Enhancing Effective Thermal Conductivity Predictions in Digital Porous Media Using Transfer Learning
DOI:
https://doi.org/10.69631/ipj.v2i3nr75Keywords:
Digital Rock Physics, Machine learning, Geothermal energy, Effective thermal conductivityAbstract
Porous media beneath the Earth’s surface, including aquifers, oil and gas reservoirs, and geothermal systems, play a crucial role in various natural resource management and environmental engineering applications. The study of their physical properties, particularly thermo-physical properties like effective thermal conductivity (ETC), is essential for enhancing the efficiency of subsurface engineering technologies including nuclear waste disposal, geothermal energy utilization, and underground thermal energy storage. Traditionally, determining ETC has relied on either simplified empirical models, which often lack accuracy, or sophisticated laboratory experiments, which are time-consuming and resource intensive. The advent of three-dimensional (3D) imaging technologies has enabled digital characterization of subsurface media, but direct numerical simulations of ETC remain computationally prohibitive. In response to these challenges, we introduce a novel machine learning framework that leverages transfer learning to enhance the prediction of ETC in digital rock samples. Our approach utilizes state-of-the-art convolutional neural networks (CNNs), pre-trained on extensive datasets, and applies them to various porous media samples, including Berea sandstone, Bentheimer sandstone, and Ketton limestone. By employing transfer learning, we demonstrate that our models can achieve high prediction accuracy with significantly reduced training time, computational power, and data requirements. This study highlights the potential of transfer learning to advance the efficiency and accuracy of digital rock analysis, offering a promising tool for the rapid and reliable characterization of subsurface properties.
Downloads
References
1. Abdulagatova, Z., Abdulagatov, I. M., & Emirov, V. N. (2009). Effect of temperature and pressure on the thermal conductivity of sandstone. International Journal of Rock Mechanics and Mining Sciences, 46(6), 1055–1071. https://doi.org/10.1016/j.ijrmms.2009.04.011
2. Albert, K., Franz, C., Koenigsdorff, R., & Zosseder, K. (2017). Inverse estimation of rock thermal conductivity based on numerical microscale modeling from sandstone thin sections. Engineering Geology, 231, 1–8. https://doi.org/10.1016/j.enggeo.2017.10.010
3. Ali, A. H., Mohanad G. Yaseen, Mohammad Aljanabi, & Saad Abbas Abed. (2023). Transfer learning: A new promising techniques. Mesopotamian Journal of Big Data, 2023, 29–30. https://doi.org/10.58496/MJBD/2023/004
4. Alyafeai, Z., AlShaibani, M. S., & Ahmad, I. (2020). A survey on transfer learning in natural language processing (No. arXiv:2007.04239). arXiv. https://doi.org/10.48550/arXiv.2007.04239
5. Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A. J., Al-Shamma, O., et al. (2021). Novel transfer learning approach for medical imaging with limited labeled data. Cancers, 13(7), 1590. https://doi.org/10.3390/cancers13071590
6. Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., et al. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8
7. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., et al. (2013a). Digital rock physics benchmarks—Part I: Imaging and segmentation. Computers & Geosciences, 50, 25–32. https://doi.org/10.1016/j.cageo.2012.09.005
8. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., et al. (2013b). Digital rock physics benchmarks—part II: Computing effective properties. Computers & Geosciences, 50, 33–43. https://doi.org/10.1016/j.cageo.2012.09.008
9. Askari, R., Taheri, S., & Hejazi, S. H. (2015). Thermal conductivity of granular porous media: A pore scale modeling approach. AIP Advances, 5(9), 097106. https://doi.org/10.1063/1.4930258
10. Banerjee, P., & Kashyap, S. (2024). Unlocking transfer learning’s potential in natural language processing: An extensive investigation and evaluation. 2024 International Conference on Advances in Computing Research on Science Engineering and Technology (ACROSET), 1–7. https://doi.org/10.1109/ACROSET62108.2024.10743260
