Research Needs in Porous Media for the Energy Transition

Authors

DOI:

https://doi.org/10.69631/ipj.v1i1nr14

Keywords:

Porous media, Energy transition, Electrochemical devices, Geothermal energy, Hydrogen storage, Compressed gas storage, Thermal energy storage, Carbon capture, Carbon storage

Abstract

This commentary provides an overview of research needs in porous media for the energy transition. Its intent is to provide a short survey of possible topics for researchers that could assist in accelerating the transition from a fossil-fuel to a zero-carbon energy economy.  It was written to summarize the discussion at the panel session on the energy transition held at the Annual Meeting of the International Society for Porous Media (InterPore) in Edinburgh in May 2023 (https://events.interpore.org/event/41/) and has been prepared by the panellists at this event in collaboration with colleagues.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Blunt, M., Fayers, F. J., & Orr, F. M. (1993). Carbon dioxide in enhanced oil recovery. Energy Conversion and Management, 34(9–11): 1197–1204. https://doi.org/10.1016/0196-8904(93)90069-M DOI: https://doi.org/10.1016/0196-8904(93)90069-M

Blunt, M., J., & Lin, Q (2022). Flow in Porous Media in the Energy Transition. Engineering, 14: 10-14. https://doi.org/10.1016/j.eng.2021.08.008 DOI: https://doi.org/10.1016/j.eng.2021.08.008

British Geological Survey (n.d.; Accessed on December 2023). Geothermal technologies. BGS geothermal energy research. https://www.bgs.ac.uk/geology-projects/geothermal-energy/geothermal-technologies/

DePaolo, D. J., Thomas, D. M., Christensen, J. N., Zhang, S., Orr, F. M., et al (2021). Opportunities for large-scale CO2 disposal in coastal marine volcanic basins based on the geology of northeast Hawaii. International Journal of Greenhouse Gas Control, 110: 103396. https://doi.org/10.1016/j.ijggc.2021.103396 DOI: https://doi.org/10.1016/j.ijggc.2021.103396

Fleuchaus, P., Godschalk, B., Stober, I., & Blum, P. (2018). Worldwide application of aquifer thermal energy storage – A review. Renewable and Sustainable Energy Reviews, 94: 861–876. https://doi.org/10.1016/j.rser.2018.06.057 DOI: https://doi.org/10.1016/j.rser.2018.06.057

Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J. T., Kallmeyer, J., et al. (2021). Enabling large-scale hydrogen storage in porous media – the scientific challenges. Energy & Environmental Science, 14(2): 853–864. https://doi.org/10.1039/D0EE03536J DOI: https://doi.org/10.1039/D0EE03536J

Hematpur, H., Abdollahi, R., Rostami, S., Haghighi, M., & Blunt, M. J. (2023). Review of underground hydrogen storage: Concepts and challenges. Advances in Geo-Energy Research, 7(2): 111–131. https://doi.org/10.46690/ager.2023.02.05 DOI: https://doi.org/10.46690/ager.2023.02.05

IEA (2020). CCUS in Clean Energy Transitions, IEA, Paris. https://www.iea.org/reports/ccus-in-clean-energy-transitions

Jankovic, J., & Stumper, J. (Eds.). (2023). Pem fuel cells: Characterization and modeling. De Gruyter. https://doi.org/10.1515/9783110622720 DOI: https://doi.org/10.1515/9783110622720

Lee, J. K., Anderson, G., Tricker, A. W., Babbe, F., Madan, A., et al. (2023). Ionomer-free and recyclable porous-transport electrode for high-performing proton-exchange-membrane water electrolysis. Nature Communications, 14(1): 4592. https://doi.org/10.1038/s41467-023-40375-x DOI: https://doi.org/10.1038/s41467-023-40375-x

Lund, J. W., & Toth, A. N. (2021). Direct utilization of geothermal energy 2020 worldwide review. Geothermics, 90: 101915. https://doi.org/10.1016/j.geothermics.2020.101915 DOI: https://doi.org/10.1016/j.geothermics.2020.101915

Transportation Research Board and National Research Council (2003). Oil in the Sea III: Inputs, Fates, and Effects. Washington, DC: The National Academies Press. https://doi.org/10.17226/10388, ISBN: 978-0-309-08438-3 DOI: https://doi.org/10.17226/10388

Orr, F. M. (2018). Carbon capture, utilization, and storage: An update. SPE Journal, 23(06): 2444–2455. https://doi.org/10.2118/194190-PA DOI: https://doi.org/10.2118/194190-PA

Ritchie, H., Rosado, P., & Roser, M. (2020). Energy Production and Consumption. Published online at: OurWorldInData.org. https://ourworldindata.org/energy-production-consumption

Sassenburg, M., Kelly, M., Subramanian, S., Smith, W. A., & Burdyny, T. (2023). Zero-gap electrochemical co 2 reduction cells: Challenges and operational strategies for prevention of salt precipitation. ACS Energy Letters, 8(1): 321–331. https://doi.org/10.1021/acsenergylett.2c01885 DOI: https://doi.org/10.1021/acsenergylett.2c01885

Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., et al (2020). The Global Methane Budget 2000–2017. Earth System Science Data, 12: 1561–1623. https://doi.org/10.5194/essd-12-1561-2020 DOI: https://doi.org/10.5194/essd-12-1561-2020

Secretary of Energy Advisory Board (SEAB) (2016, December 12). Report: Task Force on RD&D Strategy for CO2 Utilization and/or Negative Emissions at the Gigatonne Scale. US Department of Energy. https://www.energy.gov/seab/downloads/final-report-task-force-co2-utilization

US Department of Energy (n.d.; accessed on December 2023). Technical Targets for Proton Exchange Membrane Electrolysis. https://www.energy.gov/eere/fuelcells/technical-targets-proton-exchange-membrane-electrolysis

Yang, B., Shao, C., Hu, X., Ngata, M. R., & Aminu, M. D. (2023). Advances in carbon dioxide storage projects: Assessment and perspectives. Energy & Fuels, 37(3): 1757–1776. https://doi.org/10.1021/acs.energyfuels.2c03826 DOI: https://doi.org/10.1021/acs.energyfuels.2c03826

Downloads

Published

2024-04-26

How to Cite

Blunt, M. J., Bazylak, A., Brook, M., Muggeridge, A., & Orr, F. M. (2024). Research Needs in Porous Media for the Energy Transition. InterPore Journal, 1(1), ipj260424–2. https://doi.org/10.69631/ipj.v1i1nr14

Issue

Section

Invited Commentaries