3D Printing Reactive Porous Media: Calcite Precipitation Kinetics on Surface Functionalized Polymer Films and 3D-printed Cores

Authors

DOI:

https://doi.org/10.69631/ipj.v2i2nr71

Keywords:

Mineral precipitation, Surface functionalization, 3D printing, Porosity-permeability evolution, X-ray CT imaging

Abstract

Mineral precipitation reactions in porous media can change the porosity and permeability of the rock formations. Predicting the rate of reaction and impacts on formation properties is challenging due to a lack of understanding of mineral precipitation reaction kinetics and mechanisms in porous media. This is furthermore challenging due to the highly heterogeneous nature of natural porous media. Here, we aim to develop a novel experimental platform leveraging 3D printing to facilitate replicable mineral precipitation experiments in controlled, heterogenous porous media systems. This requires fundamental understanding of the kinetics of mineral precipitation on the polymer materials used to fabricate the 3D printed porous media. In this work, we manipulate (via sulfonation) material surfaces (high impact polystyrene, HIPS) to promote calcite precipitation from supersaturated solutions to inform the design of synthetic subsurface systems. Calcite precipitation on HIPS films of varied surface sulfonation is confirmed using X-ray diffraction (XRD) analysis and weight-based precipitation experiments where increased precipitation with increased surface functionalization and solution saturation index are observed. This approach is then applied to 3D-printed porous media to enhance understanding of geochemical reactions, specifically calcite precipitation. Three dimensional images of Bentheimer Sandstone are used as the basis for 3D-printed porous media samples. Two 3D-printed samples were functionalized with acid to activate the surface and promote mineral precipitation. Functionalized and unfunctionalized samples underwent calcite precipitation core flooding experiments with oversaturated calcite solutions for 96 hours. Three dimensional X-ray micro-CT imaging revealed calcite growth in functionalized samples, with a calcite volume fraction of approximately 2.6% and a substantial reduction in porosity. Unfunctionalized samples exhibited diminished calcite precipitation and porosity changes. These findings demonstrate that reactive 3D-printed porous media can provide a versatile geochemical modeling and experimentation platform. Functionalizing 3D printed samples enhances reactivity, allowing investigations of mineral precipitation processes in complex porous media. This research highlights the potential for further exploration of 3D-printed media in various geochemical contexts.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Harrish Kumar Senthil Kumar, Auburn University

Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA

Abdullah Al Nahian, Auburn University

Department of Civil & Environmental Engineering, Auburn University, Auburn, AL 36849, USA

Nailah Braziel, Auburn University

Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA

Madelyn Torrance, Auburn University

Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA

Vinita V. Shinde, Auburn University

Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA

Lauren E. Beckingham, Auburn University

Department of Civil & Environmental Engineering, Auburn University, Auburn, AL 36849, USA

References

Akella, S. V., Mowitz, A., Heymann, M., & Fraden, S. (2014). Emulsion-Based Technique To Measure Protein Crystal Nucleation Rates of Lysozyme. Crystal Growth & Design, 14(9), 4487-4509. https://doi.org/10.1021/cg500562r DOI: https://doi.org/10.1021/cg500562r

Algive, L., Békri, S., Nader, F. H., Lerat, O., & Vizika, O. (2012). Impact of diagenetic alterations on the petrophysical and multiphase flow properties of carbonate rocks using a reactive pore network modeling approach. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 67(1), 147-160. http://dx.doi.org/10.2516/ogst/2011171 DOI: https://doi.org/10.2516/ogst/2011171

Al-Jaroudi, S. S., Ul-Hamid, A., Mohammed, A.-R. I., & Saner, S. (2007). Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples. Powder Technology, 175(3), 115-121. https://doi.org/10.1016/j.powtec.2007.01.013 DOI: https://doi.org/10.1016/j.powtec.2007.01.013

Al Nasser, W. N., & Al Salhi, F. H. (2015). Kinetics determination of calcium carbonate precipitation behavior by inline techniques. Powder Technology, 270, 548-560. https://doi.org/10.1016/j.powtec.2014.05.025 DOI: https://doi.org/10.1016/j.powtec.2014.05.025

Al Nasser, W. N., Shaikh, A., Morriss, C., Hounslow, M. J., & Salman, A. D. (2008). Determining kinetics of calcium carbonate precipitation by inline technique. Chemical Engineering Science, 63(5), 1381-1389. https://doi.org/10.1016/j.ces.2007.07.051 DOI: https://doi.org/10.1016/j.ces.2007.07.051