11. Bauder, R. A., & Khoshgoftaar, T. M. (2018). The effects of varying class distribution on learner behavior for medicare fraud detection with imbalanced big data. Health Information Science and Systems, 6(1), 9. https://doi.org/10.1007/s13755-018-0051-3
12. Bauder, R. A., Khoshgoftaar, T. M., & Hasanin, T. (2018). An empirical study on class rarity in big data. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 785–790. https://doi.org/10.1109/ICMLA.2018.00125
13. Berg, C. F., Lopez, O., & Berland, H. (2017). Industrial applications of digital rock technology. Journal of Petroleum Science and Engineering, 157, 131–147. https://doi.org/10.1016/j.petrol.2017.06.074
14. Bijeljic, B., & Raeini, A. Q. (n.d.). Micro-CT images and networks. Imperial College London. Retrieved June 25, 2025, from https://www.imperial.ac.uk/engineering/departments/earth-science/research/research-groups/pore-scale-modelling/micro-ct-images-and-networks/
15. Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., et al. (2013). Pore-scale imaging and modelling. Advances in Water Resources, 51, 197–216. https://doi.org/10.1016/j.advwatres.2012.03.003
16. Brodzicki, A., Piekarski, M., Kucharski, D., Jaworek-Korjakowska, J., & Gorgon, M. (2020). Transfer learning methods as a new approach in computer vision tasks with small datasets. Foundations of Computing and Decision Sciences, 45(3), 179–193. https://doi.org/10.2478/fcds-2020-0010
17. Byra, M. (2018). Discriminant analysis of neural style representations for breast lesion classification in ultrasound. Biocybernetics and Biomedical Engineering, 38(3), 684–690. https://doi.org/10.1016/j.bbe.2018.05.003
18. Byra, M., Styczynski, G., Szmigielski, C., Kalinowski, P., Michałowski, Ł., et al. (2018). Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. International Journal of Computer Assisted Radiology and Surgery, 13(12), 1895–1903. https://doi.org/10.1007/s11548-018-1843-2
19. Demuth, C., Mendes, M. A. A., Ray, S., & Trimis, D. (2014). Performance of thermal lattice Boltzmann and finite volume methods for the solution of heat conduction equation in 2D and 3D composite media with inclined and curved interfaces. International Journal of Heat and Mass Transfer, 77, 979–994. https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.051
20. Diersch, H.-J. G. (2014). Heat transport in porous media. In H.-J. G. Diersch, FEFLOW (pp. 673–709). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-38739-5_13
21. Dongxing, D., Xu, Z., Chunhao, W., Jiaqi, L., Yinjie, S., & Yingge, L. (2021). Determination of the effective thermal conductivity of the porous media based on digital rock physics. Geothermics, 97, 102267. https://doi.org/10.1016/j.geothermics.2021.102267
22. Elmorsy, M., El‐Dakhakhni, W., & Zhao, B. (2022). Generalizable permeability prediction of digital porous media via a novel multi‐scale 3D convolutional neural network. Water Resources Research, 58(3), e2021WR031454. https://doi.org/10.1029/2021WR031454
23. Elmorsy, M., El‐Dakhakhni, W., & Zhao, B. (2023). Rapid permeability upscaling of digital porous media via physics‐informed neural networks. Water Resources Research, 59(12), e2023WR035064. https://doi.org/10.1029/2023WR035064
24. Farahani, A., Pourshojae, B., Rasheed, K., & Arabnia, H. R. (2020). A concise review of transfer learning. 2020 International Conference on Computational Science and Computational Intelligence (CSCI), 344–351. https://doi.org/10.1109/CSCI51800.2020.00065
25. Fei, W., Narsilio, G. A., & Disfani, M. M. (2021). Predicting effective thermal conductivity in sands using an artificial neural network with multiscale microstructural parameters. International Journal of Heat and Mass Transfer, 170, 120997. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120997
26. Galvez, R. L., Bandala, A., Dadlos, E. P., & Vicerra, R. R. P. (n.d.). Object detection using CNN | pdf | Artificial Neural Network | Computer Science. Scribd. Retrieved June 25, 2025, from https://www.scribd.com/document/737186240/Object-Detection-Using-CNN
27. Goodfellow, I., Bengio, Y., & Courville, A. (n.d.). Deep learning. MIT Press. Retrieved June 25, 2025, from https://mitpress.mit.edu/9780262035613/deep-learning/
28. Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., & Agrawal, A. (2017). Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Construction and Building Materials, 157, 322–330. https://doi.org/10.1016/j.conbuildmat.2017.09.110
