On the Interpretation of Unsteady State Experiments in Heterogeneous Rock by Stochastic Methods

Authors

DOI:

https://doi.org/10.69631/ipj.v2i2nr44

Keywords:

Special Core Analysis, CO2 sequestration, unsteady-state experiments, relative pereability, capillary heterogeneity, upscaling

Abstract

Rock heterogeneity has a significant effect on immiscible displacement. This is especially true when the mobility ratio of the two fluids is unfavorable, favoring unstable displacement. However, this is not taken into account in the numerical analysis of classical core flooding experiments to quantify two-phase flow properties using Special Core Analysis (SCAL). Our approach combines the modern interpretation of SCAL data with experimental data measured on rock samples for which the homogeneity assumption - a prerequisite for SCAL experiments - can no longer apply due to their size and heterogeneity. In contrast to other studies that take heterogeneities into account, we focus on simple-to-perform unsteady-state experiments. We analyze these experiments by numerical interpretation using homogeneous and heterogeneous simulation domains and by introducing porosity-based heterogeneity and permeability as well as capillary scaling. In the current study, we first question the applicability of standard relative permeability measurements to heterogeneous rocks and fluids with an excessively high mobility ratio, such as for CO2-brine displacement in heterogeneous rocks. However, we show that they describe two-phase flow very well when porosity-based heterogeneity is taken into account, which is equivalent to downscaling. The study thus shows a way to fall back on established standard measurements if it should be possible to account for subgrid heterogeneities in SCAL workflows. To this end, we propose an approach based on steady-state experiments and appropriate sample selection.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alpak, F. O., Zacharoudiou, I., Berg, S., Dietderich, J., & Saxena, N. (2019). Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method. Computational Geosciences, 23, 849–880. https://doi.org/10.1007/s10596-019-9818-0 DOI: https://doi.org/10.1007/s10596-019-9818-0

Aminu, M. D., Nabavi, S. A., Rochelle, C. A., & Manovic, V. (2017). A review of developments in carbon dioxide storage. Applied Energy, 208, 1389–1419. https://doi.org/10.1016/j.apenergy.2017.09.015 DOI: https://doi.org/10.1016/j.apenergy.2017.09.015

Amrollahinasab, O., Azizmohammadi, S., & Ott, H. (2023). Simultaneous interpretation of SCAL data with different degrees of freedom and uncertainty analysis. Computers and Geotechnics, 105074. https://doi.org/10.1016/j.compgeo.2022.105074 DOI: https://doi.org/10.1016/j.compgeo.2022.105074

Bear, J. (2013). Dynamics of fluids in porous media. Courier Corporation.

Berg, S., Oedai, S., & Ott, H. (2013). Displacement and mass transfer between saturated and unsaturated CO2–brine systems in sandstone. International Journal of Greenhouse Gas Control, 12, 478–492. https://doi.org/10.1016/j.ijggc.2011.04.005 DOI: https://doi.org/10.1016/j.ijggc.2011.04.005

Berg, S., Unsal, E., & Dijk, H. (2021a). Non-uniqueness and uncertainty quantification of relative permeability measurements by inverse modelling. Computers and Geotechnics, 132, 103964. https://doi.org/10.1016/j.compgeo.2020.103964 DOI: https://doi.org/10.1016/j.compgeo.2020.103964

Berg, S., Unsal, E., & Dijk, H. (2021b). Sensitivity and uncertainty analysis for parameterization of multiphase flow models. Transport in Porous Media, 140, 27–57. https://doi.org/10.1007/s11242-021-01576-4 DOI: https://doi.org/10.1007/s11242-021-01576-4

Blunt, M. J. (1997). Pore level modeling of the effects of wettability. SPE Journal, 2(4), 494–510. https://doi.org/10.2118/38435-PAB DOI: https://doi.org/10.2118/38435-PA

Brooks, R. H., Corey, A. T. (1964). Hydraulic properties of porous media and their relation to drainage design. Transactions of the ASAE, 7(1), 0026–0028. https://doi.org/10.13031/2013.40684 DOI: https://doi.org/10.13031/2013.40684