Al Omari, M. M. H., Rashid, I. S., Qinna, N. A., Jaber, A. M., & Badwan, A. A. (2016). Calcium carbonate. In: Profiles of Drug Substances, Excipients and Related Methodology (Vol. 41, pp. 31–132). Elsevier. https://doi.org/10.1016/bs.podrm.2015.11.003 DOI: https://doi.org/10.1016/bs.podrm.2015.11.003

Al-Yaseri, A. Z., Roshan, H., Zhang, Y., Rahman, T., Lebedev, M., et al. (2017). Effect of the temperature on CO2/brine/dolomite wettability: Hydrophilic versus hydrophobic surfaces. Energy & Fuels, 31(6), 6329-6333. https://doi.org/10.1021/acs.energyfuels.7b00745 DOI: https://doi.org/10.1021/acs.energyfuels.7b00745

Amos, R. T., Blowes, D. W., Bailey, B. L., Sego, D. C., Smith, L., & Ritchie, A. I. M. (2015). Waste-rock hydrogeology and geochemistry. Applied Geochemistry, 57, 140-156. https://doi.org/10.1016/j.apgeochem.2014.06.020 DOI: https://doi.org/10.1016/j.apgeochem.2014.06.020

Anjikar, I. S., Wales, S., & Beckingham, L. E. (2020). Fused Filament Fabrication 3‐D Printing of Reactive Porous Media. Geophysical Research Letters, 47(9), e2020GL087665. https://doi.org/10.1029/2020GL087665 DOI: https://doi.org/10.1029/2020GL087665

Arns, C. H., Knackstedt, M. A., & Pinczewski, W. V. (2003). Effect of network topology on relative permeability. Water Resources Research, 39(12), 1285. http://dx.doi.org/10.11648/j.pse.20170201.15

Aschauer, U., Ebert, J., Aimable, A., & Bowen, P. (2010). Growth Modification of Seeded Calcite by Carboxylic Acid Oligomers and Polymers: Toward an Understanding of Complex Growth Mechanisms. Crystal Growth & Design, 10(9), 3956-3963. https://doi.org/10.1021/cg1005105 DOI: https://doi.org/10.1021/cg1005105

Atchley, A. L., Navarre-Sitchler, A. K., & Maxwell, R. M. (2014). The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates. Journal of Contaminant Hydrology, 165, 53-64. https://doi.org/10.1016/j.jconhyd.2014.07.008 DOI: https://doi.org/10.1016/j.jconhyd.2014.07.008

Babaei, M., & Joekar-Niasar, V. (2016). A transport phase diagram for pore-level correlated porous media. Advances in Water Resources, 92, 23-29. https://doi.org/10.1016/j.advwatres.2016.03.014 DOI: https://doi.org/10.1016/j.advwatres.2016.03.014

Bachu, S. (2000). Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Conversion and Management, 41(9), 953-970. https://doi.org/10.1016/S0196-8904(99)00149-1 DOI: https://doi.org/10.1016/S0196-8904(99)00149-1

Balashov, V. N., Guthrie, G. D., Hakala, J. A., Lopano, C. L., Rimstidt, J. D., & Brantley, S. L. (2013). Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics. Applied Geochemistry, 30, 41-56. https://doi.org/10.1016/j.apgeochem.2012.08.016 DOI: https://doi.org/10.1016/j.apgeochem.2012.08.016

Beckingham, L. E., Peters, C. A., Um, W., Jones, K. W., & Lindquist, W. B. (2013). 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability. Advances in Water Resources, 62, 1-12. https://doi.org/10.1016/j.advwatres.2013.08.010 DOI: https://doi.org/10.1016/j.advwatres.2013.08.010

Beckingham, L. E. (2017). Evaluation of macroscopic porosity–permeability relationships in heterogeneous mineral dissolution and precipitation scenarios. Environmental Engineering Science, 34(1), 64–73. https://doi.org/10.1002/2017WR021306 DOI: https://doi.org/10.1002/2017WR021306

Bijeljic, B., Mostaghimi, P., & Blunt, M. J. (2011). Signature of non-Fickian solute transport in complex heterogeneous porous media. Physical Review Letters, 107(20), 204502. https://doi.org/10.1103/PhysRevLett.107.204502 DOI: https://doi.org/10.1103/PhysRevLett.107.204502

Binsbergen, F. L. (1973). Heterogeneous nucleation of crystallization. Progress in Solid State Chemistry, 8, 189-238. https://doi.org/https://doi.org/10.1016/0079-6786(73)90007-1 DOI: https://doi.org/10.1016/0079-6786(73)90007-1

