrg.2023.1124621

34. Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv. https://doi.org/10.48550/ARXIV.1711.05101

35. Lu, W., Li, J., Wang, J., & Qin, L. (2021). A CNN-BiLSTM-AM method for stock price prediction. Neural Computing and Applications, 33(10), 4741–4753. https://doi.org/10.1007/s00521-020-05532-z

36. Luboń, K., & Tarkowski, R. (2020). Numerical simulation of hydrogen injection and withdrawal to and from a deep aquifer in NW Poland. International Journal of Hydrogen Energy, 45(3), 2068–2083. https://doi.org/10.1016/j.ijhydene.2019.11.055

37. Luboń, K., & Tarkowski, R. (2021). Influence of capillary threshold pressure and injection well location on the dynamic CO2 and H2 storage capacity for the deep geological structure. International Journal of Hydrogen Energy, 46(58), 30048–30060. https://doi.org/10.1016/j.ijhydene.2021.06.119

38. Lysyy, M., Fernø, M., & Ersland, G. (2021). Seasonal hydrogen storage in a depleted oil and gas field. International Journal of Hydrogen Energy, 46(49), 25160–25174. https://doi.org/10.1016/j.ijhydene.2021.05.030

39. Malki, M. L., Chellal, H., Mao, S., Rasouli, V., & Mehana, M. (2024). A critical review of underground hydrogen storage: From fundamentals to applications, unveiling future frontiers in energy storage. International Journal of Hydrogen Energy, 79, 1365–1394. https://doi.org/10.1016/j.ijhydene.2024.07.076

40. Mao, S., Chen, B., Malki, M., Chen, F., Morales, M., et al. (2024). Efficient prediction of hydrogen storage performance in depleted gas reservoirs using machine learning. Applied Energy, 361, 122914. https://doi.org/10.1016/j.apenergy.2024.122914

41. Mirjalili, S. (2019). Genetic algorithm. In S. Mirjalili, Evolutionary Algorithms and Neural Networks (Vol. 780, pp. 43–55). Springer International Publishing. https://doi.org/10.1007/978-3-319-93025-1_4

42. Muhammed, N. S., Haq, M. B., Al Shehri, D. A., Al-Ahmed, A., Rahman, M. M., et al. (2023). Hydrogen storage in depleted gas reservoirs: A comprehensive review. Fuel, 337, 127032. https://doi.org/10.1016/j.fuel.2022.127032

43. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., et al. (2017). Automatic differentiation in PyTorch. https://openreview.net/forum?id=BJJsrmfCZ

44. Power-to-Gas: The Case for Hydrogen White Paper. (2015, October 18). California Hydrogen Business Council. https://static1.squarespace.com/static/58e8f58d20099ea6eb9ab918/t/5e62a5d3f6a1d1586bc39be5/1583523286672/CHBC+Hydrogen+Energy+Storage+White+Paper+FINAL.pdf

45. Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., & Kevin Tucker, P. (2005). Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 41(1), 1–28. https://doi.org/10.1016/j.paerosci.2005.02.001

46. Reitenbach, V., Ganzer, L., Albrecht, D., & Hagemann, B. (2015). Influence of added hydrogen on underground gas storage: A review of key issues. Environmental Earth Sciences, 73(11), 6927–6937. https://doi.org/10.1007/s12665-015-4176-2

47. Sainz-Garcia, A., Abarca, E., Rubi, V., & Grandia, F. (2017). Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. International Journal of Hydrogen Energy, 42(26), 16657–16666. https://doi.org/10.1016/j.ijhydene.2017.05.076

48. Sekar, L. K., Kiran, R., Okoroafor, E. R., & Wood, D. A. (2023). Review of reservoir challenges associated with subsurface hydrogen storage and recovery in depleted oil and gas reservoirs. Journal of Energy Storage, 72, 108605. https://doi.org/10.1016/j.est.2023.108605

49. Soave, G. (1972). Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 27(6), 1197–1203. https://doi.org/10.1016/0009-2509(72)80096-4

50. Stolten, D., & Emonts, B. (2016). Hydrogen Science and Engineering: Materials, Processes, Systems, and Technology, 2 volume set | Wiley (Vols. 1 & 2). Wiley. https://www.wiley.com/en-us/Hydrogen+Science+and+Engineering%3A+Materials%2C+Processes%2C+Systems%2C+and+Technology%2C+2+Volume+Set-p-9783527332380

51. Sun, Q., Zhang, M., & Ertekin, T. (2024). The design of hydrogen saline aquifer storage processes using a machine-learning assisted multiobjective optimization protocol. SPE Journal, 29(04), 2086–2105. https://doi.org/10.2118/218405-PA

52. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5

53. Tsao, D.T. (2003). Overview of Phytotechnologies. In: Tsao, D.T. (eds) Phytoremediation. Advances in Biochemical Engineering/Biotechnology, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45991-X_1

54. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., et al. (2017). Attention is all you need. arXiv. https://doi.org/10.48550/ARXIV.1706.03762

55. Wang, G., Pickup, G., Sorbie, K., & Mackay, E. (2021). Compositional simulation of hydrogen storage with carbon dioxide cushion gas in subsurface heterogeneous porous media. 2021, 1–5. https://doi.org/10.3997/2214-4609.202121032

56. Yan, B., Gudala, M., & Sun, S. (2023). Robust optimization of geothermal recovery based on a generalized thermal decline model and deep learning. Energy Conversion and Management, 286, 117033. https://doi.org/10.1016/j.enconman.2023.117033

57. Yan, B., Harp, D. R., Chen, B., Hoteit, H., & Pawar, R. J. (2022). A gradient-based deep neural network model for simulating multiphase flow in porous media. Journal of Computational Physics, 463, 111277. https://doi.org/10.1016/j.jcp.2022.111277

58. Yekta, A. E., Manceau, J.-C., Gaboreau, S., Pichavant, M., & Audigane, P. (2018). Determination of hydrogen–water relative permeability and capillary pressure in sandstone: Application to underground hydrogen injection in sedimentary formations. Transport in Porous Media, 122(2), 333–356. https://doi.org/10.1007/s11242-018-1004-7

59. Zeng, L., Vialle, S., Ennis-King, J., Esteban, L., Sarmadivaleh, M., et al. (2023). Role of geochemical reactions on caprock integrity during underground hydrogen storage. Journal of Energy Storage, 65, 107414. https://doi.org/10.1016/j.est.2023.107414

60. Zhong, Z., Sun, A. Y., & Jeong, H. (2019). Predicting CO2 plume migration in heterogeneous formations using conditional deep convolutional generative adversarial network. Water Resources Research, 55(7), 5830–5851. https://doi.org/10.1029/2018WR024592

Graphical abstract

Downloads

Published

2025-08-25

Issue

Section

Invited Student Papers

How to Cite

Han, Z., Tariq, Z., & Yan, B. (2025). A novel robust optimization framework based on surrogate modeling for underground hydrogen storage in depleted natural gas reservoirs. InterPore Journal, 2(3), IPJ250825-6. https://doi.org/10.69631/ipj.v2i3nr69

Funding data