29. Greenberg, H. R., Blink, J. A., Sutton, M., Fratoini, M., & Ross, A. D. (2012, March 26). Application of Analytical Heat Transfer Models of Multi-Layered Natural and Engineered Barriers in Potential High-Level Nuclear Waste Repositories. WM2012 Conference, Phoenix, Arizona, USA. https://www.osti.gov/servlets/purl/1114696
30. Gupta, V., Choudhary, K., DeCost, B., Tavazza, F., Campbell, C., et al. (2024). Structure-aware graph neural network based deep transfer learning framework for enhanced predictive analytics on diverse materials datasets. NPJ Computational Materials, 10(1), 1. https://doi.org/10.1038/s41524-023-01185-3
31. Gupta, V., Choudhary, K., Tavazza, F., Campbell, C., Liao, W., et al. (2021). Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data. Nature Communications, 12(1), 6595. https://doi.org/10.1038/s41467-021-26921-5
32. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90
33. Horgue, P., Soulaine, C., Franc, J., Guibert, R., & Debenest, G. (2015). An open-source toolbox for multiphase flow in porous media. Computer Physics Communications, 187, 217–226. https://doi.org/10.1016/j.cpc.2014.10.005
34. Huynh, B. Q., Li, H., & Giger, M. L. (2016). Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Journal of Medical Imaging, 3(3), 034501. https://doi.org/10.1117/1.JMI.3.3.034501
35. Jia, G. S., Tao, Z. Y., Meng, X. Z., Ma, C. F., Chai, J. C., & Jin, L. W. (2019). Review of effective thermal conductivity models of rock-soil for geothermal energy applications. Geothermics, 77, 1–11. https://doi.org/10.1016/j.geothermics.2018.08.001
36. Kamencay, P., Benco, M., Mizdos, T., & Radil, R. (2017). A new method for face recognition using convolutional neural network. Advances in Electrical and Electronic Engineering, 15(4), 663–672. https://doi.org/10.15598/aeee.v15i4.2389
37. Kamrava, S., Tahmasebi, P., & Sahimi, M. (2020). Linking morphology of porous media to their macroscopic permeability by deep learning. Transport in Porous Media, 131(2), 427–448. https://doi.org/10.1007/s11242-019-01352-5
38. Kasar, M. M., Bhattacharyya, D., & Kim, T. (2016). Face recognition using neural network: A review. International Journal of Security and Its Applications, 10(3), 81–100. https://doi.org/10.14257/ijsia.2016.10.3.08
39. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv. https://doi.org/10.48550/ARXIV.1412.6980
40. Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A., et al. (2022). Deep reinforcement learning for autonomous driving: A survey. IEEE Transactions on Intelligent Transportation Systems, 23(6), 4909–4926. https://doi.org/10.1109/TITS.2021.3054625
41. Kora, P., Ooi, C. P., Faust, O., Raghavendra, U., Gudigar, A., et al. (2022). Transfer learning techniques for medical image analysis: A review. Biocybernetics and Biomedical Engineering, 42(1), 79–107. https://doi.org/10.1016/j.bbe.2021.11.004
42. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386
43. Kunze, J., Kirsch, L., Kurenkov, I., Krug, A., Johannsmeier, J., & Stober, S. (2017). Transfer learning for speech recognition on a budget. arXiv. https://doi.org/10.48550/ARXIV.1706.00290
44. Labus, M., & Labus, K. (2018). Thermal conductivity and diffusivity of fine-grained sedimentary rocks. Journal of Thermal Analysis and Calorimetry, 132(3), 1669–1676. https://doi.org/10.1007/s10973-018-7090-5
45. Liang, X., Liu, Y., Chen, T., Liu, M., & Yang, Q. (2019). Federated transfer reinforcement learning for autonomous driving. arXiv. https://doi.org/10.48550/ARXIV.1910.06001
46. Liu, M., Ahmad, R., Cai, W., & Mukerji, T. (2023). Hierarchical homogenization with deep‐learning‐based surrogate model for rapid estimation of effective permeability from digital rocks. Journal of Geophysical Research: Solid Earth, 128(2), e2022JB025378. https://doi.org/10.1029/2022JB025378
47. Maes, J., & Menke, H. P. (2022). GeoChemFoam: Direct modelling of flow and heat transfer in micro-CT images of porous media. Heat and Mass Transfer, 58(11), 1937–1947. https://doi.org/10.1007/s00231-022-03221-2
48. Meshalkin, Y., Shakirov, A., Popov, E., Koroteev, D., & Gurbatova, I. (2020). Robust well-log based determination of rock thermal conductivity through machine learning. Geophysical Journal International, 222(2), 978–988. https://doi.org/10.1093/gji/ggaa209