Brantley, S. L., Holleran, M. E., Jin, L., & Bazilevskaya, E. (2013). Probing deep weathering in the Shale Hills Critical Zone Observatory, Pennsylvania (USA): the hypothesis of nested chemical reaction fronts in the subsurface. Earth Surface Processes and Landforms, 38(11), 1280-1298. https://doi.org/10.1002/esp.3415 DOI: https://doi.org/10.1002/esp.3415

Kralj, D., Kontrec, J., Brečević, L., Falini, G. and Nöthig-Laslo, V. (2004), Effect of Inorganic Anions on the Morphology and Structure of Magnesium Calcite. Chemistry – A European Journal, 10: 1647-1656. https://doi.org/10.1002/chem.200305313 DOI: https://doi.org/10.1002/chem.200305313

Brookins, D. G. (2012). Geochemical Aspects of Radioactive Waste Disposal. Springer Science & Business Media. https://link.springer.com/book/10.1007/978-1-4613-8254-6

Bruderer, C., & Bernabé, Y. (2001). Network modeling of dispersion: Transition from Taylor dispersion in homogeneous networks to mechanical dispersion in very heterogeneous ones. Water Resources Research, 37(4), 897-908. https://doi.org/10.1029/2000WR900362 DOI: https://doi.org/10.1029/2000WR900362

Buades, A., Coll, B., & Morel, J. M. (2011). Non-Local Means Denoising. Image Processing On Line, 1, 208-212. https://doi.org/10.5201/ipol.2011.bcm_nlm DOI: https://doi.org/10.5201/ipol.2011.bcm_nlm

Calhoun, A., & Chiang, E. (2006). Determination of the surface energetics of surface modified calcium carbonate using inverse gas chromatography. Journal of Vinyl and Additive Technology, 12(4), 174-182. https://doi.org/10.1002/vnl.20084 DOI: https://doi.org/10.1002/vnl.20084

Chadha, R., Arora, P., Saini, A., & Bhandari, S. (2012). Crystal Forms of Anti-HIV Drugs: Role of Recrystallization. Recrystallization, 19, 447-464. http://dx.doi.org/10.5772/33777 DOI: https://doi.org/10.5772/33777

Chang, R., Kim, S., Lee, S., Choi, S., Kim, M., & Park, Y. (2017). Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism. Frontiers in Energy Research, 5, 17. https://doi.org/10.3389/fenrg.2017.00017 DOI: https://doi.org/10.3389/fenrg.2017.00017

Chen, S. F., Zhu, J. H., Jiang, J., Cai, G. B., & Yu, S. H. (2010). Polymer‐Controlled Crystallization of Unique Mineral Superstructures. Advanced Materials, 22(4), 540-545. https://doi.org/10.1002/adma.200901964 DOI: https://doi.org/10.1002/adma.200901964

Cheong, W. C. (2010). Biomimetic approach to anti-fouling surfaces. (PhD Thesis) University of Leeds. https://etheses.whiterose.ac.uk/id/eprint/1694/

Crandell, L. E., Peters, C. A., Um, W., Jones, K. W., & Lindquist, W. B. (2012). Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes. Journal of Contaminant Hydrology, 131(1-4), 89-99. https://doi.org/10.1016/j.jconhyd.2012.02.002 DOI: https://doi.org/10.1016/j.jconhyd.2012.02.002

De Choudens-Sanchez, V., & Gonzalez, L. A. (2009). Calcite and Aragonite Precipitation Under Controlled Instantaneous Supersaturation: Elucidating the Role of CaCO3 Saturation State and Mg/Ca Ratio on Calcium Carbonate Polymorphism. Journal of Sedimentary Research, 79(6), 363-376. https://doi.org/10.2110/jsr.2009.043 DOI: https://doi.org/10.2110/jsr.2009.043

Deng, Y., Harsh, J. B., Flury, M., Young, J. S., & Boyle, J. S. (2006). Mineral formation during simulated leaks of Hanford waste tanks. Applied Geochemistry, 21(8), 1392-1409. https://doi.org/10.1016/j.apgeochem.2006.05.002 DOI: https://doi.org/10.1016/j.apgeochem.2006.05.002

Dentz, M., Cortis, A., Scher, H., & Berkowitz, B. (2004). Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Advances in Water Resources, 27(2), 155-173. https://doi.org/10.1016/j.advwatres.2003.11.002 DOI: https://doi.org/10.1016/j.advwatres.2003.11.002

Dentz, M., Hidalgo, J. J., & Lester, D. (2023). Mixing in porous media: concepts and approaches across scales. Transport in Porous Media, 146(1), 5-53. https://doi.org/10.1007/s11242-022-01852-x DOI: https://doi.org/10.1007/s11242-022-01852-x

