Experimental Study of Microbial Hydrogen Consumption Rates by Oleidesulfovibrio Alaskensis in Porous Media
DOI:
https://doi.org/10.69631/ipj.v2i2nr72Keywords:
Underground hydrogen storage, pH, Microbial hydrogen consumption, Anaerobic sulphate reduction, Storage capacity, Cyclic drainage and storageAbstract
The recovery efficiency of short- and long-term cyclic operations of porous media underground hydrogen storage (UHS) is a key parameter for successful implementation, but anaerobic microbes autochthonous in the storage formation can consume hydrogen and adversely influence hydrogen recoverability and storage efficiency. Here we have experimentally measured hydrogen consumption rates by a model sulphate-reducing bacterium (Oleidesulfovibrio alaskensis G20) in drainage-storage cycles that mimic porous media UHS. Laboratory tests were performed in cylindrical sand pack columns as storage site analogues (inner diameter: 14.7 mm, length: 51.4 mm) with an average porosity of 28% at conditions of 37°C and 1.15 bara. The storage capacity (initial hydrogen saturation in place) of each sand pack was also analyzed and compared against sterilized benchmarks. We observed an exponential decay in microbial hydrogen consumption between storage cycles: 28 ± 12% hydrogen was lost during the first cycle (with a peak average rate of 1.26 ± 0.12µmol/hr/cm3), compared with 10 ± 5% in the second cycle and 7 ± 3% in the third cycle. The cumulative loss across the three cycles amounted to 15 ± 6%, even though nutrient and carbon source concentrations were adequate for full hydrogen consumption in each cycle. The reduced microbial activity after the first storage cycle was explained by the observed increase in brine pH from an initial 7.5 to 8.4 ± 0.2 at the end of the last storage cycle. We observed improvement in the average hydrogen in place saturations after the first non-sterile storage cycles. Our experimental data enhances the understanding of microbial hydrogen loss during UHS and its impact on recovery and storage efficiency.
Downloads
Metrics
References
Bagnoud, A., Leupin, O., Schwyn, B., & Bernier-Latmani, R. (2016). Rates of microbial hydrogen oxidation and sulfate reduction in Opalinus Clay rock. Applied Geochemistry, 72, 42–50. https://doi.org/10.1016/j.apgeochem.2016.06.011 DOI: https://doi.org/10.1016/j.apgeochem.2016.06.011
Barison, E., Donda, F., Merson, B., Le Gallo, Y., & Réveillère, A. (2023). An insight into underground hydrogen storage in italy. Sustainability, 15(8), 6886. https://doi.org/10.3390/su15086886 DOI: https://doi.org/10.3390/su15086886
Boon, M., & Hajibeygi, H. (2022). Experimental characterization of H2/water multiphase flow in heterogeneous sandstone rock at the core scale relevant for underground hydrogen storage (UHS). Scientific Reports, 12(1), 14604. https://doi.org/10.1038/s41598-022-18759-8 DOI: https://doi.org/10.1038/s41598-022-18759-8
Carroll, J. J., & Mather, A. E. (1989). The solubility of hydrogen sulphide in water from 0 to 90°C and pressures to 1 MPa. Geochimica et Cosmochimica Acta, 53(6), 1163–1170. https://doi.org/10.1016/0016-7037(89)90053-7 DOI: https://doi.org/10.1016/0016-7037(89)90053-7
Chabab, S., Théveneau, P., Coquelet, C., Corvisier, J., & Paricaud, P. (2020). Measurements and predictive models of high-pressure H2 solubility in brine (H2O+NaCl) for underground hydrogen storage application. International Journal of Hydrogen Energy, 45(56), 32206–32220. https://doi.org/10.1016/j.ijhydene.2020.08.192 DOI: https://doi.org/10.1016/j.ijhydene.2020.08.192
Crozier, T. E., & Yamamoto, S. (1974). Solubility of hydrogen in water, sea water, and sodium chloride solutions. Journal of Chemical & Engineering Data, 19(3), 242–244. https://doi.org/10.1021/je60062a007 DOI: https://doi.org/10.1021/je60062a007
Cunningham, A. B., Characklis, W. G., Abedeen, F., & Crawford, D. (1991). Influence of biofilm accumulation on porous media hydrodynamics. Environmental Science & Technology, 25(7), 1305–1311. https://doi.org/10.1021/es00019a013 DOI: https://doi.org/10.1021/es00019a013