Burmester, G., Zekiri, F., Jurcic, H., Arnold, P., & Ott, H. (2022). Integration and Upscaling of Multi-Phase Fluid Flow Properties in Clastic Reservoirs. 83rd EAGE Annual Conference & Exhibition, 1–5. https://doi.org/10.3997/2214-4609.202210939 DOI: https://doi.org/10.3997/2214-4609.202210939

Chang, J., & Yortsos, Y. C. (1992). Effect of Capillary Heterogeneity on Buckley-Leverett Displacement. SPE Reservoir Engineering, 7, 285–293. https://doi.org/10.2118/18798-PA DOI: https://doi.org/10.2118/18798-PA

Egermann, P., & Lenormand, R. (2005). A new methodology to evaluate the impact of localized heterogeneity on petrophysical parameters (kr, Pc) applied to carbonate rocks. Petrophysics, 46. SPWLA-2005-v46n5a2

Georgiadis, A., Berg, S., Makurat, A., Maitland, G., & Ott, H. (2013). Pore-scale micro-computed-tomography imaging: Nonwetting-phase cluster-size distribution during drainage and imbibition. Physical Review E, 88, 033002. https://doi.org/10.1103/PhysRevE.88.033002 DOI: https://doi.org/10.1103/PhysRevE.88.033002

Georgiadis, A., Maitland, G., Trusler, J. P. M., & Bismarck, A. (2010). Interfacial tension measurements of the (H2O + CO2) system at elevated pressures and temperatures. Journal of Chemical & Engineering Data, 55(10), 4168–4175. https://doi.org/10.1021/je100198g DOI: https://doi.org/10.1021/je100198g

Hosseini, S. A., Lashgari, H., Choi, J. W., Nicot, J.-P., Lu, J., & Hovorka, S. D. (2013). Static and dynamic reservoir modeling for geological CO2 sequestration at Cranfield, Mississippi, U.S.A. International Journal of Greenhouse Gas Control, 18, 449–462. https://doi.org/10.1016/j.ijggc.2012.11.009 DOI: https://doi.org/10.1016/j.ijggc.2012.11.009

Hosseinzadeh Hejazi, S. A., Shah, S., & Pini, R. (2019). Dynamic measurements of drainage capillary pressure curves in carbonate rocks. Chemical Engineering Science, 200, 268–284. https://doi.org/10.1016/j.ces.2019.02.002 DOI: https://doi.org/10.1016/j.ces.2019.02.002

Jackson, S. J., Agada, S., Reynolds, C. A., & Krevor, S. (2018). Characterizing Drainage Multiphase Flow in Heterogeneous Sandstones. Water Resources Research, 54, 3139–3161. https://doi.org/10.1029/2017WR022282 DOI: https://doi.org/10.1029/2017WR022282

Jackson, S. J., & Krevor, S. (2020). Small‐Scale Capillary Heterogeneity Linked to Rapid Plume Migration During CO2 Storage. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL088616 DOI: https://doi.org/10.1029/2020GL088616

Kong, X., Delshad, M., & Wheeler, M. F. (2015). History matching heterogeneous coreflood of CO2/brine by use of compositional reservoir simulator and geostatistical approach. SPE Journal, 20, 267–276. https://doi.org/10.2118/163625-PA DOI: https://doi.org/10.2118/163625-PA

Krause, M., Krevor, S., & Benson, S. M. (2013). A procedure for the accurate determination of sub-core scale permeability distributions with error quantification. Transport in Porous Media, 98, 565–588. https://doi.org/10.1007/s11242-013-0161-y DOI: https://doi.org/10.1007/s11242-013-0161-y

Krause, M., Perrin, J.-C., & Benson, S. M. (2011). Modeling permeability distributions in a sandstone core for history matching coreflood experiments. SPE Journal, 16, 768–777. https://doi.org/10.2118/126340-PA DOI: https://doi.org/10.2118/126340-PA

Krause, M. H., & Benson, S. M. (2015). Accurate determination of characteristic relative permeability curves. Advances in Water Resources, 83, 376–388. https://doi.org/10.1016/j.advwatres.2015.07.009 DOI: https://doi.org/10.1016/j.advwatres.2015.07.009

Kuo, C.-W., & Benson, S. M. (2015). Numerical and analytical study of effects of small scale heterogeneity on CO2/brine multiphase flow system in horizontal corefloods. Advances in Water Resources, 79, 1–17. https://doi.org/10.1016/j.advwatres.2015.01.012 DOI: https://doi.org/10.1016/j.advwatres.2015.01.012