DePaolo, D. J., & Cole, D. R. (2013). Geochemistry of geologic carbon sequestration: an overview. Reviews in Mineralogy and Geochemistry, 77(1), 1-14. https://doi.org/10.2138/rmg.2013.77.1 DOI: https://doi.org/10.2138/rmg.2013.77.1

Esteves, L., Younes, A., Zeng, Y., & Dizier, A. (2020). Pore-network modeling of single-phase reactive transport in carbonates: Acidizing efficiency and wormholing regimes. Chemical Engineering Journal, 382, 122860. https://doi.org/10.1016/j.advwatres.2020.103741 DOI: https://doi.org/10.1016/j.advwatres.2020.103741

Fahim Salek, M., Shinde, V. V., Beckingham, B. S., & Beckingham, L. E. (2022). Resin based 3D printing for fabricating reactive porous media. Materials Letters, 322, 132469. https://doi.org/10.1016/j.matlet.2022.132469

Flaten, E. M., Seiersten, M., & Andreassen, J.-P. (2010). Induction time studies of calcium carbonate in ethylene glycol and water. Chemical Engineering Research and Design, 88(12), 1659-1668. https://doi.org/10.1016/j.cherd.2010.01.028 DOI: https://doi.org/10.1016/j.cherd.2010.01.028

Fowkes, F. M. (1964). Attractive forces at interfaces. Industrial & Engineering Chemistry, 56(12), 40-52. https://doi.org/10.1021/ie50660a008 DOI: https://doi.org/10.1021/ie50660a008

Garside, J., Brečević, L., & Mullin, J. (1982). The effect of temperature on the precipitation of calcium oxalate. Journal of Crystal Growth, 57(2), 233-240. https://doi.org/10.1016/0022-0248(82)90478-X DOI: https://doi.org/10.1016/0022-0248(82)90478-X

Gebrehiwet, T. A., Redden, G. D., Fujita, Y., Beig, M. S., & Smith, R. W. (2012). The Effect of the CO32- to Ca2+ Ion activity ratio on calcite precipitation kinetics and Sr2+ partitioning. Geochemical Transactions, 13, 1-11. https://doi.org/10.1186/1467-4866-13-1 DOI: https://doi.org/10.1186/1467-4866-13-1

Gibson, H. W., & Bailey, F. C. (1980). Chemical Modification of Polymers. 13. Sulfonation of Polystyrene Surfaces. Macromolecules, 13(1), 34-41. https://doi.org/10.1021/ma60073a007 DOI: https://doi.org/10.1021/ma60073a007

Gibson, H. W., & Bailey, F. C. (1981). Chemical modification of polymers: 17. Dyeing of sulphonated polystyrene films by ion exchange with cationic dyes. Polymer, 22(8), 1068-1072. https://doi.org/10.1016/0032-3861(81)90294-9 DOI: https://doi.org/10.1016/0032-3861(81)90294-9

Gould, R. F. (1964). Contact Angle, Wettability, and Adhesion, Copyright, Advances in Chemistry Series. In F. G. Robert (Ed.), Contact Angle, Wettability, and Adhesion (Vol. 43, pp. i-iii). American Chemical Society. https://doi.org/doi:10.1021/ba-1964-0043.fw001 DOI: https://doi.org/10.1021/ba-1964-0043.fw001

Heller, W., Cheng, M.-H., & Greene, B. W. (1966). Surface tension measurements by means of the “microcone tensiometer”. Journal of Colloid and Interface Science, 22(2), 179-194. https://doi.org/10.1016/0021-9797(66)90082-8 DOI: https://doi.org/10.1016/0021-9797(66)90082-8

Hilley, G. E., & Porder, S. (2008). A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales. Proceedings of the National Academy of Sciences, 105(44), 16855-16859. https://doi.org/10.1073/pnas.0801462105 DOI: https://doi.org/10.1073/pnas.0801462105

Hoefner, M. L., & Fogler, H. S. (1988). Pore evolution and channel formation during flow and reaction in porous media. AIChE Journal, 34(1), 45–54. https://doi.org/10.1002/aic.690340107 DOI: https://doi.org/10.1002/aic.690340107

Hua, K.-H., Wang, H.-C., Chung, R.-S., & Hsu, J.-C. (2015). Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. Journal of Pesticide Science, 40(4), 208-213. https://doi.org/10.1584/jpestics.D15-025 DOI: https://doi.org/10.1584/jpestics.D15-025