De Beer, D., Stoodley, P., & Lewandowski, Z. (1997). Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnology and Bioengineering, 53(2), 151–158. https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<151::AID-BIT4>3.0.CO;2-N DOI: https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<151::AID-BIT4>3.0.CO;2-N
De Beer, D., Stoodley, P., Roe, F., & Lewandowski, Z. (1994). Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and Bioengineering, 43(11), 1131–1138. https://doi.org/10.1002/bit.260431118 DOI: https://doi.org/10.1002/bit.260431118
Diao, C., Ye, W., Yan, J., Hao, T., Huang, L., et al. (2023). Application of microbial sulfate-reduction process for sulfate-laden wastewater treatment: A review. Journal of Water Process Engineering, 52, 103537. https://doi.org/10.1016/j.jwpe.2023.103537 DOI: https://doi.org/10.1016/j.jwpe.2023.103537
Dohrmann, A. B., & Krüger, M. (2023). Microbial H2 consumption by a formation fluid from a natural gas field at high-pressure conditions relevant for underground H2 storage. Environmental Science & Technology, 57(2), 1092–1102. https://doi.org/10.1021/acs.est.2c07303 DOI: https://doi.org/10.1021/acs.est.2c07303
Dopffel, N., Jansen, S., & Gerritse, J. (2021). Microbial side effects of underground hydrogen storage – Knowledge gaps, risks and opportunities for successful implementation. International Journal of Hydrogen Energy, 46(12), 8594–8606. https://doi.org/10.1016/j.ijhydene.2020.12.058 DOI: https://doi.org/10.1016/j.ijhydene.2020.12.058
Dopffel, N., Mayers, K., Kedir, A., Alagic, E., An-Stepec, B. A., et al. (2023). Microbial hydrogen consumption leads to a significant pH increase under high-saline-conditions: Implications for hydrogen storage in salt caverns. Scientific Reports, 13(1), 10564. https://doi.org/10.1038/s41598-023-37630-y DOI: https://doi.org/10.1038/s41598-023-37630-y
Feio, M. J. (2004). Desulfovibrio alaskensis sp. Nov., a sulphate-reducing bacterium from a soured oil reservoir. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1747–1752. https://doi.org/10.1099/ijs.0.63118-0 DOI: https://doi.org/10.1099/ijs.0.63118-0
Haddad, P. G., Ranchou-Peyruse, M., Guignard, M., Mura, J., Casteran, F., et al. (2022). Geological storage of hydrogen in deep aquifers – an experimental multidisciplinary study. Energy & Environmental Science, 15(8), 3400–3415. https://doi.org/10.1039/D2EE00765G DOI: https://doi.org/10.1039/D2EE00765G
Halim, A., Shapiro, A., Lantz, A. E., & Nielsen, S. M. (2014). Experimental study of bacterial penetration into chalk rock: Mechanisms and effect on permeability. Transport in Porous Media, 101(1), 1–15. https://doi.org/10.1007/s11242-013-0227-x DOI: https://doi.org/10.1007/s11242-013-0227-x
Hill, D. D., & Sleep, B. E. (2002). Effects of biofilm growth on flow and transport through a glass parallel plate fracture. Journal of Contaminant Hydrology, 56(3–4), 227–246. https://doi.org/10.1016/S0169-7722(01)00210-8 DOI: https://doi.org/10.1016/S0169-7722(01)00210-8
Jangda, Z., Menke, H., Busch, A., Geiger, S., Bultreys, T., et al. (2023). Pore-scale visualization of hydrogen storage in a sandstone at subsurface pressure and temperature conditions: Trapping, dissolution and wettability. Journal of Colloid and Interface Science, 629, 316–325. https://doi.org/10.1016/j.jcis.2022.09.082 DOI: https://doi.org/10.1016/j.jcis.2022.09.082
Kaster, K. M., Hiorth, A., Kjeilen-Eilertsen, G., Boccadoro, K., Lohne, A., et al. (2012). Mechanisms involved in microbially enhanced oil recovery. Transport in Porous Media, 91(1), 59–79. https://doi.org/10.1007/s11242-011-9833-7 DOI: https://doi.org/10.1007/s11242-011-9833-7
Lankof, L., Luboń, K., Le Gallo, Y., & Tarkowski, R. (2024). The ranking of geological structures in deep aquifers of the Polish Lowlands for underground hydrogen storage. International Journal of Hydrogen Energy, 62, 1089–1102. https://doi.org/10.1016/j.ijhydene.2024.03.106 DOI: https://doi.org/10.1016/j.ijhydene.2024.03.106
Liu, N., Kovscek, A. R., Fernø, M. A., & Dopffel, N. (2023). Pore-scale study of microbial hydrogen consumption and wettability alteration during underground hydrogen storage. Frontiers in Energy Research, 11, 1124621. https://doi.org/10.3389/fenrg.2023.1124621 DOI: https://doi.org/10.3389/fenrg.2023.1124621