49. Mostaghimi, P., Blunt, M. J., & Bijeljic, B. (2013). Computations of absolute permeability on micro-CT images. Mathematical Geosciences, 45(1), 103–125. https://doi.org/10.1007/s11004-012-9431-4
50. Muljadi, B. P., Blunt, M. J., Raeini, A. Q., & Bijeljic, B. (2016). The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation. Advances in Water Resources, 95, 329–340. https://doi.org/10.1016/j.advwatres.2015.05.019
51. Murison, J., Moosavi, R., Schulz, M., Schillinger, B., & Schröter, M. (2015). Neutron tomography as a tool to study immiscible fluids in porous media without chemical dopants. Energy & Fuels, 29(10), 6271–6276. https://doi.org/10.1021/acs.energyfuels.5b01403
52. Nabipour, I., Raoof, A., Cnudde, V., Aghaei, H., & Qajar, J. (2024). A computationally efficient modeling of flow in complex porous media by coupling multiscale digital rock physics and deep learning: Improving the tradeoff between resolution and field-of-view. Advances in Water Resources, 188, 104695. https://doi.org/10.1016/j.advwatres.2024.104695
53. Olson, D. L. (2004). Data set balancing. In Y. Shi, W. Xu, & Z. Chen (Eds.), Data Mining and Knowledge Management (Vol. 3327, pp. 71–80). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-30537-8_8
54. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU computing. Proceedings of the IEEE, 96(5), 879–899. https://doi.org/10.1109/JPROC.2008.917757
55. Popov, Y. A., Pribnow, D. F. C., Sass, J. H., Williams, C. F., & Burkhardt, H. (1999). Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics, 28(2), 253–276. https://doi.org/10.1016/S0375-6505(99)00007-3
56. Qin, C.-X., Qu, D., & Zhang, L.-H. (2018). Towards end-to-end speech recognition with transfer learning. EURASIP Journal on Audio, Speech, and Music Processing, 2018(1), 18. https://doi.org/10.1186/s13636-018-0141-9
57. Rong, Q., Wei, H., Huang, X., & Bao, H. (2019). Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods. Composites Science and Technology, 184, 107861. https://doi.org/10.1016/j.compscitech.2019.107861
58. Ruder, S., Peters, M. E., Swayamdipta, S., & Wolf, T. (2019). Transfer learning in natural language processing. Proceedings of the 2019 Conference of the North, 15–18. https://doi.org/10.18653/v1/N19-5004
59. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., et al. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y
60. Salehi, A. W., Khan, S., Gupta, G., Alabduallah, B. I., Almjally, A., et al. (2023). A study of CNN and transfer learning in medical imaging: Advantages, challenges, future scope. Sustainability, 15(7), 5930. https://doi.org/10.3390/su15075930
61. Sapińska-Śliwa, A., Sliwa, T., Twardowski, K., Szymski, K., Gonet, A., & Żuk, P. (2020). Method of averaging the effective thermal conductivity based on thermal response tests of borehole heat exchangers. Energies, 13(14), 3737. https://doi.org/10.3390/en13143737
62. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0
63. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv. https://doi.org/10.48550/ARXIV.1409.1556
64. Singh, A., & Gosain, A. (2024). Catalyzing medical imaging: Exploring the potentials of deep transfer learning. Journal of Information and Optimization Sciences, 45(2), 439–448. https://doi.org/10.47974/JIOS-1561
65. Song, R., Liu, J., & Cui, M. (2017). A new method to reconstruct structured mesh model from micro-computed tomography images of porous media and its application. International Journal of Heat and Mass Transfer, 109, 705–715. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.053
66. Sreerama, J., & Sistla, S. M. K. (2023). Harnessing the power of transfer learning in deep learning models. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), 1(1), 139–147. https://doi.org/10.60087/jklst.vol1.n1.p147
67. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818–2826. https://doi.org/10.1109/CVPR.2016.308
68. Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., et al. (2016). Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Transactions on Medical Imaging, 35(5), 1299–1312. https://doi.org/10.1109/TMI.2016.2535302
69. Tong, F., Jing, L., & Zimmerman, R. W. (2009). An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow. International Journal of Rock Mechanics and Mining Sciences, 46(8), 1358–1369. https://doi.org/10.1016/j.ijrmms.2009.04.010