Hussein, A. (2022). Essentials of Flow Assurance Solids in Oil and Gas Operations: Understanding Fundamentals, Characterization, Prediction, Environmental Safety, and Management. Gulf Professional Publishing. https://doi.org/10.1016/C2021-0-00361-8 DOI: https://doi.org/10.1016/C2021-0-00361-8

Jaho, S., Sygouni, V., Rokidi, S. G., Parthenios, J., Koutsoukos, P. G., & Paraskeva, C. A. (2016). Precipitation of Calcium Carbonate in Porous Media in the Presence of n-Dodecane. Crystal Growth & Design, 16(12), 6874-6884. https://doi.org/10.1021/acs.cgd.6b01048 DOI: https://doi.org/10.1021/acs.cgd.6b01048

Jones, A. G. (2002). Crystallization Process Systems. Elsevier. 978-0-7506-5520-0. https://www.sciencedirect.com/book/9780750655200/crystallization-process-systems#book-info

Khather, M., Saeedi, A., Rezaee, R., Noble, R. R., & Gray, D. (2017). Experimental investigation of changes in petrophysical properties during CO2 injection into dolomite-rich rocks. International Journal of Greenhouse Gas Control, 59, 74-90. https://doi.org/10.1016/j.ijggc.2017.02.007 DOI: https://doi.org/10.1016/j.ijggc.2017.02.007

Kim, Y., Seol, Y., Lee, H., & Kneafsey, T. (2011). Upscaling geochemical reaction rates accompanying acidic CO₂-saturated brine flow in sandstone. Water Resources Research, 47, W06506. https://doi.org/10.1029/2010WR009472 DOI: https://doi.org/10.1029/2010WR009472

Kong, L., Ostadhassan, M., Li, C., & Tamimi, N. (2018). Can 3-D printed gypsum samples replicate natural rocks? An experimental study. Rock Mechanics and Rock Engineering, 51, 3061-3074. https://doi.org/10.1007/s00603-018-1520-3 DOI: https://doi.org/10.1007/s00603-018-1520-3

Kong, L., Ostadhassan, M., Hou, X., Mann, M., & Li, C. (2019). Microstructure characteristics and fractal analysis of 3D-printed sandstone using micro-CT and SEM-EDS. Journal of Petroleum Science and Engineering, 175, 1039-1048. https://doi.org/10.1016/j.petrol.2019.01.050 DOI: https://doi.org/10.1016/j.petrol.2019.01.050

Kong, L., Ishutov, S., Hasiuk, F., & Xu, C. (2021). 3D printing for experiments in petrophysics, rock physics, and rock mechanics: a review. SPE Reservoir Evaluation & Engineering, 24(04), 721-732. https://doi.org/10.2118/206744-PA DOI: https://doi.org/10.2118/206744-PA

Lee, D., Ruf, M., Karadimitriou, N., Steeb, H., Manousidaki, M., et al. (2024). Development of stochastically reconstructed 3D porous media micromodels using additive manufacturing: numerical and experimental validation. Scientific Reports, 14(1), 9375. https://doi.org/10.1038/s41598-024-60075-w DOI: https://doi.org/10.1038/s41598-024-60075-w

Li, L., Peters, C. A., & Celia, M. A. (2006). Upscaling geochemical reaction rates using pore-scale network modeling. Advances in Water Resources, 29(9), 1351–1370. https://doi.org/10.1016/j.advwatres.2005.10.011 DOI: https://doi.org/10.1016/j.advwatres.2005.10.011

Li, L., Peters, C. A., & Celia, M. A. (2007). Effects of mineral spatial distribution on reaction rates in porous media. Water Resources Research, 43(1), W01419. https://doi.org/10.1029/2005WR004848 DOI: https://doi.org/10.1029/2005WR004848

Lioliou, M. G., Paraskeva, C. A., Koutsoukos, P. G., & Payatakes, A. C. (2007). Heterogeneous nucleation and growth of calcium carbonate on calcite and quartz. Journal of Colloid and Interface Science, 308(2), 421-428. https://doi.org/10.1016/j.jcis.2006.12.045 DOI: https://doi.org/10.1016/j.jcis.2006.12.045

Liu, C., Liu, Y., Kerisit, S., & Zachara, J. (2015). Pore-scale process coupling and effective surface reaction rates in heterogeneous subsurface materials. Reviews in Mineralogy and Geochemistry, 80(1), 191-216. https://doi.org/10.2138/rmg.2015.80.06 DOI: https://doi.org/10.2138/rmg.2015.80.06