Liu, N., Skauge, T., Landa-Marbán, D., Hovland, B., Thorbjørnsen, B., et al. (2019). Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels. Journal of Industrial Microbiology and Biotechnology, 46(6), 855–868. https://doi.org/10.1007/s10295-019-02161-x DOI: https://doi.org/10.1007/s10295-019-02161-x
Lysyy, M., Ersland, G., & Fernø, M. (2022). Pore-scale dynamics for underground porous media hydrogen storage. Advances in Water Resources, 163, 104167. https://doi.org/10.1016/j.advwatres.2022.104167 DOI: https://doi.org/10.1016/j.advwatres.2022.104167
Nåmdal, M. B. (2023). Microbial behavior and hydrogen consumption of Oleidesulfovibrio alaskensis—Implications for subsurface hydrogen storage [Master thesis, The University of Bergen]. https://bora.uib.no/bora-xmlui/handle/11250/3074598
Oliver, M. C., Zheng, R., Huang, L., & Mehana, M. (2024). Molecular simulations of hydrogen diffusion in underground porous media: Implications for storage under varying pressure, confinement, and surface chemistry conditions. International Journal of Hydrogen Energy, 65, 540–547. https://doi.org/10.1016/j.ijhydene.2024.04.068 DOI: https://doi.org/10.1016/j.ijhydene.2024.04.068
Oren, A. (2011). Thermodynamic limits to microbial life at high salt concentrations. Environmental Microbiology, 13(8), 1908–1923. https://doi.org/10.1111/j.1462-2920.2010.02365.x DOI: https://doi.org/10.1111/j.1462-2920.2010.02365.x
Parsek, M. R., & Fuqua, C. (2004). Biofilms 2003: Emerging themes and challenges in studies of surface-associated microbial life. Journal of Bacteriology, 186(14), 4427–4440. https://doi.org/10.1128/JB.186.14.4427-4440.2004 DOI: https://doi.org/10.1128/JB.186.14.4427-4440.2004
Postgate, J. R. (1979). The sulphate-reducing bacteria. Cambridge Univ. Pr.
Rabbani, A., & Jamshidi, S. (2014). Specific surface and porosity relationship for sandstones for prediction of permeability. International Journal of Rock Mechanics and Mining Sciences, 71, 25–32. https://doi.org/10.1016/j.ijrmms.2014.06.013 DOI: https://doi.org/10.1016/j.ijrmms.2014.06.013
Raza, A., Alafnan, S., Glatz, G., Arif, M., Mahmoud, M., & Rezk, M. G. (2022). Hydrogen diffusion in organic-rich porous media: Implications for hydrogen geo-storage. Energy & Fuels, 36(24), 15013–15022. https://doi.org/10.1021/acs.energyfuels.2c03070 DOI: https://doi.org/10.1021/acs.energyfuels.2c03070
Schiebahn, S., Grube, T., Robinius, M., Tietze, V., Kumar, B., & Stolten, D. (2015). Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. International Journal of Hydrogen Energy, 40(12), 4285–4294. https://doi.org/10.1016/j.ijhydene.2015.01.123 DOI: https://doi.org/10.1016/j.ijhydene.2015.01.123
Sharp, R. R., Cunningham, A. B., Komlos, J., & Billmayer, J. (1999). Observation of thick biofilm accumulation and structure in porous media and corresponding hydrodynamic and mass transfer effects. Water Science and Technology, 39(7), 195–201. https://doi.org/10.2166/wst.1999.0359 DOI: https://doi.org/10.2166/wst.1999.0359
Sharp, R. R., Stoodley, P., Adgie, M., Gerlach, R., & Cunningham, A. (2005). Visualization and characterization of dynamic patterns of flow, growth and activity of biofilms growing in porous media. Water Science and Technology, 52(7), 85–90. https://doi.org/10.2166/wst.2005.0185 DOI: https://doi.org/10.2166/wst.2005.0185
Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56(1), 187–209. https://doi.org/10.1146/annurev.micro.56.012302.160705 DOI: https://doi.org/10.1146/annurev.micro.56.012302.160705
Suthar, H., Hingurao, K., Desai, A., & Nerurkar, A. (2008). Evaluation of bioemulsifier mediated Microbial Enhanced Oil Recovery using sand pack column. Journal of Microbiological Methods, 75(2), 225–230. https://doi.org/10.1016/j.mimet.2008.06.007 DOI: https://doi.org/10.1016/j.mimet.2008.06.007
Suthar, H., Hingurao, K., Desai, A., & Nerurkar, A. (2009). Selective plugging strategy-based microbial-enhanced oil recovery using Bacillus licheniformis TT33. Journal of Microbiology and Biotechnology, 19(10), 1230–1237.