70. Tong, Z., Liu, M., & Bao, H. (2016). A numerical investigation on the heat conduction in high filler loading particulate composites. International Journal of Heat and Mass Transfer, 100, 355–361. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.092
71. Torrey, L. A., & Shavlik, J. W. (2009). Chapter 11: Transfer Learning. In Olivas, E. S., Guerrero, J. D. M., Sober, M. M., Benedito, J. R. M., & López, A. J. S (Eds.). Handbook of Research on Machine Learning 36 Applications and Trends: Algorithms, Methods, and Techniques. (pp. 242-264). Information Science Reference. https://doi.org/10.4018/978-1-60566-766-9.ch011 / https://doi.org/10.4018/978-1-60566-766-9
72. Troch, A., Hoog, J. D., Vanneste, S., Balemans, D., Latré, S., & Hellinckx, P. (2022). Transfer learning in autonomous driving using real-world samples. In L. Barolli (Ed.), Advances on P2P, Parallel, Grid, Cloud and Internet Computing (Vol. 343, pp. 237–245). Springer International Publishing. https://doi.org/10.1007/978-3-030-89899-1_24
73. Vaferi, B., Gitifar, V., Darvishi, P., & Mowla, D. (2014). Modeling and analysis of effective thermal conductivity of sandstone at high pressure and temperature using optimal artificial neural networks. Journal of Petroleum Science and Engineering, 119, 69–78. https://doi.org/10.1016/j.petrol.2014.04.013
74. Von Herzen, R., & Maxwell, A. E. (1959). The measurement of thermal conductivity of deep-sea sediments by a needle-probe method. Journal of Geophysical Research, 64(10), 1557–1563. https://doi.org/10.1029/JZ064i010p01557
75. Wei, H., Bao, H., & Ruan, X. (2020). Machine learning prediction of thermal transport in porous media with physics-based descriptors. International Journal of Heat and Mass Transfer, 160, 120176. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120176
76. Wei, H., Zhao, S., Rong, Q., & Bao, H. (2018). Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods. International Journal of Heat and Mass Transfer, 127, 908–916. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.082
77. Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1), 9. https://doi.org/10.1186/s40537-016-0043-6
78. Wu, H., Fang, W.-Z., Kang, Q., Tao, W.-Q., & Qiao, R. (2019). Predicting effective diffusivity of porous media from images by deep learning. Scientific Reports, 9(1), 20387. https://doi.org/10.1038/s41598-019-56309-x
79. Yang, H., Zhang, L., Liu, R., Wen, X., Yang, Y., et al. (2019). Thermal conduction simulation based on reconstructed digital rocks with respect to fractures. Energies, 12(14), 2768. https://doi.org/10.3390/en12142768
80. Zahasky, C., & Benson, S. M. (2018). Micro-positron emission tomography for measuring sub-core scale single and multiphase transport parameters in porous media. Advances in Water Resources, 115, 1–16. https://doi.org/10.1016/j.advwatres.2018.03.002
81. Zeng, Y., Ji, B., Zhang, Y., Feng, J., Luo, J., & Wang, M. (2022). A fractal model for effective thermal conductivity in complex geothermal media. Frontiers in Earth Science, 10, 786290. https://doi.org/10.3389/feart.2022.786290
82. Zhang, J., Ma, G., Yang, Z., Mei, J., Zhang, D., et al. (2024). Knowledge extraction via machine learning guides a topology‐based permeability prediction model. Water Resources Research, 60(7), e2024WR037124. https://doi.org/10.1029/2024WR037124
83. Zhang, Y., Hao, S., Yu, Z., Fang, J., Zhang, J., & Yu, X. (2018). Comparison of test methods for shallow layered rock thermal conductivity between in situ distributed thermal response tests and laboratory test based on drilling in northeast China. Energy and Buildings, 173, 634–648. https://doi.org/10.1016/j.enbuild.2018.06.009
84. Zhiqiang, W., & Jun, L. (2017). A review of object detection based on convolutional neural network. 2017 36th Chinese Control Conference (CCC), 11104–11109. https://doi.org/10.23919/ChiCC.2017.8029130

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mohamed Elmorsy, Wael El-Dakhakhni, Benzhong Zhao

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unless otherwise stated above, this is an open access article published by InterPore under either the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Article metadata are available under the CCo license.
How to Cite
Funding data
-
Natural Sciences and Engineering Research Council of Canada
Grant numbers RGPIN-2019-07162