Liu, Y., Gong, W., Xiao, H., & Wang, M. (2024). A pore-scale numerical framework for solute transport and dispersion in porous media. Advances in Water Resources, 183, 104602. http://dx.doi.org/10.1016/j.advwatres.2023.104602 DOI: https://doi.org/10.1016/j.advwatres.2023.104602

Liu, Y., Xiao, H., Aquino, T., Dentz, M., & Wang, M. (2024). Scaling laws and mechanisms of hydrodynamic dispersion in porous media. Journal of Fluid Mechanics, 1001, R2. http://dx.doi.org/10.1017/jfm.2024.1131 DOI: https://doi.org/10.1017/jfm.2024.1131

Luhmann, A. J., Tutolo, B. M., Bagley, B. C., Mildner, D. F., Seyfried Jr, et al. (2017). Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2‐rich brine. Water Resources Research, 53(3), 1908-1927. https://doi.org/10.1002/2016WR019216 DOI: https://doi.org/10.1002/2016WR019216

Ma, G., Zheng, Z., Wang, H., Wang, L., Zhao, G., et al. (2023). Effect of solution supersaturation on crystal formation of Vitamin K2 based on near infrared spectroscopy analysis technology. Journal of Crystal Growth, 605, 127034. https://doi.org/10.1016/j.jcrysgro.2022.127034 DOI: https://doi.org/10.1016/j.jcrysgro.2022.127034

Ma, Y., Gao, Y., & Feng, Q. (2010). Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls. Journal of Crystal Growth, 312(21), 3165-3170. https://doi.org/10.1016/j.jcrysgro.2010.07.053 DOI: https://doi.org/10.1016/j.jcrysgro.2010.07.053

Maher, K. (2010). The dependence of chemical weathering rates on fluid residence time. Earth and Planetary Science Letters, 294(1-2), 101-110. https://doi.org/10.1016/j.epsl.2010.03.010 DOI: https://doi.org/10.1016/j.epsl.2010.03.010

Maiwa, K., Nakamura, H., Kimura, H., & Miyazaki, A. (2006). Effect of temperature and supersaturation on the growth of Sr (No3) 2 (1 1 1) face in aqueous solution. Journal of Crystal Growth, 289(1), 303-307. https://doi.org/10.1016/j.jcrysgro.2005.10.110 DOI: https://doi.org/10.1016/j.jcrysgro.2005.10.110

Min, T., Gao, Y., Chen, L., Kang, Q., & Tao, W. W. (2016). Changes in porosity, permeability and surface area during rock dissolution: Effects of mineralogical heterogeneity. International Journal of Heat and Mass Transfer, 103, 900-913. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.043 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.043

Molins, S., Trebotich, D., Yang, L., Ajo-Franklin, J. B., Ligocki, T. J., et al. (2014). Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Environmental Science & Technology, 48(13), 7453-7460. https://doi.org/10.1021/es5013438 DOI: https://doi.org/10.1021/es5013438

Mullin, J. W. (2001). Crystallization. 4th Edition. Elsevier. https://doi.org/10.1016/B978-0-7506-4833-2.X5000-1 DOI: https://doi.org/10.1016/B978-0-7506-4833-2.X5000-1

Murphy, W. L., & Mooney, D. J. (2002). Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. Journal of the American Chemical Society, 124(9), 1910-1917. https://doi.org/10.1021/ja012433n DOI: https://doi.org/10.1021/ja012433n

Navarre-Sitchler, A., & Jung, H. (2017). Complex coupling of fluid transport and geochemical reaction rates: Insights from reactive transport models. Procedia Earth and Planetary Science, 17, 5-8. https://doi.org/10.1016/j.proeps.2016.12.004 DOI: https://doi.org/10.1016/j.proeps.2016.12.004

Navarre-Sitchler, A. K., Cole, D. R., Rother, G., Jin, L., Buss, H. L., & Brantley, S. L. (2013). Porosity and surface area evolution during weathering of two igneous rocks. Geochimica et Cosmochimica Acta, 109, 400-413. https://doi.org/10.1016/j.gca.2013.02.012 DOI: https://doi.org/10.1016/j.gca.2013.02.012

Nicoleau, L., Van Driessche, A. E., & Kellermeier, M. (2019). A kinetic analysis of the role of polymers in mineral nucleation. The example of gypsum. Cement and Concrete Research, 124, 105837. https://doi.org/10.1016/j.cemconres.2019.105837 DOI: https://doi.org/10.1016/j.cemconres.2019.105837