Kuo, C.-W., Perrin, J.-C., & Benson, S. M. (2011). Simulation studies of effect of flow rate and small scale heterogeneity on multiphase flow of CO2 and brine. Energy Procedia, 4, 4516–4523. https://doi.org/10.1016/j.egypro.2011.02.408 DOI: https://doi.org/10.1016/j.egypro.2011.02.408

Kurotori, T., & Pini, R. (2021). A general capillary equilibrium model to describe drainage experiments in heterogeneous laboratory rock cores. Advances in Water Resources, 152, 103938. https://doi.org/10.1016/j.advwatres.2021.103938 DOI: https://doi.org/10.1016/j.advwatres.2021.103938

Leverett, M. C. (1941). Capillary behavior in porous solids. Transactions of the AIME, 142, 152–169. https://doi.org/10.2118/941152-G DOI: https://doi.org/10.2118/941152-G

Liu, Y., Gong, W., Zhao, Y., Jin, X., & Wang, M. (2022). A pore‐throat segmentation method based on local hydraulic resistance equivalence for pore‐network modeling. Water Resources Research, 58. https://doi.org/10.1029/2022WR033142 DOI: https://doi.org/10.1029/2022WR033142

Lomeland, F., Ebeltoft, E., & Thomas, W. H. (2005). A new versatile relative permeability correlation. In International Symposium of the Society of Core Analysts, Toronto, Canada.

Lu, J., Kordi, M., Hovorka, S. D., Meckel, T. A., & Christopher, C. A. (2013). Reservoir characterization and complications for trapping mechanisms at Cranfield CO2 injection site. International Journal of Greenhouse Gas Control, 18, 361–374. https://doi.org/10.1016/j.ijggc.2012.10.007 DOI: https://doi.org/10.1016/j.ijggc.2012.10.007

Maas, J. G., Springer, N., & Hebing, A. (2019). Defining a sample heterogeneity cut-off value to obtain representative Special Core Analysis (SCAL) measurements. In International Symposium of the Society of Core Analysts, Pau, France, 26–30 August.

McPhee, C., Reed, J., & Zubizarreta, I. (2015). Core analysis: A best practice guide. Elsevier.

Ni, H., Boon, M., Garing, C., & Benson, S. M. (2019). Predicting CO2 residual trapping ability based on experimental petrophysical properties for different sandstone types. International Journal of Greenhouse Gas Control, 86, 158–176. https://doi.org/10.1016/j.ijggc.2019.04.024 DOI: https://doi.org/10.1016/j.ijggc.2019.04.024

Onoja, M. U., & Shariatipour, S. M. (2019). Assessing the impact of relative permeability and capillary heterogeneity on Darcy flow modelling of CO2 storage in Utsira Formation. Greenhouse Gases: Science and Technology, 9, 1221–1246. https://doi.org/10.1002/ghg.1932 DOI: https://doi.org/10.1002/ghg.1932

Øren, P.-E., Bakke, S., & Arntzen, O. J. (1998). Extending predictive capabilities to network models. SPE Journal, 3(4), 324–336. https://doi.org/10.2118/52052-PA DOI: https://doi.org/10.2118/52052-PA

Ott, H. (2015). CO2-brine primary displacement in saline aquifers: Experiments, simulations and concepts (Habilitationsschrift). RWTH Aachen.

Ott, H., de Kloe, K., van Bakel, M., Vos, F., van Pelt, A., Legerstee, P., Bauer, A., Eide, K., van der Linden, A., Berg, S., & Makurat, A. (2012). Core-flood experiment for transport of reactive fluids in rocks. Review of Scientific Instruments, 83, 084501. https://doi.org/10.1063/1.4746997 DOI: https://doi.org/10.1063/1.4746997

Ott, H., Pentland, C. H., & Oedai, S. (2015). CO2–brine displacement in heterogeneous carbonates. International Journal of Greenhouse Gas Control, 33, 135–144. https://doi.org/10.1016/j.ijggc.2014.12.004 DOI: https://doi.org/10.1016/j.ijggc.2014.12.004