Tarkowski, R. (2019). Underground hydrogen storage: Characteristics and prospects. Renewable and Sustainable Energy Reviews, 105, 86–94. https://doi.org/10.1016/j.rser.2019.01.051 DOI: https://doi.org/10.1016/j.rser.2019.01.051
Tarkowski, R., Lankof, L., Luboń, K., & Michalski, J. (2024). Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland. Applied Energy, 355, 122268. https://doi.org/10.1016/j.apenergy.2023.122268 DOI: https://doi.org/10.1016/j.apenergy.2023.122268
Taylor, S. W., & Jaffé, P. R. (1990). Biofilm growth and the related changes in the physical properties of a porous medium: 1. Experimental investigation. Water Resources Research, 26(9), 2153–2159. https://doi.org/10.1029/WR026i009p02153 DOI: https://doi.org/10.1029/WR026i009p02153
Thaysen, E. M., McMahon, S., Strobel, G. J., Butler, I. B., Ngwenya, B. T., et al. (2021). Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media. Renewable and Sustainable Energy Reviews, 151, 111481. https://doi.org/10.1016/j.rser.2021.111481 DOI: https://doi.org/10.1016/j.rser.2021.111481
Thiyagarajan, S. R., Emadi, H., Hussain, A., Patange, P., & Watson, M. (2022). A comprehensive review of the mechanisms and efficiency of underground hydrogen storage. Journal of Energy Storage, 51, 104490. https://doi.org/10.1016/j.est.2022.104490 DOI: https://doi.org/10.1016/j.est.2022.104490
Tolker-Nielsen, T. (2015). Biofilm development. In: M. Ghannoum, M. Parsek, M. Whiteley, & P. K. Mukherjee (Eds.), Microbial Biofilms (pp. 51–66). ASM Press. https://doi.org/10.1128/9781555817466.ch3 DOI: https://doi.org/10.1128/9781555817466.ch3
UN.ESCAP, et. al. (2023) SDG 7: Affordable and clean energy. Retrieved from: https://hdl.handle.net/20.500.12870/5424.
Wikieł, A. J., Datsenko, I., Vera, M., & Sand, W. (2014). Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment. Bioelectrochemistry, 97, 52–60. https://doi.org/10.1016/j.bioelechem.2013.09.008 DOI: https://doi.org/10.1016/j.bioelechem.2013.09.008
World Energy Outlook 2023 – Analysis. IEA. October 24, 2023. Accessed September 14, 2024. https://www.iea.org/reports/world-energy-outlook-2023
Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: The microbial “protective clothing” in extreme environments. International Journal of Molecular Sciences, 20(14), 3423. https://doi.org/10.3390/ijms20143423 DOI: https://doi.org/10.3390/ijms20143423
Yuan, W., Pan, Z., Li, X., Yang, Y., Zhao, C., et al. (2014). Experimental study and modelling of methane adsorption and diffusion in shale. Fuel, 117, 509–519. https://doi.org/10.1016/j.fuel.2013.09.046 DOI: https://doi.org/10.1016/j.fuel.2013.09.046

Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Raymond Mushabe, Na Liu, Nicole Dopffel, Geir Ersland, Martin Fernø

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.