Nogues, J. P., Fitts, J. P., Celia, M. A., & Peters, C. A. (2013). Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resources Research, 49(9), 6006-6021. https://doi.org/10.1002/wrcr.20486 DOI: https://doi.org/10.1002/wrcr.20486

Noiriel, C., Steefel, C. I., Yang, L., & Bernard, D. (2016). Effects of pore-scale precipitation on permeability and flow. Advances in Water Resources, 95, 125-137. https://doi.org/10.1016/j.advwatres.2015.11.013 DOI: https://doi.org/10.1016/j.advwatres.2015.11.013

Oskolkov, A. A., Kochnev, A. A., Krivoshchekov, S. N., & Savitsky, Y. V. (2024). Real-Size Reconstruction of Porous Media Using the Example of Fused Filament Fabrication 3D-Printed Rock Analogues. Journal of Manufacturing and Materials Processing, 8(3), 104. https://doi.org/10.3390/jmmp8030104 DOI: https://doi.org/10.3390/jmmp8030104

Parry, S. A., Hodson, M. E., Kemp, S. J., & Oelkers, E. H. (2015). The surface area and reactivity of granitic soils: I. Dissolution rates of primary minerals as a function of depth and age deduced from field observations. Geoderma, 237, 21-35. https://doi.org/10.1016/j.geoderma.2014.08.004 DOI: https://doi.org/10.1016/j.geoderma.2014.08.004

Raoof, A., Hassanizadeh, S. M., & Leijnse, A. (2010). Upscaling transport of adsorbing solutes in porous media: Pore-network modeling. Vadose Zone Journal, 9(1), 208–219. https://doi.org/10.2136/vzj2010.0026 DOI: https://doi.org/10.3997/2214-4609-pdb.150.D04

Reis, R., Cunha, A., Fernandes, M., & Correia, R. (1997). Treatments to induce the nucleation and growth of apatite-like layers on polymeric surfaces and foams. Journal of Materials Science: Materials in Medicine, 8, 897-905. https://doi.org/10.1023/A:1018514107669 DOI: https://doi.org/10.1023/A:1018514107669

Roded, R., Szymczak, P., & Holtzman, R. (2021). Wormholing in anisotropic media: Pore‐scale effect on large‐scale patterns. Geophysical Research Letters, 48(11), e2021GL093659. http://dx.doi.org/10.1029/2021GL093659 DOI: https://doi.org/10.1029/2021GL093659

Sahimi, M. U. H. A. M. M. A. D., & Imdakm, A. O. (1988). The effect of morphological disorder on hydrodynamic dispersion in flow through porous media. Journal of Physics A: Mathematical and General, 21(19), 3833. https://doi.org/10.1088/0305-4470/21/19/019 DOI: https://doi.org/10.1088/0305-4470/21/19/019

Sabo, M., & Beckingham, L. E. (2021). Porosity‐permeability evolution during simultaneous mineral dissolution and precipitation: The impact of size‐dependent reactivity. Water Resources Research, 57(9), e2021WR030261. https://doi.org/10.1029/2020WR029072 DOI: https://doi.org/10.1029/2020WR029072

Salek, M. F., Shinde, V. V., Beckingham, B. S., & Beckingham, L. E. (2022). Resin based 3D printing for fabricating reactive porous media. Materials Letters, 322, 132469. https://doi.org/10.1016/j.matlet.2022.132469 DOI: https://doi.org/10.1016/j.matlet.2022.132469

Shinde, V. V., Wang, Y., Salek, M. F., Auad, M. L., Beckingham, L. E., & Beckingham, B. S. (2022). Material design for enhancing properties of 3D printed polymer composites for target applications. Technologies, 10(2), 45. https://doi.org/10.3390/technologies10020045 DOI: https://doi.org/10.3390/technologies10020045

Shinde, V. V. (2022). Building a Sustainable Future through the Material design of 3D Printed Polymer Materials. Dissertation, Auburn University. https://etd.auburn.edu//handle/10415/8229

Song, R., Wang, Y., Sun, S., & Liu, J. (2021). Characterization and microfabrication of natural porous rocks: From micro-CT imaging and digital rock modelling to micro-3D-printed rock analogs. Journal of Petroleum Science and Engineering, 205, 108827. https://doi.org/10.1016/j.petrol.2021.108827 DOI: https://doi.org/10.1016/j.petrol.2021.108827

Steinwinder, T. R., & Beckingham, L. E. (2019). Role of pore and pore‐throat distributions in controlling permeability in heterogeneous mineral dissolution and precipitation scenarios. Water Resources Research, 55(9), 7417–7432. https://doi.org/10.1029/2019WR024793 DOI: https://doi.org/10.1029/2019WR024793