Pini, R., & Benson, S. M. (2013a). Simultaneous determination of capillary pressure and relative permeability curves from core-flooding experiments with various fluid pairs. Water Resources Research, 49, 3516–3530. https://doi.org/10.1002/wrcr.20274 DOI: https://doi.org/10.1002/wrcr.20274

Pini, R., & Benson, S. M. (2013b). Characterization and scaling of mesoscale heterogeneities in sandstones. Geophysical Research Letters, 40, 3903–3908. https://doi.org/10.1002/grl.50756 DOI: https://doi.org/10.1002/grl.50756

Pini, R., Krevor, S. C. M., & Benson, S. M. (2012). Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions. Advances in Water Resources, 38, 48–59. https://doi.org/10.1016/j.advwatres.2011.12.007 DOI: https://doi.org/10.1016/j.advwatres.2011.12.007

Raoof, A., & Hassanizadeh, S. M. (2012). A new formulation for pore‐network modeling of two‐phase flow. Water Resources Research, 48. https://doi.org/10.1029/2010WR010180 DOI: https://doi.org/10.1029/2010WR010180

Renard, P., & de Marsily, G. (1997). Calculating equivalent permeability: a review. Advances in Water Resources, 20, 253–278. https://doi.org/10.1016/S0309-1708(96)00050-4 DOI: https://doi.org/10.1016/S0309-1708(96)00050-4

Reynolds, C. A., Blunt, M. J., & Krevor, S. (2018). Multiphase flow characteristics of heterogeneous rocks from CO2 storage reservoirs in the United Kingdom. Water Resources Research, 54, 729–745. https://doi.org/10.1002/2017WR021651 DOI: https://doi.org/10.1002/2017WR021651

Reynolds, C. A., & Krevor, S. (2015). Characterizing flow behavior for gas injection: Relative permeability of CO2-brine and N2-water in heterogeneous rocks. Water Resources Research, 51, 9464–9489. https://doi.org/10.1002/2015WR018046 DOI: https://doi.org/10.1002/2015WR018046

Ringrose, P. S., Sorbie, K. S., Corbett, P. W. M., & Jensen, J. L. (1993). Immiscible flow behaviour in laminated and cross-bedded sandstones. Journal of Petroleum Science and Engineering, 9, 103–124. https://doi.org/10.1016/0920-4105(93)90071-L DOI: https://doi.org/10.1016/0920-4105(93)90071-L

Ruspini, L. C., Øren, P. E., Berg, S., Masalmeh, S., Bultreys, T., et al. (2021). Multiscale digital rock analysis for complex rocks. Transport in Porous Media, 139, 301–325. https://doi.org/10.1007/s11242-021-01667-2 DOI: https://doi.org/10.1007/s11242-021-01667-2

Valvatne, P. H., & Blunt, M. J. (2004). Predictive pore‐scale modeling of two‐phase flow in mixed wet media. Water Resources Research, 40. https://doi.org/10.1029/2003WR002627 DOI: https://doi.org/10.1029/2003WR002627

Wellington, S. L., & Vinegar, H. J. (1987). X-ray computerized tomography. Journal of Petroleum Technology, 39(8). https://doi.org/10.2118/16983-PA DOI: https://doi.org/10.2118/16983-PA

Wenck, N., Jackson, S. J., Manoorkar, S., Muggeridge, A., & Krevor, S. (2021). Simulating Core Floods in Heterogeneous Sandstone and Carbonate Rocks. Water Resources Research, 57. https://doi.org/10.1029/2021WR030581 DOI: https://doi.org/10.1029/2021WR030581

Zhang, D., Zhang, R., Chen, S., & Soll, W. E. (2000). Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV. Geophysical Research Letters, 27, 1195–1198. https://doi.org/10.1029/1999GL011101 DOI: https://doi.org/10.1029/1999GL011101

Downloads

Published

2025-06-04

How to Cite

Amrollahinasab, O., Jammernegg, B., Azizmohammadi, S., & Ott, H. (2025). On the Interpretation of Unsteady State Experiments in Heterogeneous Rock by Stochastic Methods. InterPore Journal, 2(2), IPJ040625–5. https://doi.org/10.69631/ipj.v2i2nr44

Issue

Section

Original Research Papers