Sugimoto, T. (2019). Monodispersed Particles. Elsevier. Paperback ISBN: 9780444546456, Hardback ISBN: 9780444895691, eBook ISBN: 9780080536965 https://shop.elsevier.com/books/monodispersed-particles/sugimoto/978-0-444-89569-1

Tang, H., Yu, J., & Zhao, X. (2009). Controlled synthesis of crystalline calcium carbonate aggregates with unusual morphologies involving the phase transformation from amorphous calcium carbonate. Materials Research Bulletin, 44(4), 831-835. https://doi.org/10.1016/j.materresbull.2008.09.002 DOI: https://doi.org/10.1016/j.materresbull.2008.09.002

Temmel, E., Gänsch, J., Seidel-Morgenstern, A., & Lorenz, H. (2020). Systematic investigations on continuous fluidized bed crystallization for chiral separation. Crystals, 10(5), 394. http://dx.doi.org/10.3390/cryst10050394 DOI: https://doi.org/10.3390/cryst10050394

Trebotich, D., & Graves, D. T. (2015). An adaptive finite volume method for incompressible viscous flow in complex geometries. Journal of Computational Physics, 297, 155–172. https://doi.org/10.1006/jcph.2002.7037 DOI: https://doi.org/10.1006/jcph.2002.7037

Walles, W. (1973). Lamination of olefin polymer to various substrates. US Patent US3779840A.

Watt, J. C. (1925). The deposition of calcium phosphate and calcium carbonate in bone and in areas of calcification. Archives of Surgery, 10(3), 983-990. DOI: https://doi.org/10.1001/archsurg.1925.01120120171007

Wen, H., & Li, L. (2017). An upscaled rate law for magnesite dissolution in heterogeneous porous media. Geochimica et Cosmochimica Acta, 210, 289-305. https://doi.org/10.1016/j.gca.2017.04.019 DOI: https://doi.org/10.1016/j.gca.2017.04.019

Varloteaux, C., Bekri, S., Vizika, O., & Noiriel, C. (2013). Pore network modelling to determine the transport properties of a real porous medium. Advances in Water Resources, 53, 121–131. https://doi.org/10.1016/j.advwatres.2012.10.004 DOI: https://doi.org/10.1016/j.advwatres.2012.10.004

Yang, J., Zhu, P., Xu, W., & Ma, S. (2022). Study on abrasive grinding characteristics of calcite. 2022 International Conference on Optoelectronic Information and Functional Materials. Proceedings Volume 12255, 2022 International Conference on Optoelectronic Information and Functional Materials (OIFM 2022); 122551O (2022) https://doi.org/10.1117/12.2638722

Yang, L., Xu, T., Yang, B., Tian, H., & Lei, H. (2014). Effects of mineral composition and heterogeneity on the reservoir quality evolution with CO2 intrusion. Geochemistry, Geophysics, Geosystems, 15(3), 605-618. https://doi.org/10.1002/2013GC005157 DOI: https://doi.org/10.1002/2013GC005157

Yu, Z., Wang, J.-J., Liu, L.-Y., Li, Z., & Zeng, E. Y. (2024). Drinking boiled tap water reduces human intake of nanoplastics and microplastics. Environmental Science & Technology Letters, 11(3), 273-279. https://doi.org/10.1021/acs.estlett.4c00081 DOI: https://doi.org/10.1021/acs.estlett.4c00081

Zhang, L., Xu, C., Guo, Y., Zhu, G., Cai, S., et al. (2021). The effect of surface roughness on immiscible displacement using pore scale simulation. Transport in Porous Media, 140, 713-725. https://link.springer.com/article/10.1007/s11242-020-01526-6 DOI: https://doi.org/10.1007/s11242-020-01526-6

Zhang, S., & DePaolo, D. J. (2017). Rates of CO2 mineralization in geological carbon storage. Accounts of Chemical Research, 50(9), 2075-2084. https://doi.org/10.1021/acs.accounts.7b00334 DOI: https://doi.org/10.1021/acs.accounts.7b00334

Downloads

Additional Files

Published

2025-06-04

How to Cite

Senthil Kumar, H. K., Nahian, A. A., Braziel, N., Shi, Z., Torrance, M., Shinde, V. V., … Beckingham, B. S. (2025). 3D Printing Reactive Porous Media: Calcite Precipitation Kinetics on Surface Functionalized Polymer Films and 3D-printed Cores. InterPore Journal, 2(2), IPJ040625–7. https://doi.org/10.69631/ipj.v2i2nr71

Issue

Section

Original Research Papers